Reminders / Announcements

Homework 1 is due tonight!

- Each student gets 10 late days (total). See the syllabus for details.
- o You DO NOT need to email me for permission to use late days!

Project Proposal is due 10/03

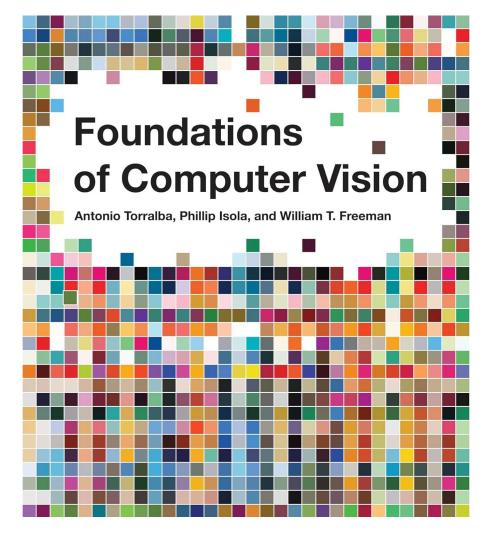
- o Group sizes <3 need my explicit permission!</p>
- Proposal needs to be turned in on Blackboard by each group member

Midterm Exam is on 10/20

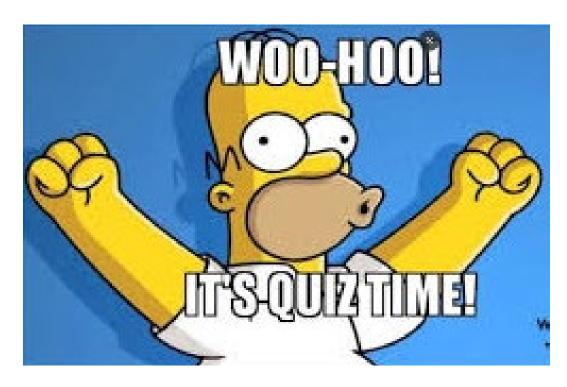
- o In class; closed-book; 1 hour; everything up to and including 10/15 lecture
- More details in the next class.

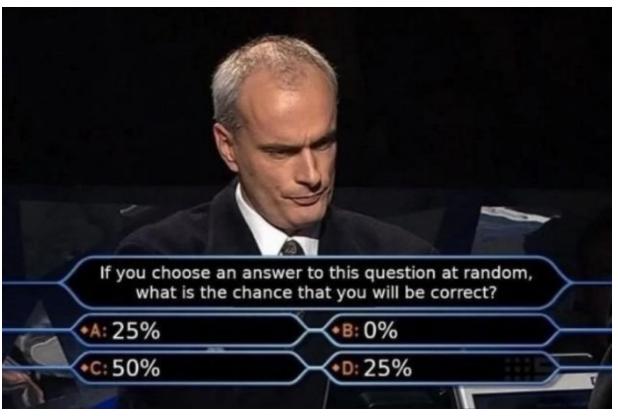
A New Useful Reference Book

- Available for free on: https://visionbook.mit.edu/
- Published in 2024 a modern take compared to the other reference books mentioned in the syllabus (these are also available for free)
- As a reminder: you are encouraged to read relevant chapters of reference books
 - Course website lists book chapters for each lecture
 - This is optional, but encouraged



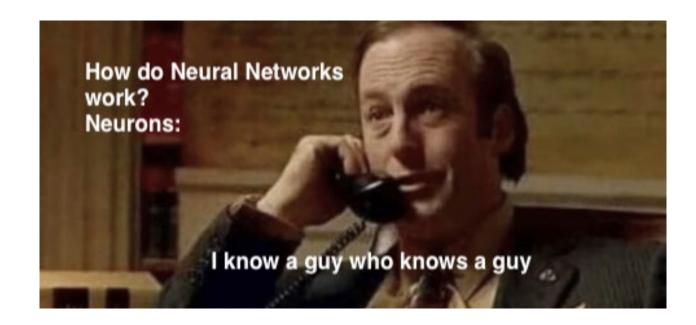
Quiz 3!





CMSC 472/672 Computer Vision

Lecture 8: Neural Networks

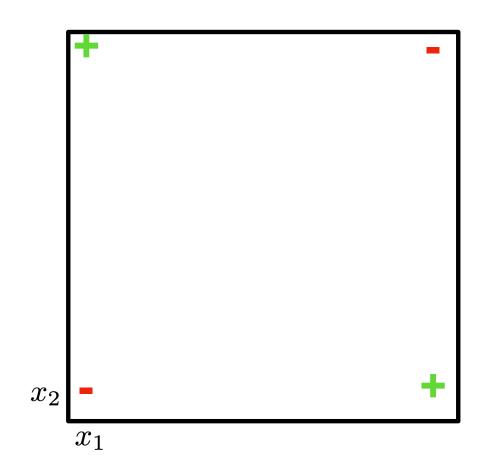


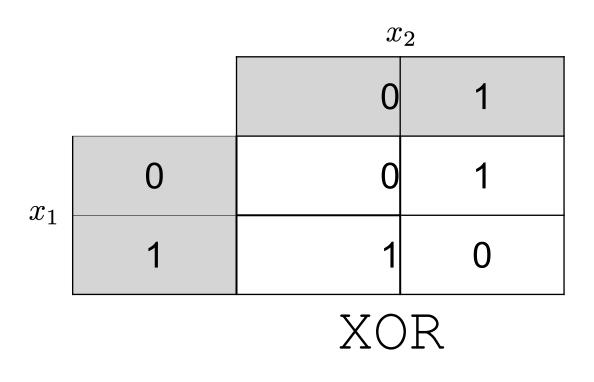
Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)

Artificial Intelligence

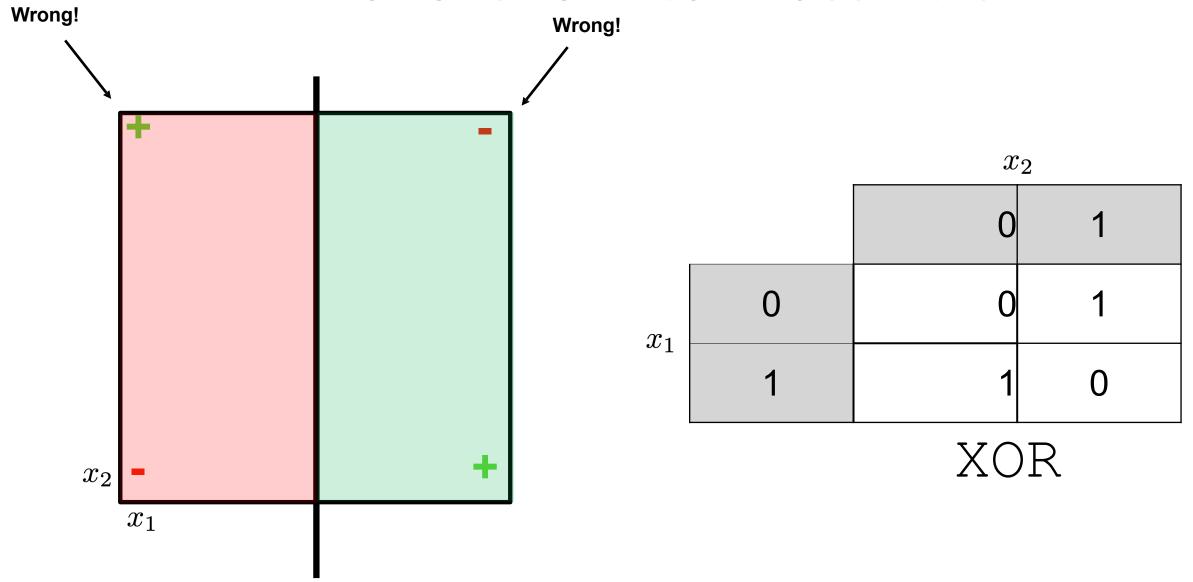
$$\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x} + b$$

