
Reminders / Announcements
• Homework 1 is due tonight! 

o Each student gets 10 late days (total). See the syllabus for details.  

o You DO NOT need to email me for permission to use late days!

• Project Proposal is due 10/03
o Group sizes <3 need my explicit permission!

o Proposal needs to be turned in on Blackboard by each group member

• Midterm Exam is on 10/20
o In class; closed-book; 1 hour; everything up to and including 10/15 lecture

o More details in the next class.



A New Useful Reference Book

• Available for free on: https://visionbook.mit.edu/

• Published in 2024 – a modern take compared to 
the other reference books mentioned in the 
syllabus (these are also available for free)

• As a reminder:  you are encouraged to read 
relevant chapters of reference books

o Course website lists book chapters for each lecture

o This is optional, but encouraged

I’ve requested UMBC library to buy it, but that might take some time …

https://visionbook.mit.edu/


Quiz 3!



tejasgokhale.com

Lecture 8: Neural Networks
CMSC 472/672 Computer Vision

Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)
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Goal: Non-linear decision boundary
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A brief history of Neural Networks

time

enthusiasm



What comes next?

Perceptrons, 
1958

Minsky and Papert, 
1972

PDP book, 
1986

AI winter, 
2000 time

enthusiasm

28 years 28 years

Krizhevsky, 
Sutskever, 
Hinton, 2012

2028 ?



Parametric Approach

Image

f(x,W) 10 numbers giving 
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao
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Image

W
parameters
or weights

10 numbers giving 
class scores

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

f(x,W)

ParametricApproach: Linear Classifier
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Image

W
parameters
or weights

10 numbers giving 
class scores

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx + b

ParametricApproach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

32 April 6, 2023



Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖 

weights

Adapted from: Isola, Torralba, Freeman

Neuron (a.k.a unit)



Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Adapted from: Isola, Torralba, Freeman



Example: Linear Regression

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman

𝑦𝑦2…
𝑦𝑦j



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by 
appending a 1 to 𝐱𝐱



Input 
representation

Output 
representation

Connectivity patterns

Fully connected layer Locally connected layer 
(Sparse W)

Input 
representation

Output 
representation



Computation in a neural network

41

Input 
representation

Output 
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output 
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as 
many times as we want!



What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱



What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

�𝑾𝑾𝒙𝒙
Limited power: can’t solve XOR  



Recall
Goal: Non-linear decision boundary

+-

+ -

0

1

0 1

0 0 1

1 1 0

XOR



Pointwise 
Non-linearity

Solution: simple nonlinearity

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)



The Perceptron





Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron



Example: linear classification with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), 
otherwise, set all pixel values to 0 
(red)”



Example: linear classification with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use gradient-based optimization, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output 
representation



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output 
representation



Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity



Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x 
speedup vs. tanh in [Krizhevsky et al. 
2012])

• Drawback: if strongly in negative region,
unit is dead forever (no gradient).

• Default choice: widely used in current 
models!

Computation in a neural net — nonlinearity



Leaky ReLU• where α is small (e.g., 0.02)

• Efficient to implement:

• Has non-zero gradients everywhere
(unlike ReLU)

Computation in a neural net — nonlinearity



Perceptron:  
Old Idea!  

Late 1950s video on
Rosenblatt’s 
perceptron research

“While promising, this 
approach to machine 
intelligence virtually died 
out …”



Perceptron:  
Old Idea!  

Late 1950s video on
Rosenblatt’s 
perceptron research

“While promising, 
this approach to 
machine intelligence 
virtually died out …”





Output 
representation

Intermediate 
representation

Input 
representation

Stacking layers

𝐡𝐡 = “hidden units”



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation
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𝒙𝒙
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Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉
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Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}





Stacking layers - What’s actually happening?

Low level features: 
e.g., edge, texture, …

higher level features: 
e.g., shape

even higher level features: 
e.g., “paw”, “fur”



“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿( …𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))𝑓𝑓 𝑥𝑥
Source: Isola, Torralba, Freeman



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?
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Where do we get the weights from ?

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat



“dog”

Learned

How would we learn the parameters?

predicted ground truth



Training neural networks



Let’s start easy



world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)



Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …



Given several examples 

An Incremental Learning Strategy
(gradient descent)

and a perceptron



Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

An Incremental Learning Strategy
(gradient descent)



Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

perceptron 
output

true 
label

perceptron 
parameter

An Incremental Learning Strategy
(gradient descent)



Gradient descent:

update rule:



…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…



L1 Loss L2 Loss

Zero-One Loss Hinge Loss



…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…



Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient





Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update





The Perceptron

inputs

weights

output

sum sign function
(e.g., step,sigmoid, Tanh, ReLU)

bias



Another way to draw it…

inputs

weights

output

Activation Function
(e.g., Sigmoid function of weighted sum)

(1) Combine the sum 
and activation function 

(2) suppress the bias 
term (less clutter)



output

float perceptron(vector<float> x, vector<float> w)
{

float a  = dot(x,w); 
return f(a);

}

float f(float a) 
{

return 1.0 / (1.0+ exp(-a));
}

Activation function (sigmoid, logistic function)

Perceptron function (logistic regression)

Programming the 'forward pass'



Neural networks



Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

‘one perceptron’

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

‘two perceptrons’

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

‘three perceptrons’

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

‘four perceptrons’

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

‘five perceptrons’

Connect a bunch of perceptrons together …



Neural Network
a collection of connected perceptrons

‘six perceptrons’

Connect a bunch of perceptrons together …



Some terminology…

…also called a Multi-layer Perceptron (MLP)



‘input’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)



‘input’ layer
‘hidden’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)



‘input’ layer
‘hidden’ layer

‘output’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)



this layer is a
‘fully connected layer’

all pairwise neurons between layers are connected



so is this

all pairwise neurons between layers are connected



How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?



How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6



How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20



How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

20 + 4 + 2 = 26
bias terms



Example of a 
multi-layer perceptron

function of FOUR parameters and FOUR layers!



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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output
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weightinput
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weight weight
activation activation

input
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:



Entire network can be written out as one long equation

What is known? What is unknown?

known

We need to train the network:



Entire network can be written out as one long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function 
sometimes has 

parameters



Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP



Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives



So we need to compute the partial derivatives



Partial derivative describes…

(loss layer)

Remember,



rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…



rest of the network

Chain Rule!



Next Class:

How to use chain rule and “backpropagation” to train 
any neural network
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