Reminders /| Announcements

- Homework 1 is due tonight!
o Each student gets 10 late days (total). See the syllabus for details.

o You DO NOT need to email me for permission to use late days!

* Project Proposal is due 10/03
o Group sizes <3 need my explicit permission!

o Proposal needs to be turned in on Blackboard by each group member

e Midterm Exam is on 10/20

o In class; closed-book; 1 hour; everything up to and including 10/15 lecture

o More details in the next class.



A New Useful Reference Book
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« Available for free on: https://visionbook.mit.edu/ o
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the other reference books mentioned in the :; of Computer Vision
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I've requested UMBC library to buy it, but that might take some time ...
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If you choose an answer to this question at random,
what is the chance that you will be correct?

5B 0%

*A: 25% /

50% @ >=<0:25%



tejasgokhale.com

CMSC 472/672 Computer Vision

Lecture 8: Neural Networks

How do Neural Networks é
work?
Neurons: ¥ ]

B

y
| know a'guy who knows a guy

Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)

UMBC



Artificial
Intelligence




Limitations to linear classifiers




Wrong!

N\

Limitations to linear classifiers

rong!




Limitations to linear classifiers

Wrong!




Goal: Non-linear decision boundary




A brief history of Neural Networks

enthusiasm

time



What comes next? g\

Krizhevsky,
Perceptrons, PDP book, Sutskever,
1958 1986 Hinton, 2012

enthusiasm

Minsky and Papert, Al winter, 9 .
1972 2000 20287 time
28 years 28 years

e =



Parametric Approach

Image
10 numbers givin
> f(x,W) > 9ving
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters

or weights



Parametric Approach: Linear Classifier

f(x,W) = Wx

Image

- f(x,W) _ 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights



Parametric Approach: Linear Classifier
3072x1
|mage f(X’W) — IVKI

10x1  10x3072 .
- f(x,W) _ 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights




Parametric Approach: Linear Classifier
3072x1

f(x,W)

Image

10x1

Array of 32x32x3 numbers
(3072 numbers total)

WK +

10x3072

T

> f(X,W)

W

parameters
or weights

b

>

10x1

10 numbers giving
class scores



Computation in a neural net

Let’'s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Input Output / weights
representation representation

Vi = i WijX;

Neuron (a.k.a unit) \

Adapted from: Isola, Torralba, Freeman



Computation in a neural net

Let's say we have some 1D input that we want to convert to some new feature space

Linear layer
Input Output / weights
representation representation
Xi Y = ZiWini+ b;
O ‘\
bias
C/L
O
@
o
1 C

Adapted from: Isola, Torralba, Freeman



Example: Linear Regression

Linear layer

Input Output
representation representation
o
®
®
®
X ® k Dy
o
. T
C fwp(X) =x"W+b
1Q

Adapted from: Isola, Torralba, Freeman



Computation in a neural net — Full Layer

Linear layer y=Wx+Db
Input Output Wi1 - Winyxa] (b1l v
representation representation || b X2 4 | b2 = [V2

. Oyl ® y nEn EEn _ L
A O)’Z W: coe W X b :
® QY3 j1 jn1nd Lo 1 L)
O

X - ‘
: E y parameters of the model: H — {W, b}
O
® b Y

10

Adapted from: Isola, Torralba, Freeman



Computation in a neural net — Full Layer

Linear layer Full layer
Input Output Y = Wx +_ b_
representation representation (W11 o Win bq a V1]
C O V1 2 2 2
® Oyz ’ ‘ . X — | ...
o QY3 Wit Win by | [ Ly
® - - L4
X ® ‘ |y
. .
: . Can again simplify notation by
] | appendinga 1to X
1 C

Adapted from: Isola, Torralba, Freeman



Connectivity patterns

Input Output Input Output

representation Wb representation representation —c representation

Fully connected layer Locally connected layer
(Sparse W)



Computation in a neural network

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

Input Output
representation representation
®) O O
®) O O
8 8 8 We can repeat this as
X S Y O Z '®) many times as we want!
O O O
O O O
®) O O

41



What is the problem with this idea?
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What is the problem with this idea?

E
e
S
=
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=
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»e

OO0O0O0000O0
OO0O0O000O0O0
OO0O00000O0

OO0O00000O0

Can be expressed as single linear layer!