Limitations to linear classifiers

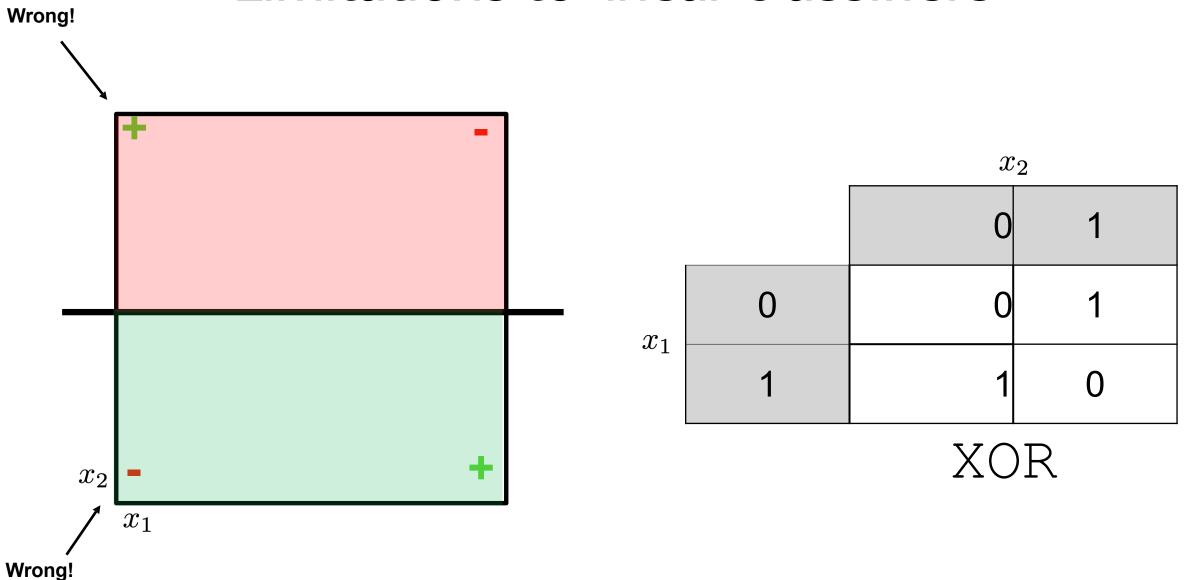




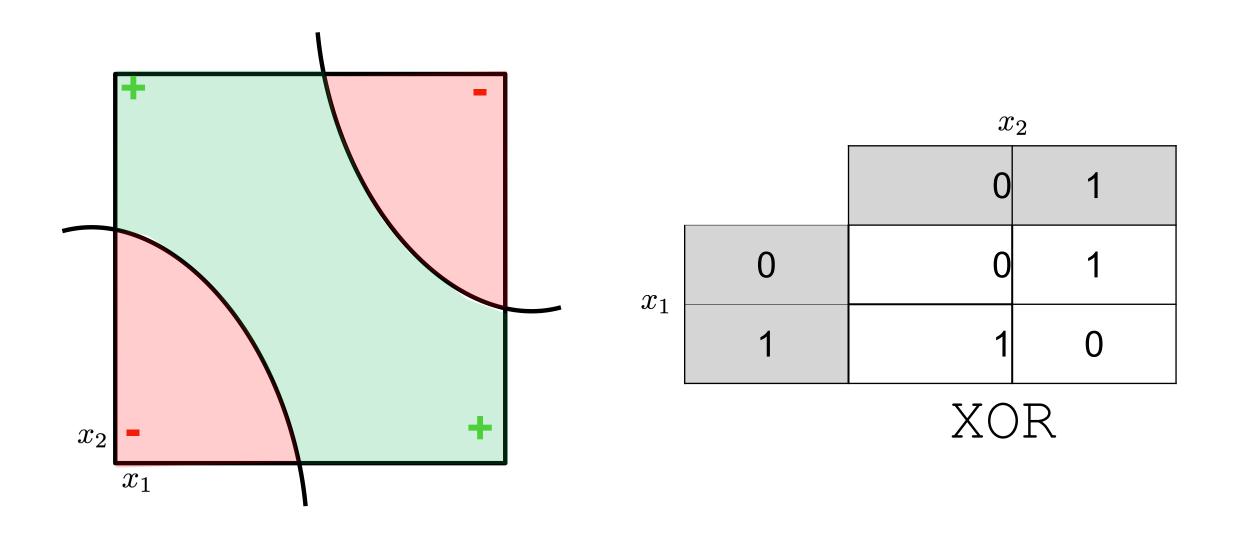
Limitations to linear classifiers



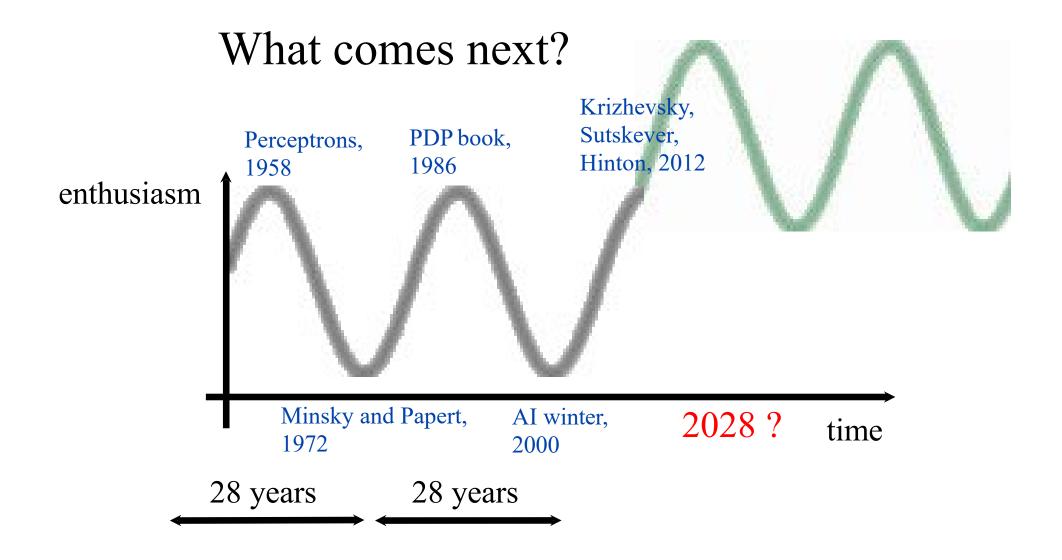
Limitations to linear classifiers



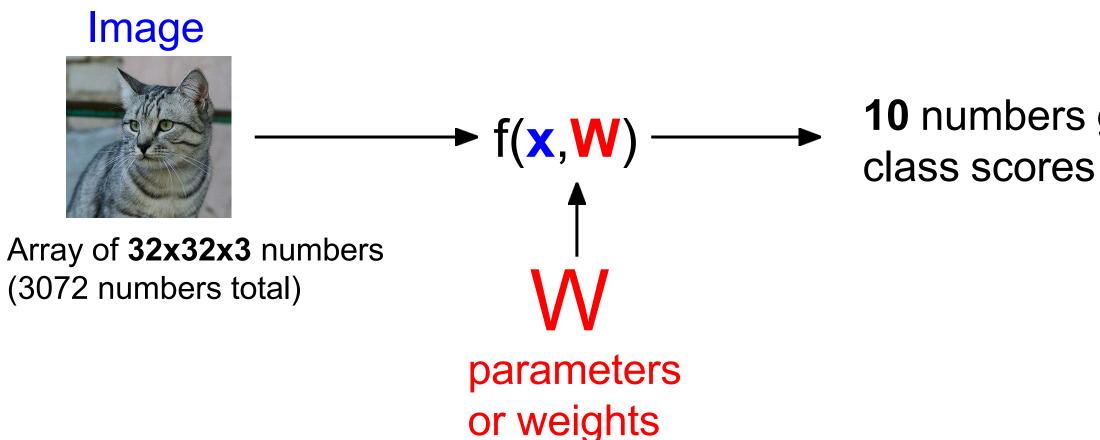
Goal: Non-linear decision boundary



A brief history of Neural Networks

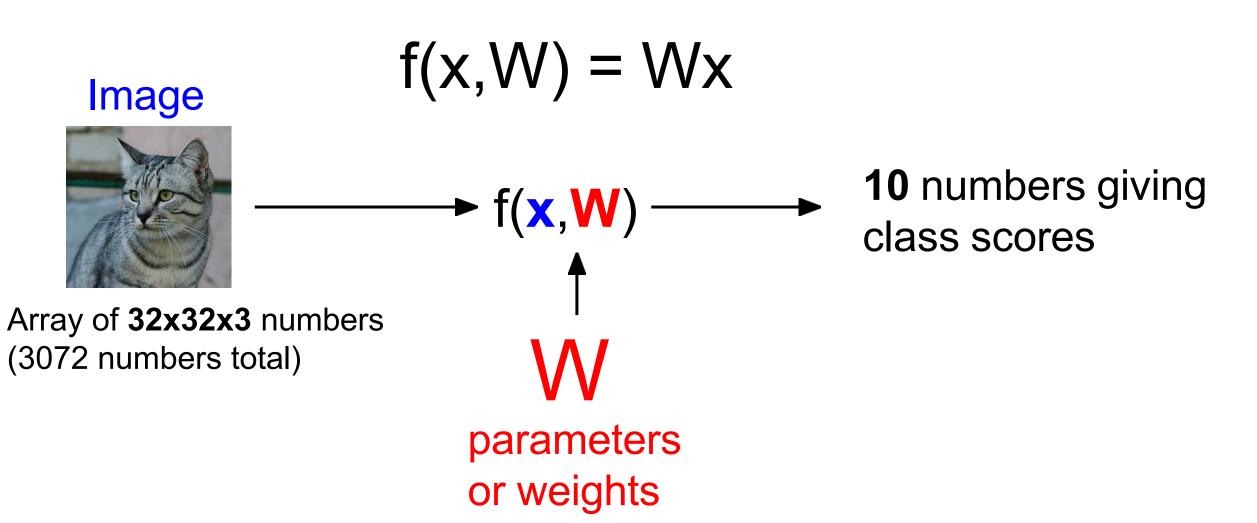


Parametric Approach

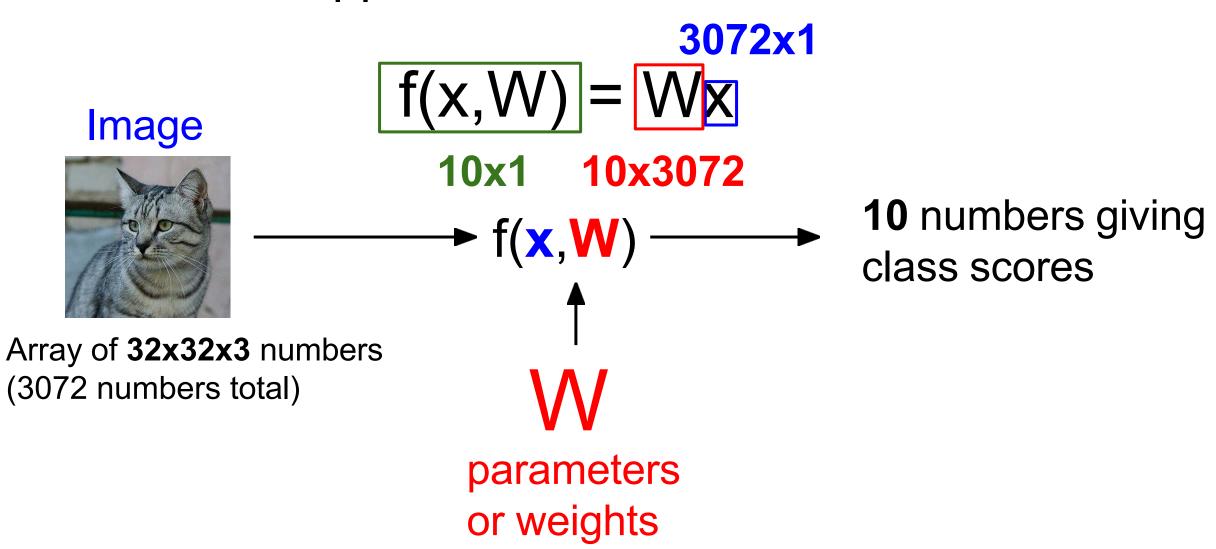


10 numbers giving

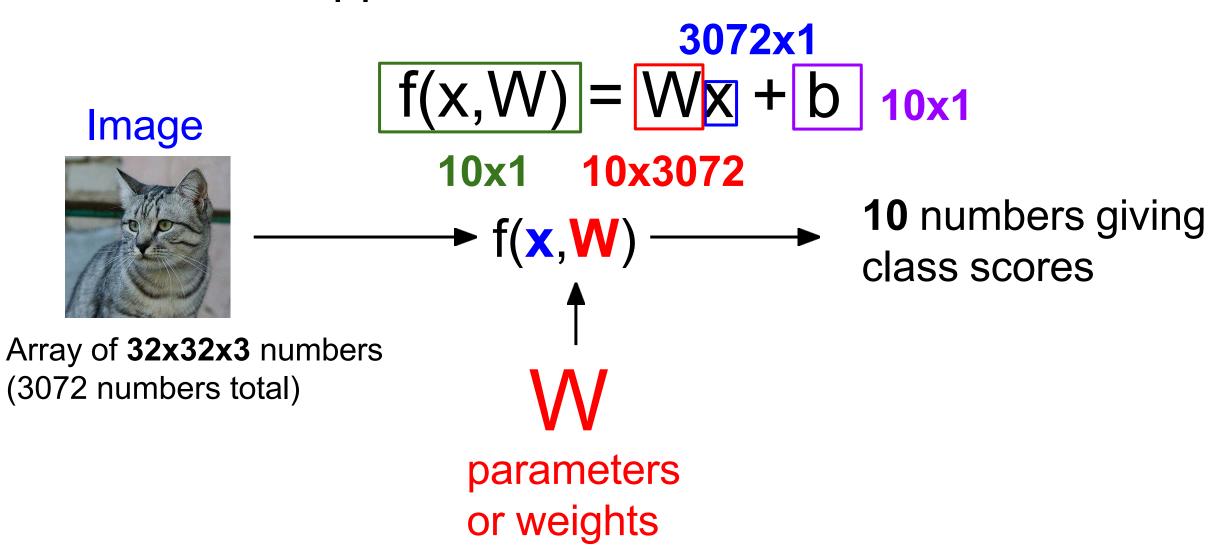
Parametric Approach: Linear Classifier



Parametric Approach: Linear Classifier



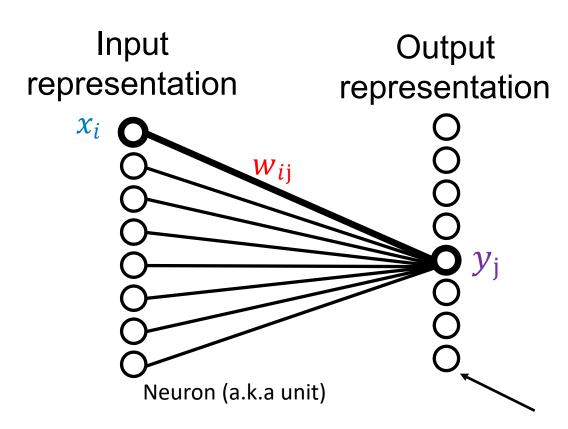
Parametric Approach: Linear Classifier

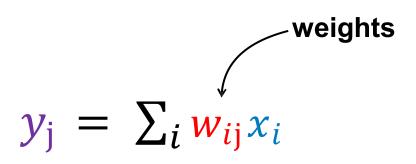


Computation in a neural net

Let's say we have some 1D input that we want to convert to some new feature space:

Linear layer



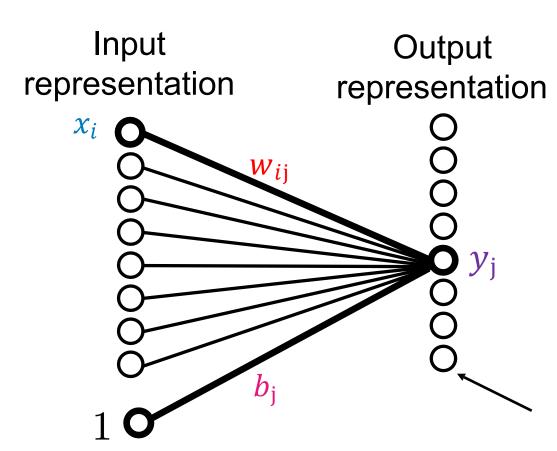


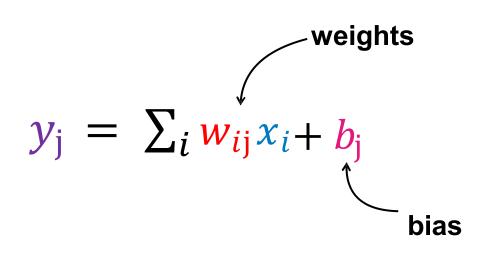
Adapted from: Isola, Torralba, Freeman

Computation in a neural net

Let's say we have some 1D input that we want to convert to some new feature space

