
Reminders / Announcements
• Homework 1 is due tonight!

o Each student gets 10 late days (total). See the syllabus for details.

o You DO NOT need to email me for permission to use late days!

• Project Proposal is due 10/03
o Group sizes <3 need my explicit permission!

o Proposal needs to be turned in on Blackboard by each group member

• Midterm Exam is on 10/20
o In class; closed-book; 1 hour; everything up to and including 10/15 lecture

o More details in the next class.

A New Useful Reference Book

• Available for free on: https://visionbook.mit.edu/

• Published in 2024 – a modern take compared to
the other reference books mentioned in the
syllabus (these are also available for free)

• As a reminder: you are encouraged to read
relevant chapters of reference books

o Course website lists book chapters for each lecture

o This is optional, but encouraged

I’ve requested UMBC library to buy it, but that might take some time …

https://visionbook.mit.edu/

Quiz 3!

tejasgokhale.com

Lecture 8: Neural Networks
CMSC 472/672 Computer Vision

Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)

0

1

Limitations to linear classifiers

+-

0 1

0 0 1

1 1 0

XOR

+ -

Limitations to linear classifiers
Wrong!

+-

+ -

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR

Limitations to linear classifiers

+-

+ -

Wrong!

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR

Goal: Non-linear decision boundary

+-

+ -

0

1

0 1

0 0 1

1 1 0

XOR

A brief history of Neural Networks

time

enthusiasm

What comes next?

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

28 years 28 years

Krizhevsky,
Sutskever,
Hinton, 2012

2028 ?

Parametric Approach

Image

f(x,W) 10 numbers giving
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

29 April 6, 2023

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights

ParametricApproach: Linear Classifier

Image

W
parameters
or weights

f(x,W) 10 numbers giving
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

30 April 6, 2023

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

f(x,W)

ParametricApproach: Linear Classifier
3072x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

31 April 6, 2023

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b

ParametricApproach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

32 April 6, 2023

Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖

weights

Adapted from: Isola, Torralba, Freeman

Neuron (a.k.a unit)

Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Adapted from: Isola, Torralba, Freeman

Example: Linear Regression

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman

𝑦𝑦2…
𝑦𝑦j

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by
appending a 1 to 𝐱𝐱

Input
representation

Output
representation

Connectivity patterns

Fully connected layer Locally connected layer
(Sparse W)

Input
representation

Output
representation

Computation in a neural network

41

Input
representation

Output
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as
many times as we want!

What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

�𝑾𝑾𝒙𝒙
Limited power: can’t solve XOR 

Recall
Goal: Non-linear decision boundary

+-

+ -

0

1

0 1

0 0 1

1 1 0

XOR

Pointwise
Non-linearity

Solution: simple nonlinearity

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

The Perceptron

Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman

Example: linear classification with a perceptron

Example: linear classification with a perceptron

“when y is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel values to 0
(red)”

Example: linear classification with a perceptron

“when y is greater than 0, set all
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

Computation in a neural net - nonlinearity

Input
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use gradient-based optimization, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output
representation

Computation in a neural net - nonlinearity

Input
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output
representation

Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity

Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.
2012])

• Drawback: if strongly in negative region,
unit is dead forever (no gradient).

• Default choice: widely used in current
models!

Computation in a neural net — nonlinearity

Leaky ReLU• where α is small (e.g., 0.02)

• Efficient to implement:

• Has non-zero gradients everywhere
(unlike ReLU)

Computation in a neural net — nonlinearity

Perceptron:
Old Idea!

Late 1950s video on
Rosenblatt’s
perceptron research

“While promising, this
approach to machine
intelligence virtually died
out …”

Perceptron:
Old Idea!

Late 1950s video on
Rosenblatt’s
perceptron research

“While promising,
this approach to
machine intelligence
virtually died out …”

Output
representation

Intermediate
representation

Input
representation

Stacking layers

𝐡𝐡 = “hidden units”

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

Intermediate
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

Intermediate
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

Stacking layers - What’s actually happening?

Low level features:
e.g., edge, texture, …

higher level features:
e.g., shape

even higher level features:
e.g., “paw”, “fur”

“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿(…𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))𝑓𝑓 𝑥𝑥
Source: Isola, Torralba, Freeman

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

Where do we get the weights from ?

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

“dog”

Learned

How would we learn the parameters?

predicted ground truth

Training neural networks

Let’s start easy

world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)

Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …

Given several examples

An Incremental Learning Strategy
(gradient descent)

and a perceptron

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

An Incremental Learning Strategy
(gradient descent)

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy
(gradient descent)

Gradient descent:

update rule:

…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…

L1 Loss L2 Loss

Zero-One Loss Hinge Loss

…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…

Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient

Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

The Perceptron

inputs

weights

output

sum sign function
(e.g., step,sigmoid, Tanh, ReLU)

bias

Another way to draw it…

inputs

weights

output

Activation Function
(e.g., Sigmoid function of weighted sum)

(1) Combine the sum
and activation function

(2) suppress the bias
term (less clutter)

output

float perceptron(vector<float> x, vector<float> w)
{

float a = dot(x,w);
return f(a);

}

float f(float a)
{

return 1.0 / (1.0+ exp(-a));
}

Activation function (sigmoid, logistic function)

Perceptron function (logistic regression)

Programming the 'forward pass'

Neural networks

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘one perceptron’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘two perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘three perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘four perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘five perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘six perceptrons’

Connect a bunch of perceptrons together …

Some terminology…

…also called a Multi-layer Perceptron (MLP)

‘input’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)

‘input’ layer
‘hidden’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)

‘input’ layer
‘hidden’ layer

‘output’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)

this layer is a
‘fully connected layer’

all pairwise neurons between layers are connected

so is this

all pairwise neurons between layers are connected

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

20 + 4 + 2 = 26
bias terms

Example of a
multi-layer perceptron

function of FOUR parameters and FOUR layers!

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:

Entire network can be written out as one long equation

What is known? What is unknown?

known

We need to train the network:

Entire network can be written out as one long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function
sometimes has

parameters

Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives

So we need to compute the partial derivatives

Partial derivative describes…

(loss layer)

Remember,

rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…

rest of the network

Chain Rule!

Next Class:

How to use chain rule and “backpropagation” to train
any neural network

	Reminders / Announcements
	A New Useful Reference Book
	Quiz 3!
	Lecture 8: Neural Networks
	Slide Number 5
	Limitations to linear classifiers
	Limitations to linear classifiers
Wrong!
	Limitations to linear classifiers
	Goal: Non-linear decision boundary
	A	brief	history	of	Neural	Networks
	What comes next?
	Slide Number 29
	f(x,W) = Wx
	Slide Number 31
	Slide Number 32
	Computation in a neural net
	Computation in a neural net
	Example: Linear Regression
	𝑦 = 𝑊𝑥 + 𝑏
	Computation in a neural net – Full Layer
	Connectivity patterns
		Computation in a neural network
	What is the problem with this idea?
	What is the problem with this idea?
	Recall�Goal: Non-linear decision boundary
	Solution: simple nonlinearity
	The Perceptron
	Slide Number 45
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net — nonlinearity
	Computation in a neural net — nonlinearity
	Perceptron: �Old Idea!
	Perceptron: �Old Idea!
	Slide Number 58
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Slide Number 66
	Stacking layers - What’s actually happening?
	Deep nets
	Computation has a simple form
	Computation has a simple form
	Where do we get the weights from ?
	How would we learn the parameters?
	Training neural networks
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Neural networks
	Slide Number 98
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136