—

Wx

Limited power: can't solve XOR ®



Recall

Goal: Non-linear decision boundary




Solution: simple nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
° Oo—O
O O0—O0
® O—O 0.6
® O—O
) o T = 9(y) ..
® : 0.2
° Oo0—O
® o—-0 0.0
bj —4 —2 0 2 4
10 y g)

_ d
Pointwise

Non-linearity



The Perceptron



WHAT PERCEPTRON SOUNDS LIKE wHat pERceptRoNS Ark

out(t)

in(t) <




Example: linear classification with a perceptron

L2

80

60

40

20

Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron

L2

y=x'w+b

() = 1, if y>0
S = 0, otherwise

80

60

40

20




Example: linear classification with a perceptron

L2

80

60

40

20

y=x'w+b

1, if y>0

0, otherwise
“when vy is greater than 0, set all
pixel values to 1 (green),

otherwise, set all pixel valuesto 0
(red)”



Example: linear classification with a perceptron
9(y)

L2

y=x'w+b

80

60

9(y) = 0, otherwise

40

{1, it y>0

? “when vy is greater than 0, set all

pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”




Computation in a neural net - nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
o O—O
® O—O 0.8
o O—O0 0e
® O—0O)
X () } ) N g(y)o4
® o—-O0 0>
® O—O
o o—-0 0.0
b N T T
10 y g)

d
Can’t use gradient-based optimization, 359 = 0



Computation in a neural net - nonlinearity

Linear layer Sigmoid
1
Input Output g(y) =o(y) = 11+ e
representation representation o

- .

® 0.8

: 0.6
X A~ \ g(y) 0.4

o 0.2

®

- bj o —4 =2 0 2 4
10 y 9O) Y



Computation in a neural net - nonlinearity

- Bounded between [0,1] Sigmoid
B B 1
» Saturation for large +/- inputs 9(y) =o(y) = 1+ e Y
- Gradients go to zero 0:8:
0.6 1
9(Y) ..



Computation in a neural net — nonlinearity

» Unbounded output (on positive side) Rectified linear unit (ReLU)
. ' ' . 99 _ )0, if y<0 = max/(0
Efficient to implement: By = {1, £ g0 g9(y) (0,9)

* Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012]) >
9(y) -
« Drawback: if strongly in negative region, |

unit is dead forever (no gradient).

» Default choice: widely used in current
models! Y



Computation in a neural net — nonlinearity

» where a is small (e.g., 0.02)

« Efficient to implement:

» Has non-zero gradients everywhere

(unlike ReLU)

@_ —a, if y<0

Oy

L,

if y>0

Leaky RelLU

max(0,y), if y>0
9(y) = . .
amin(0,y), if y <O




Perceptron:
Old Idea!

Late 1950s video on
Rosenblatt’s
perceptron research

“While promising, this
approach to machine
intelligence virtually died
out...”




Perceptron:
Old Idea!

Late 1950s video on
Rosenblatt’s
perceptron research

“While promising,
this approach to
machine intelligence
virtually adied out ..."
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Stacking layers

Input Intermediate Output
representation representation representation

00000000

h = “hidden units”



Stacking layers

Input Intermediate Output
representation representation representation

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}

Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ... b1}

Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU -~ O = {W1, ..., WL b1, .. bL



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelLU

o = (Wl .. WLbl .. bL



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelLU

o = (Wl .., WLbl .. bl
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Stacking layers - What's actually happening?

Low level features: higher level features: even higher level features:
e.g., edge, texture, ... e.g., shape e.g., “paw”, “fur”

OO0O0O0000O0

OO0O0O000O0O0
\/

00000000

OOO0000O0O0



Source: Isola, Torralba, Freeman

Deep nets
R

|
1
1
\l/

fx)=f(. . :(f2(fi(x)))

“dog”



Computation has a simple form

« Composition of linear functions with nonlinearities in between

- E.g. matrix multiplications with ReLU, max(0, X) afterwards

* Do a matrix multiplication, set all negative values to O, repeat

But where do we get the weights from?



Computation has a simple form

y = ax® + bk Coo il
X, x,) T= b 2N

a :

But where do we get the weights from?




Where do we get the weights from ?

“DEEP LEARNING"

%; o
ﬁ\ 4 -

O TN ==
SOUTH PARK

CHATGPT, DUDE.




How would we learn the parameters?

Y1
“dog”

JV

— L(fo(x1),y1)
/ AN

predicted ground truth

Learned EEE— (91 (92 93 94 95 ‘96

N
0* = arg min Z L(fo(xi),¥3)

0 1=1



Training neural networks



Let’'s start easy



world’'s smallest neural network!
(a “perceptron™)




Training a Neural Network

Given a set of samples and a Perceptron

{mi: yi—}
y = frer(z;w)

Estimate the parameter of the Perceptron

w



Given training data:

x Y
10 | 10.1
2 1.9
3.5 | 3.4
1 1.1

What do you think the weight parameter is?