Linear layer

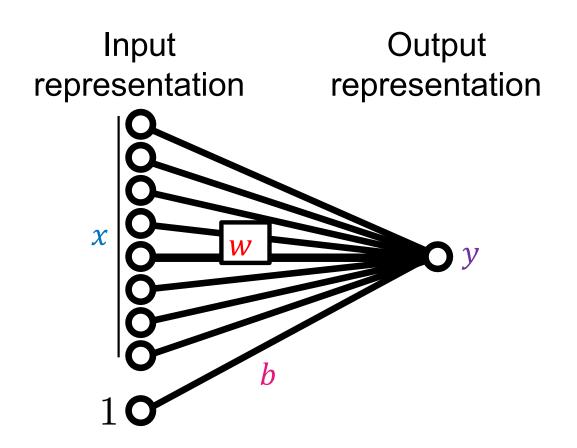


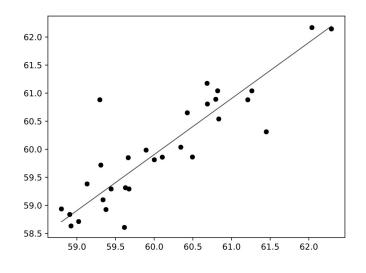


Adapted from: Isola, Torralba, Freeman

Example: Linear Regression

Linear layer

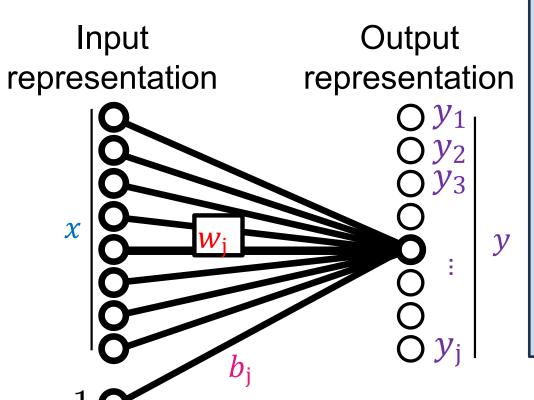




$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + b$$

Adapted from: Isola, Torralba, Freeman

Computation in a neural net – Full Layer

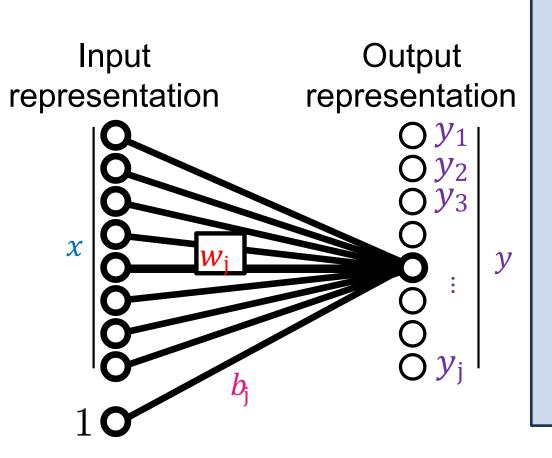


$$y = Wx + b$$

$$\begin{bmatrix} w_{11} & \cdots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{j1} & \cdots & w_{jn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_j \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_j \end{bmatrix}$$
parameters of the model: $\boldsymbol{\theta} = \{\boldsymbol{W}, \boldsymbol{b}\}$

Computation in a neural net – Full Layer

Linear layer



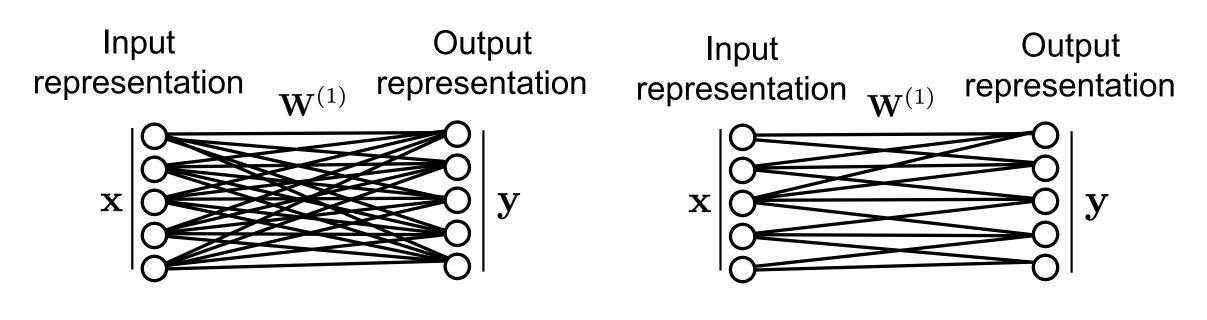
Full layer

$$y = Wx + b$$

$$\begin{bmatrix} w_{11} & \cdots & w_{jn} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ w_{j1} & \cdots & w_{jn} & b_j \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_j \end{bmatrix}$$

Can again simplify notation by appending a 1 to **X**

Connectivity patterns

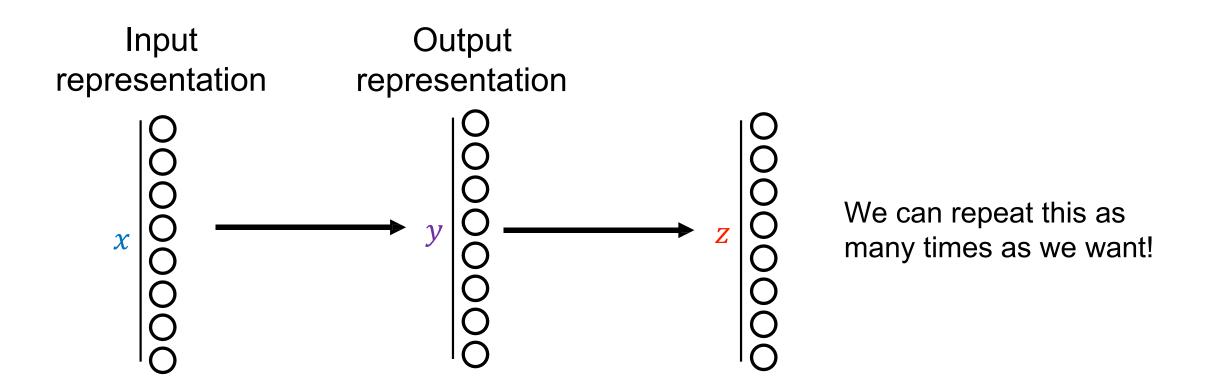


Fully connected layer

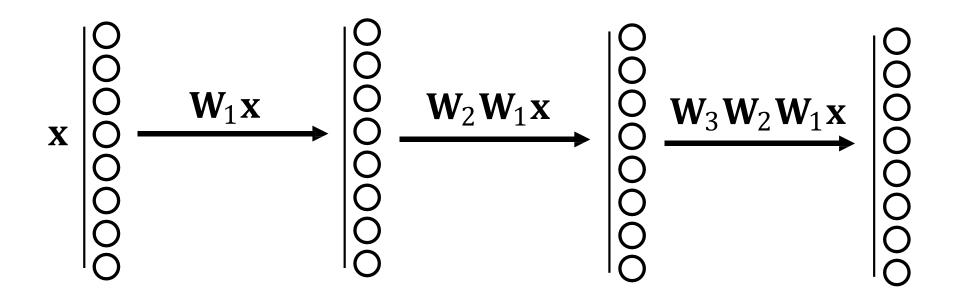
Locally connected layer (Sparse W)

Computation in a neural network

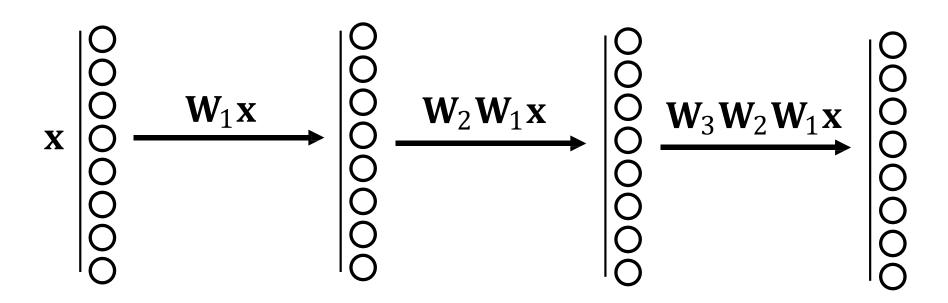
We can now transform our input representation vector into some output representation vector using a bunch of linear combinations of the input:



What is the problem with this idea?



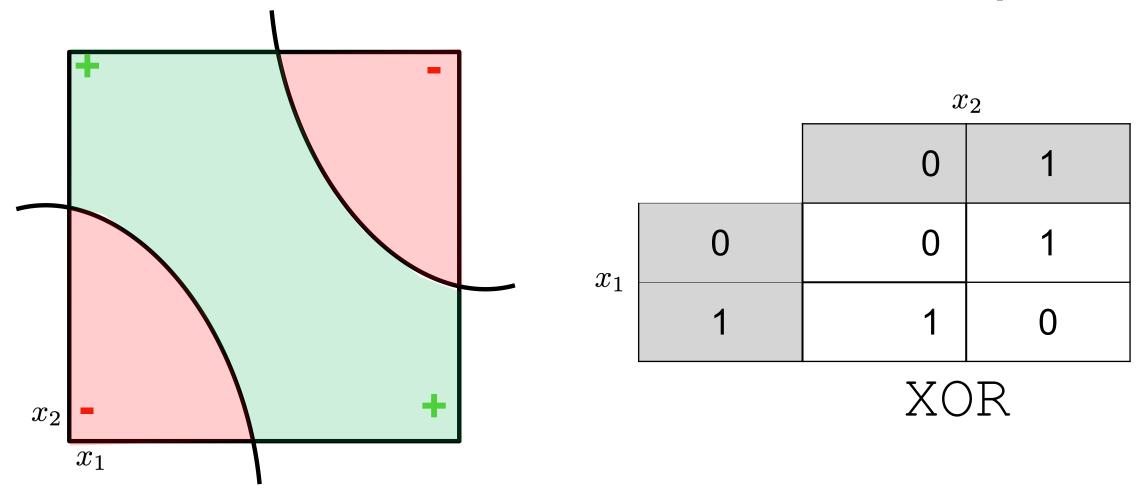
What is the problem with this idea?



Can be expressed as single linear layer!