Y = W



Given training data:

x Y
10 | 10.1
2 1.9
3.5 | 3.4
1 1.1

What do you think the weight parameter is?
Yy = wx

not so obvious as the network gets more complicated so we use ...



An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 01),(z2,%2),-. ., (ZN,yN)}

and a perceptron

o

Y = W



An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 01),(z2,%2),-. ., (ZN,yN)}

and a perceptron

o

Y = W

Modify weight W suchthat 9 gets ‘closer’to Y



An Incremental Learning Strategy

(gradient descent)

Given several examples

{(1,11), (z2,92),-.., (ZN,YN)}

and a perceptron

o

Y = W

Modity weight such that ?} gets ‘closer’ to

perceptron perceptron true
parameter output label



Gradient descent:

update rule:



dLl

— ...Is the rate at which this will change...

dw
1 AN 2
L=_-(y—19) (B

2

the loss function

... per unit change of this

the weight parameter

Let's compute the derivative...



L1 Loss L2 Loss

0(g,y) = 19—yl £3,y) = (§ —y)*

Zero-One Loss Hinge Loss
£(9,y) = 1[g =y £(9,y) = max(0,1 —y-g)




dLl

— ...Is the rate at which this will change...

dw
L)
L=-(y—9) <

2

the loss function

... per unit change of this

e

the weight parameter

Let's compute the derivative...



Compute the derivative

iwod(1,
%—%{ﬁ(y—y)}

ol
|
@ =
]
S =
&
| ‘
<
S

That means the weight update for gradient descent is:

w = U — V’{U move in direction of negative gradient

=w+ (y —9)x



wow:* How dID

GET UIKE
THAT?

\/—

Neural
Network

.

L

EVERY TIME I SEE

A NEW TRAINING
EXAMPLE ...

L

N

\/‘

Neural
Network

N

I DO ONE
ITERATION
OF WEIGHT
TRAINING

SHEN COMIX




Gradient Descent (world’s smallest perceptron)

For each sample

1Zi ¥i }

1. Predict
a. Forward pass i = wx;
b. Compute Loss Eizzl@ﬁ__gﬁ
2
2. Update
. dl; .
a.Back Propagation ¥ = —(y; — 9)x; = Vw
w

b.Gradient update w=w-— Vw






The Perceptron

weights

sign function
(e.g., step,sigmoid, Tanh, ReLU)

@7 Y output

inputs




Another way to draw it...

weights a4 — Wi T
1 (1) Combine the sum ; ©
and activation function
y = f(a)
Wwa
w
inputs @ 3 - f Y output

wN Activation Function

(e.g., Sigmoid function of weighted sum)

(2) suppress the bias
term (less clutter) TN =1

’IUN—b



Programming the 'forward pass’

Activation function (sigmoid, logistic function)

float f(float a)
{

return 1.0 / (1.0+ exp(-a)):
}

Y output

Perce ptron function (logistic regression)

float perceptron(vector<float> x, vector<float> w)
{

float a

dot (x,w) ;
return f(a);



Neural networks



Connect a bunch of perceptrons together ...



Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

O O
s
RS

XS 20
O Q/

O




Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

O O
s
RS

XS 20
O Q/

O




Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

7

‘one perceptron’



Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

two perceptrons’



Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

‘three perceptrons’



Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

Q ‘four perceptrons’



Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

A Q\Qm
O——

O
O



Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

O

O
S O
‘é:z Q

XN =( ) sixpercsptrons
O A S




Some terminology...

[MLP STANDS FOR... |

77 =
=
/

...also called a Multi-layer Perceptron (MLP)

() O

O\ IA‘\ /O
X

@

SEE MORE UNTCORNS QUARRELLING, @TODCOMICS N n r@)



Some terminology...

e .
>
XX

— X >
e =0
Q%

...also called a Multi-layer Perceptron (MLP)




Some terminology...

‘hidden’ layer
‘input’ layer

{

«

O
3
=0

4

O\ IA‘\ O
W/
%
sféfe)e

)

...also called a Multi-layer Perceptron (MLP)



Some terminology...

‘hidden’ layer
‘input’ layer
‘output’ layer

.