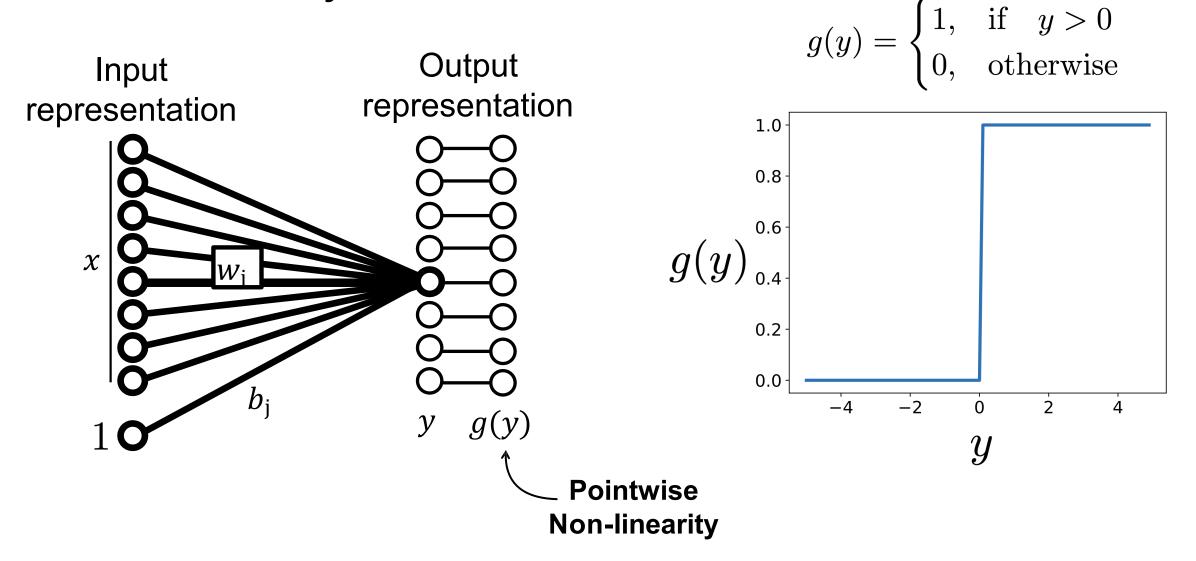
Limited power: can't solve XOR ⊗

Recall Goal: Non-linear decision boundary



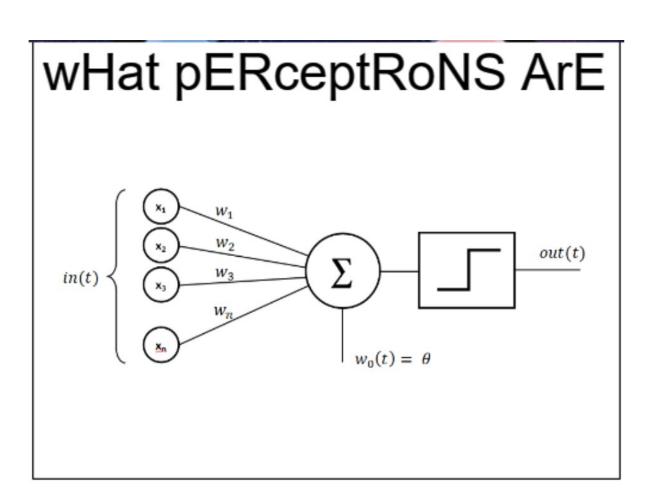
Solution: simple nonlinearity

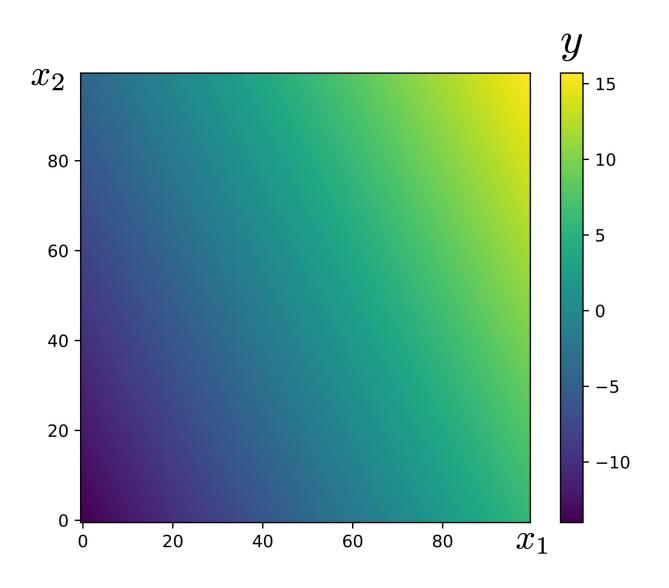
Linear layer



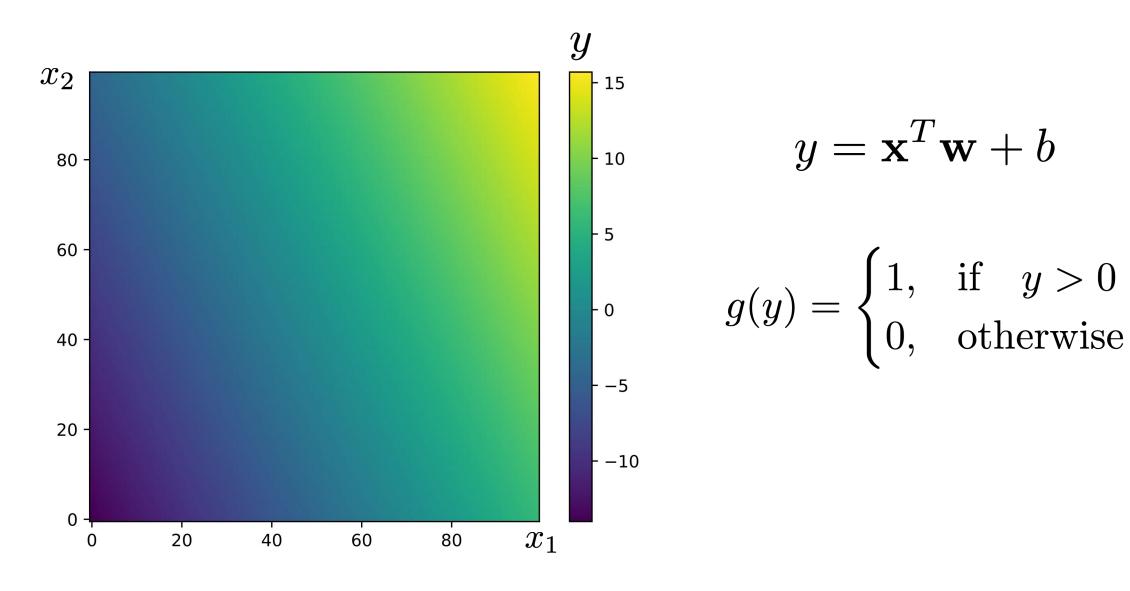
The Perceptron

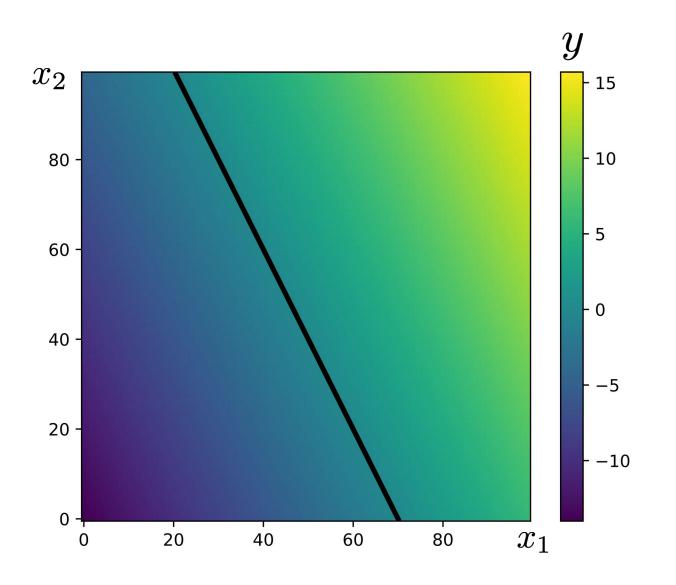
WHAT PERCEPTRON SOUNDS LIKE





$$y = \mathbf{x}^T \mathbf{w} + b$$

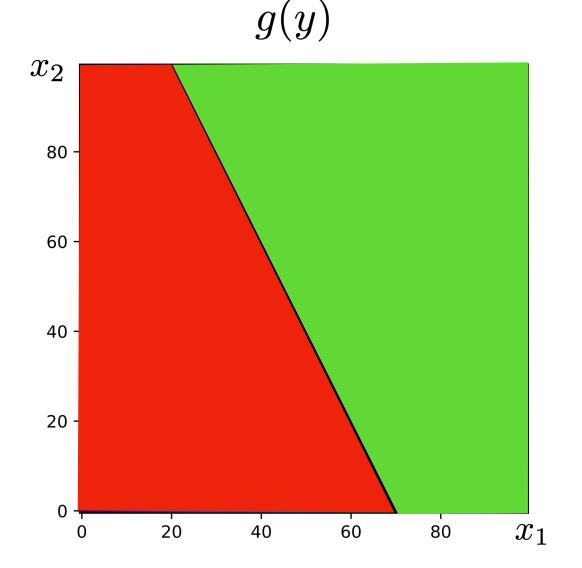




$$y = \mathbf{x}^T \mathbf{w} + b$$

$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

"when y is greater than 0, set all pixel values to 1 (green), otherwise, set all pixel values to 0 (red)"



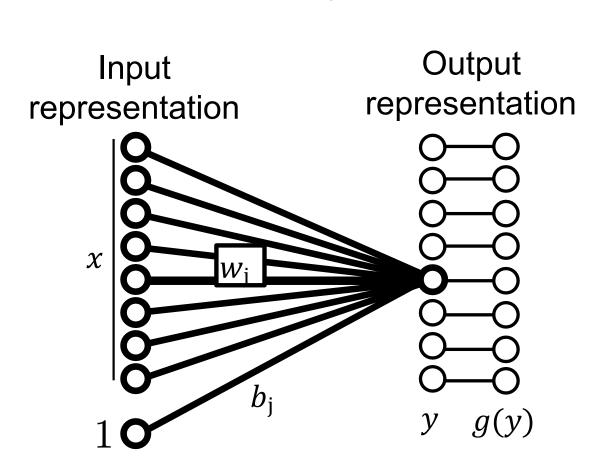
$$y = \mathbf{x}^T \mathbf{w} + b$$

$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

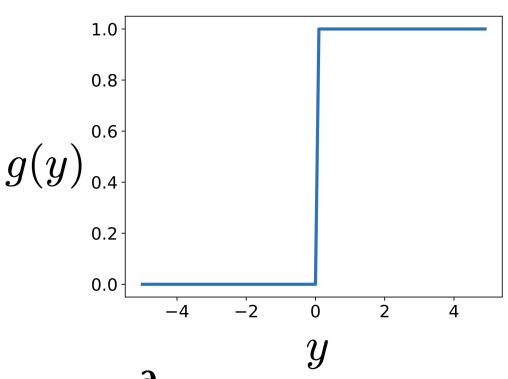
"when y is greater than 0, set all pixel values to 1 (green), otherwise, set all pixel values to 0 (red)"

Computation in a neural net - nonlinearity

Linear layer



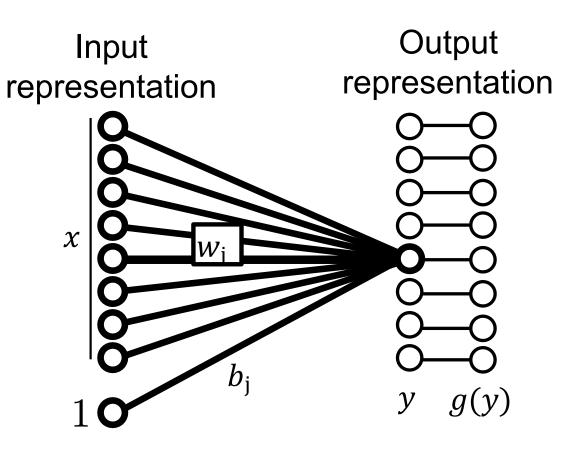
$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$



Can't use gradient-based optimization, $\frac{\partial}{\partial y}g = 0$

Computation in a neural net - nonlinearity

Linear layer



Sigmoid

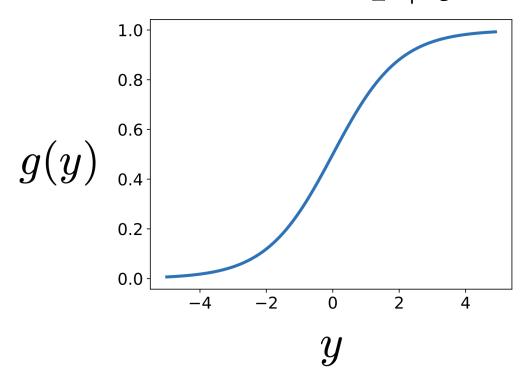
$$g(y) = \sigma(y) = \frac{1}{1 + e^{-y}}$$

Computation in a neural net - nonlinearity

- Bounded between [0,1]
- Saturation for large +/- inputs
- Gradients go to zero

Sigmoid

$$g(y) = \sigma(y) = \frac{1}{1 + e^{-y}}$$

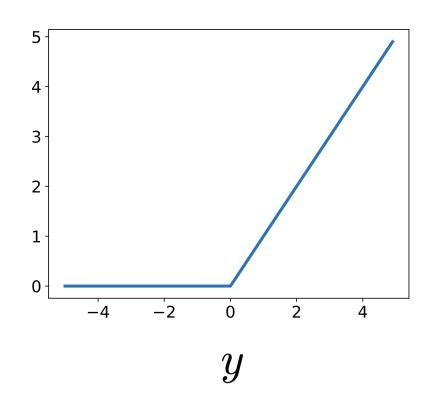


Computation in a neural net — nonlinearity

- Unbounded output (on positive side)
- Efficient to implement: $\frac{\partial g}{\partial y} = \begin{cases} 0, & \text{if } y < 0 \\ 1, & \text{if } y \ge 0 \end{cases}$
- Also seems to help convergence (6x speedup vs. tanh in [Krizhevsky et al. 2012])
- Drawback: if strongly in negative region, unit is dead forever (no gradient).
- Default choice: widely used in current models!

Rectified linear unit (ReLU)

$$g(y) = \max(0, y)$$



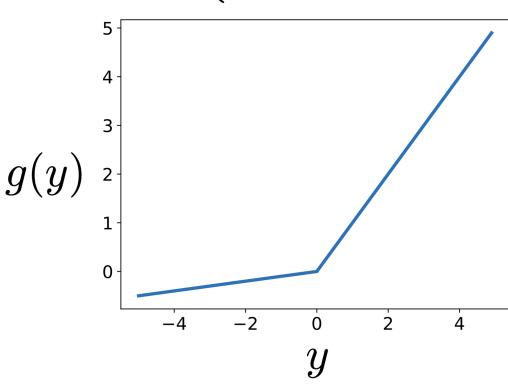
Computation in a neural net — nonlinearity

- where a is small (e.g., 0.02)
- Efficient to implement:
- Has non-zero gradients everywhere (unlike ReLU)

$$\frac{\partial g}{\partial y} = \begin{cases} -a, & \text{if } y < 0\\ 1, & \text{if } y \ge 0 \end{cases}$$

Leaky ReLU

$$g(y) = \begin{cases} \max(0, y), & \text{if } y \ge 0 \\ a \min(0, y), & \text{if } y < 0 \end{cases}$$



Perceptron: Old Idea!

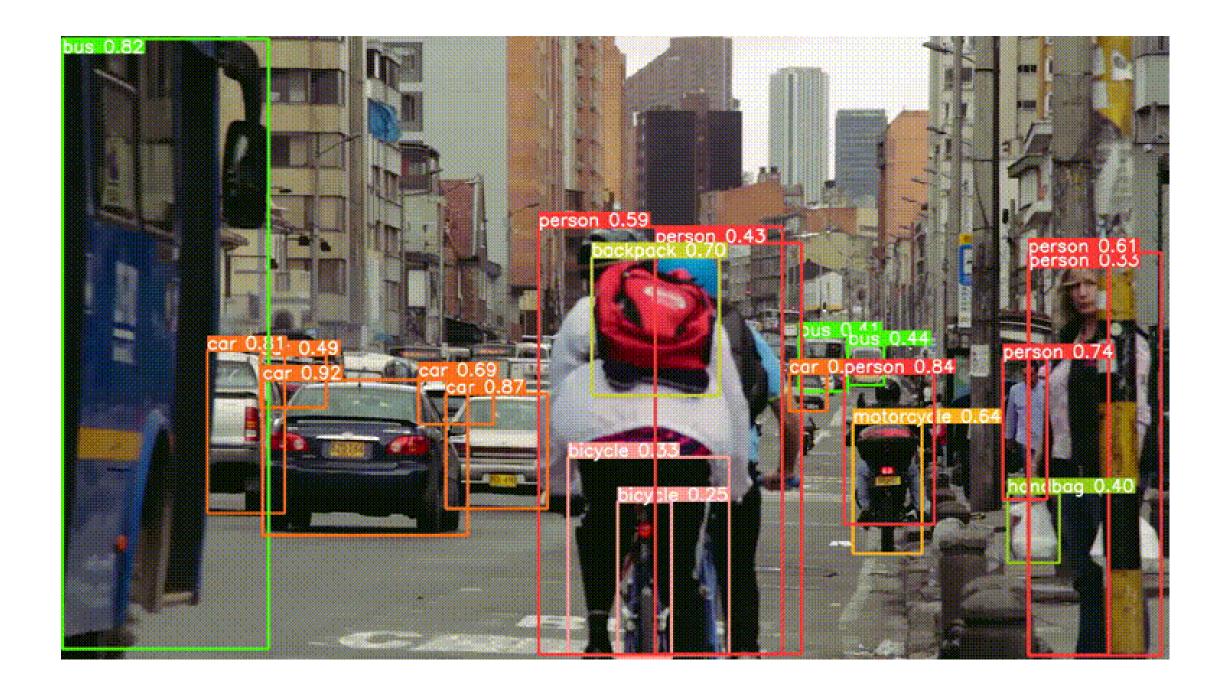
Late 1950s video on Rosenblatt's perceptron research

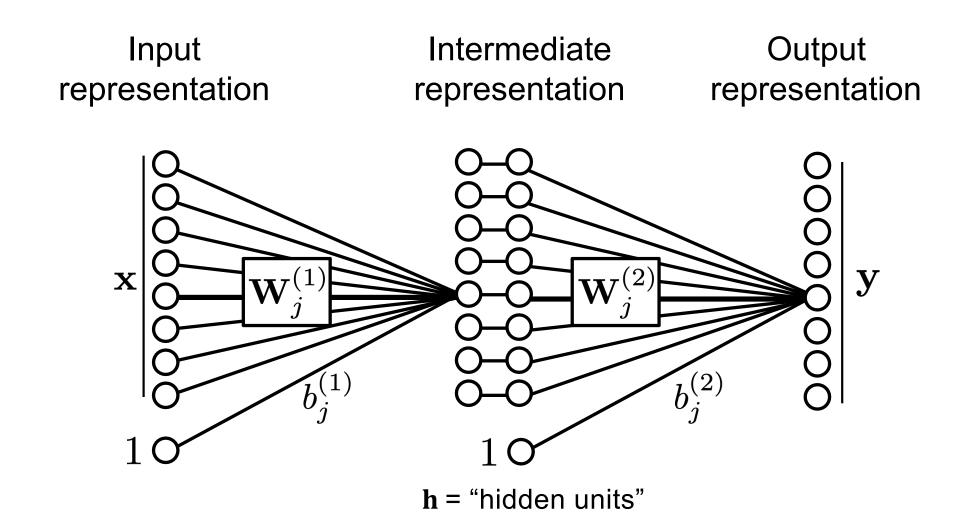
"While promising, this approach to machine intelligence virtually died out ..."

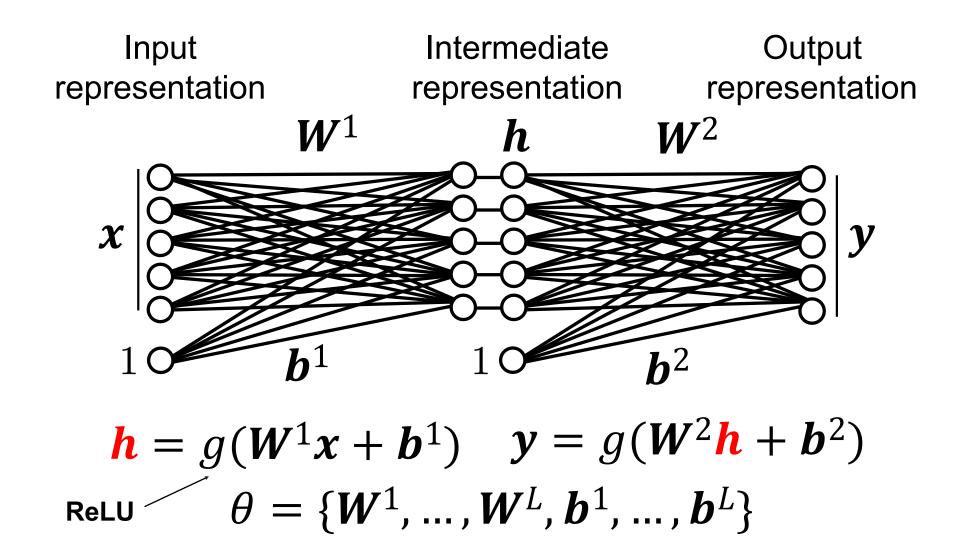
Perceptron: Old Idea!

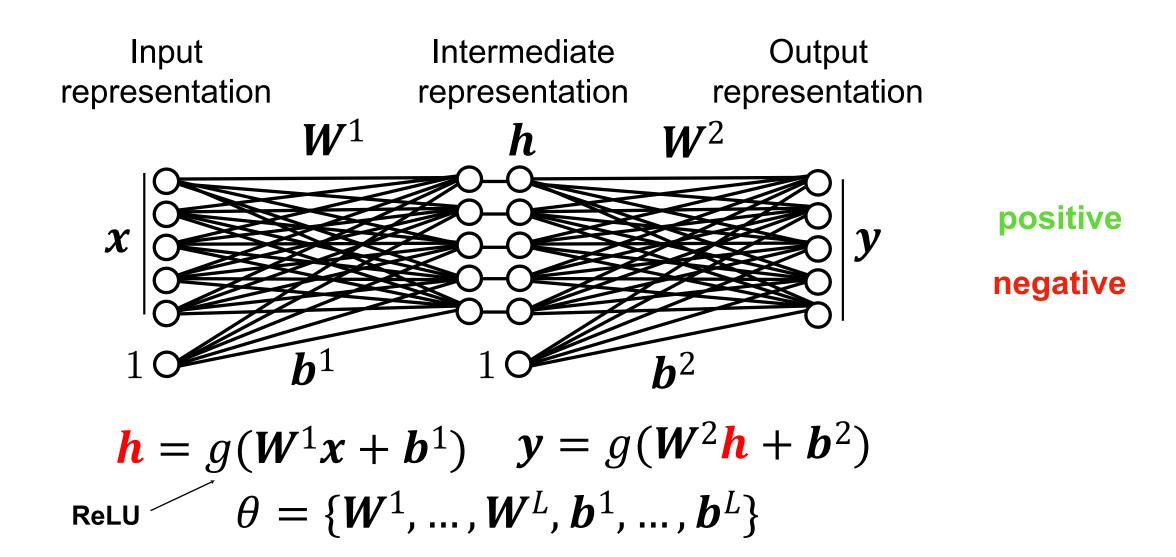
Late 1950s video on Rosenblatt's perceptron research

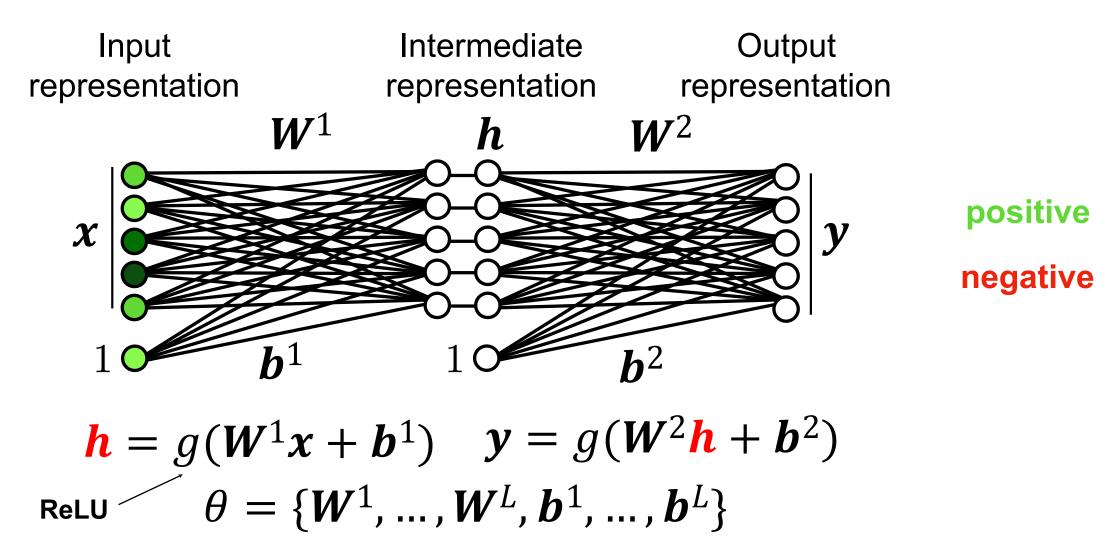
"While promising, this approach to machine intelligence virtually died out ..."