...also called a Multi-layer Perceptron (MLP)

O O
X/

O\ IA‘\ /O
X

@



this layer is a
fully connected Iayer’)
4

all pairwise neurons between layers are connected



SO IS th"s\
Y

all pairwise neurons between layers are connected



How many neurons (perceptrons)?

How many weights (edges)?

O
\" ®

0 IS -
A B
O O%

How many learnable parameters total?




How many neurons (perceptrons)? 4+2=06

How many weights (edges)?

O

O

How many learnable parameters total?



How many neurons (perceptrons)? 4+2=06

How many weights (edges)? (3x4)+(4x2)=20

O

ST
395

O
s O

How many learnable parameters total?



How many neurons (perceptrons)? 4+2=06

How many weights (edges)? (3x4)+(4x2)=20

O

How many learnable parameters total? 20+4+2=20

bias terms



Example of a
multi-layer perceptron

function of FOUR parameters and FOUR layers!



sum  activation activation activation

input weight weight weight

r — Wb~ W9 |— w3 —

input hidden hidden output
layer 1 bl layer 2 layer 3 layer 4




=. —

e

i sum  activation activation activation
input weight weight weight
r — W]~ Wy — w3 —
|
input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4




= —

e

i sum  activation activation activation
input weight weight weight
r — wi Wy |— w3 —
1
|
input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4




input

weight

r’“ . .
& sum  activation

weight

activgtion

Wo

input
layer 1

“hidden
layer 2

a1 = w1 -+ by

“hidden
layer 3

activation

output
layer 4



7 -
& sum  activation

input weight weight weight
Tr — W1 Wo Ws
input Thidden ~hidden
layer 1 bl layer 2 layer 3

activation

output
layer 4



sum  activation ra activation

A

input weight weight { weight
J — 'UJl f— w2 wB
input hidden hidden
layer 1 b 1 layer 2 layer 3 layer 4




sum  activation & i activation

input weight weight { weight

layer 1 bl layer 2 layer 3

a1 = w1 -+ by
az = ws  f1(wy - x + b1)
a3 = ws - fa(wa - f1(wy -z + b1))



Tr — W

layer 1 bl

a1 = w1 -+ by
az = ws  f1(wy - x + b1)
a3 = ws - fo(wy - f1(w1 -z +b1))



sum  activation activation

a1 =wy T+ by
az = ws  f1(wy - x + b1)
a3 = ws -+ fo(ws - fr(wy -z + by))
y = f3(ws - fo(wsz - fi(wi-z+b1)))



Entire network can be written out as one long equation

y = fa(ws - fa(wz - fi(w1 -z + b1)))

We need to train the network:
What is known? What is unknown?



Entire network can be written out as one long equation

y = fs(ws - fa(wsz - f1(ws & b1)))

A

\\ nown -

We need to train the network:

What is known? What is unknown?



Entire network can be written out as one long equation

y = fa(ws - fa(wz - fi(w1 -z + b1)))

AR OA A A A
/ \ K /

activation function - .

sometimes has - unknown -

parameters

We need to train the network:
What is known? What is unknown?



Learning an MLP

Given a set of samples and a MLP
{mi: y’a}
y = fmrp(z; 0)

Estimate the parameters of the MLP

f={f,w,b}



Gradient Descent
For each random sample {z;,v;}
1. Predict
a. Forward pass § = fmre(zs; 0)
b. Compute Loss

2. Update
oL o
D vector of parameter partial derivatives

a. Back Propagation o0

b. Gradient update -

vector of parameter update equations



SO we need to compute the partial derivatives

oL | 9L 0L 0L oL
89 - _(‘)wg 8’&)2 é)wl 66_




Remember,

oL

Partial derivative —— describes...
awl

affect...

his
‘.E_O'e's,./“'t—‘—-— ~Lis
NOW.
_..--"-“"“E“#.d
. _-¥' (loss layer)
Tr — W1 p— — W9 |— w3 — ‘y




According to the chain rule...

S_L o oL 8f3 aag
8’&)3 B 8f3 8(13 8’&)3

Intuitively, the effect of weight on loss function : oL
w3
U
rest of the network = « « f2 — ws IS ?j L(y’ ?j)

depends on
8f3 depends on

Oag daz oL
Ows 3—f3

v depends on \/



rest of the network f2 — wS _>—> ‘3} L(y’ g)

9L 0L Ofs das
8w3 - afg 8a3 a’w;g

Chain Rule!



Next Class:

How to use chain rule and "backpropagation” to train
any neural network
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