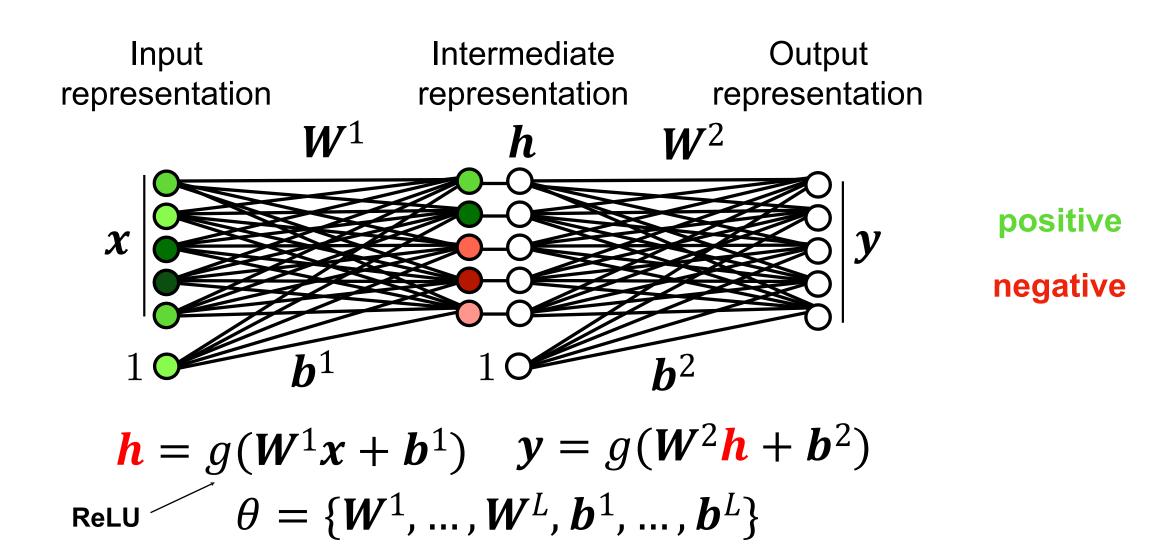


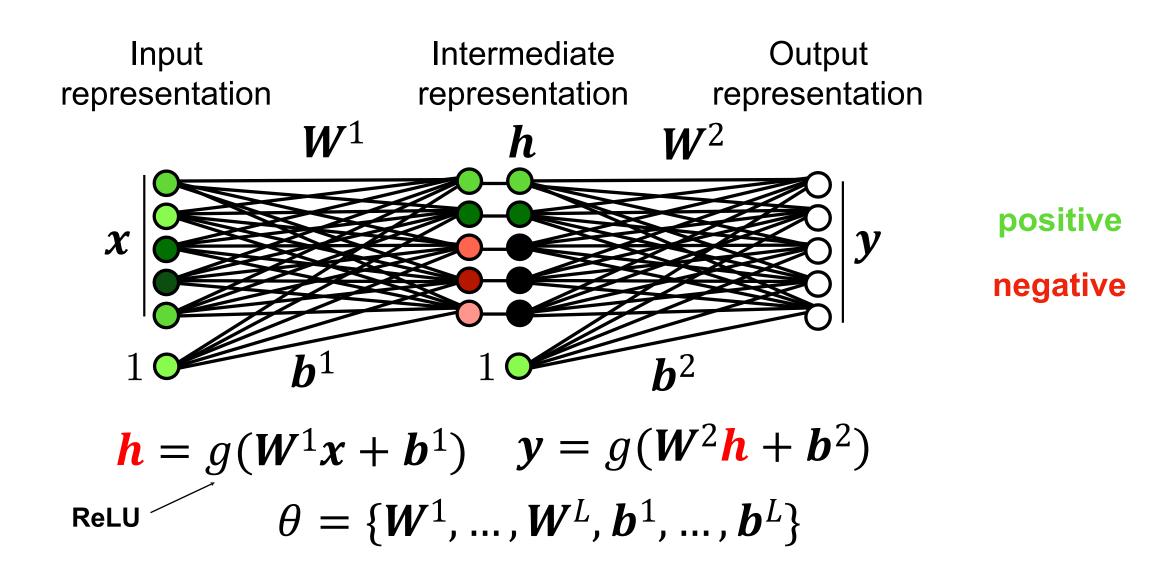


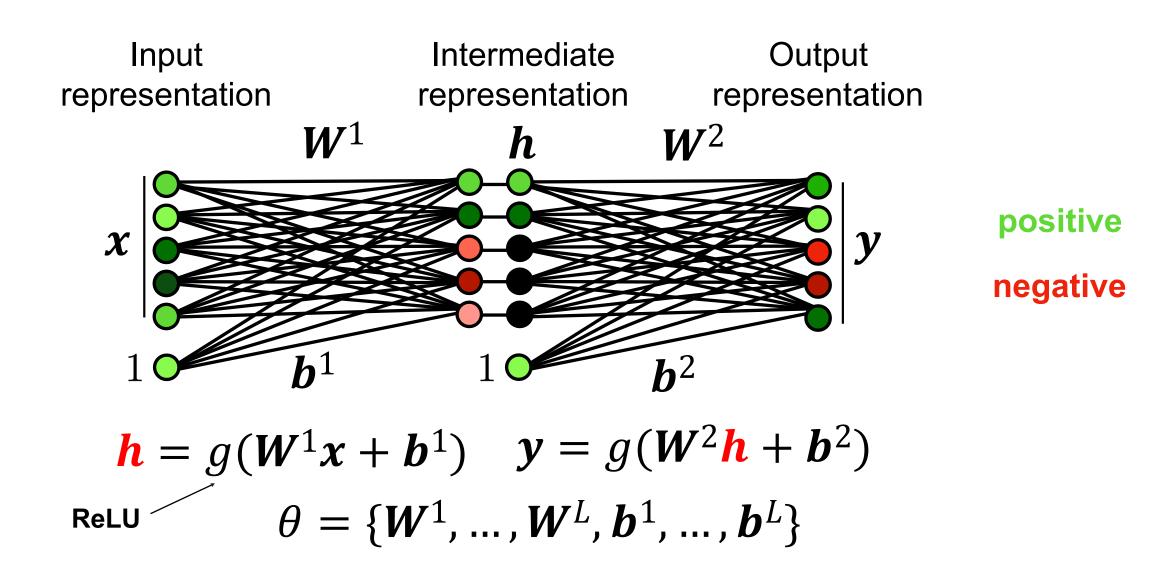




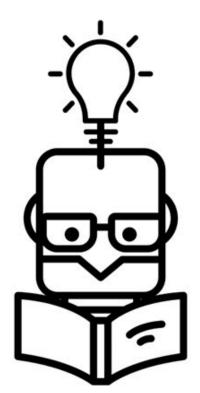
Source: Isola, Torralba, Freeman

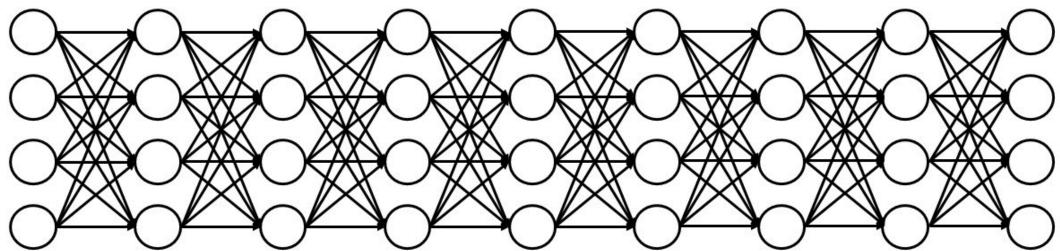




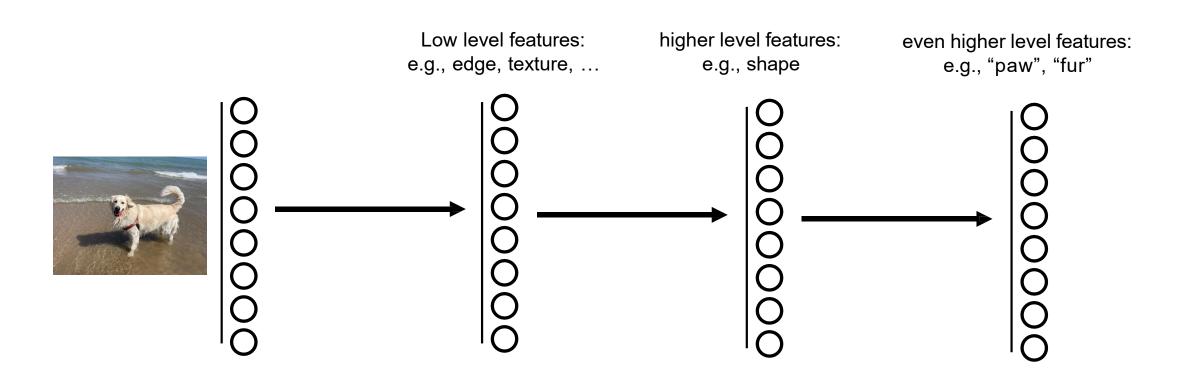


DEEP Neural Nets?

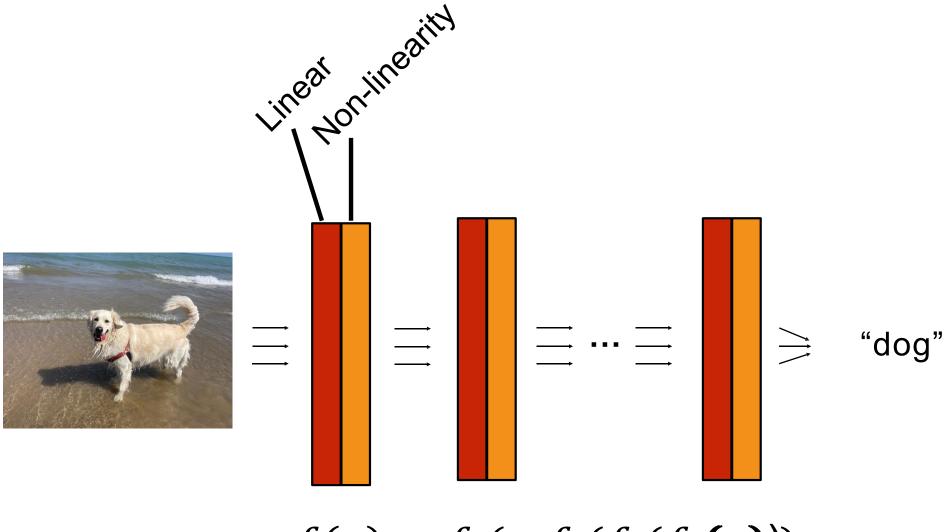




Stacking layers - What's actually happening?



Deep nets



$$f(x) = f_L(... f_3(f_2(f_1(x)))$$

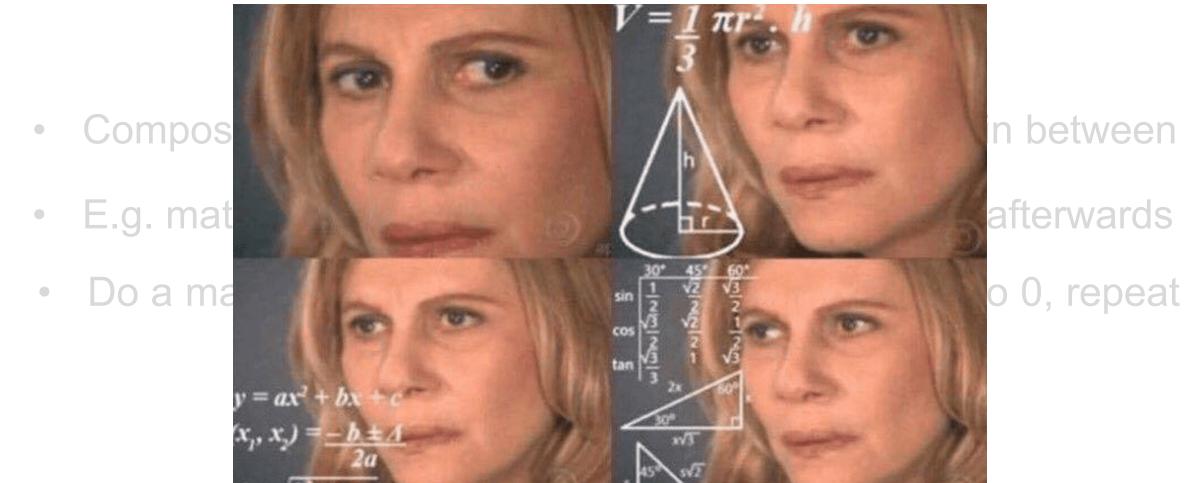
Source: Isola, Torralba, Freeman

Computation has a simple form

- Composition of linear functions with nonlinearities in between
- E.g. matrix multiplications with ReLU, $max(0, \mathbf{x})$ afterwards
- Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

Computation has a simple form



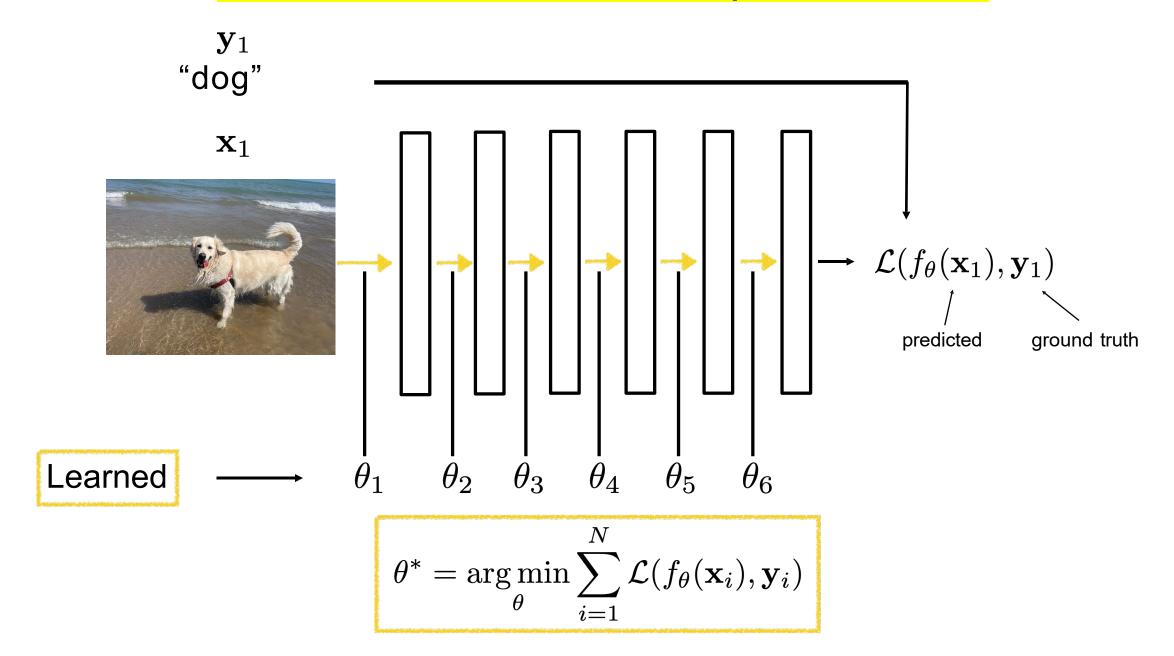
But where do we get the weights from?

Where do we get the weights from?

with nonlinearities in between

ReLU, $max(0, \mathbf{x})$ afterwards

How would we learn the parameters?



Training neural networks

Let's start easy

world's smallest neural network! (a "perceptron")



$$y = wx$$

(a.k.a. line equation, linear regression)

Training a Neural Network

Given a set of samples and a Perceptron

$$\{x_i, y_i\}$$

 $y = f_{PER}(x; w)$

Estimate the parameter of the Perceptron

Given training data:

y
10.1
1.9
3.4
1.1

What do you think the weight parameter is?

$$y = wx$$

Given training data:

y
10.1
1.9
3.4
1.1

What do you think the weight parameter is?

$$y = wx$$

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight $\,w\,$ such that $\,\hat{y}\,$ gets 'closer' to $\,y\,$

An Incremental Learning Strategy

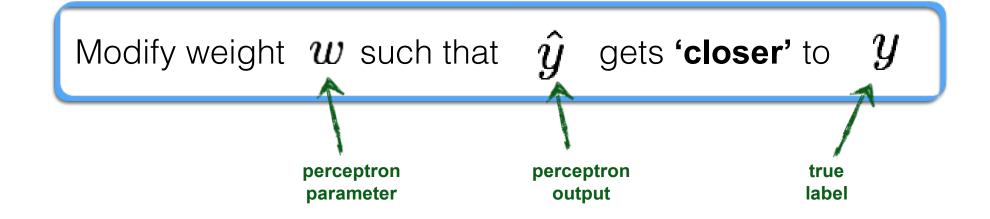
(gradient descent)

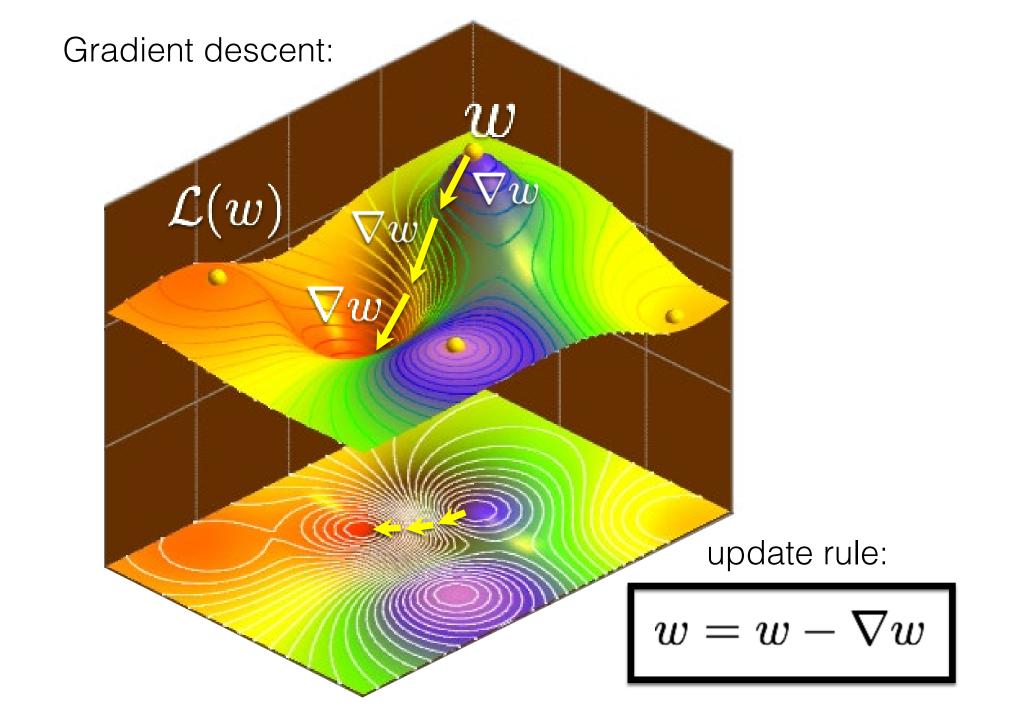
Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

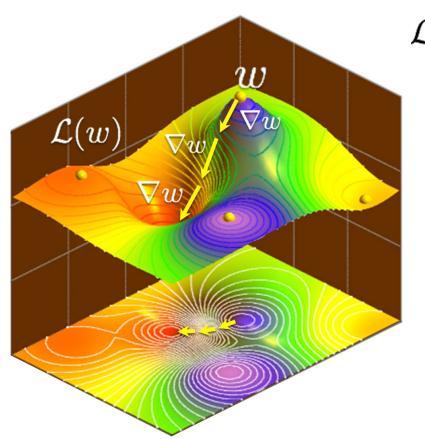
$$\hat{y} = wx$$





 $\frac{d\mathcal{L}}{dw}$

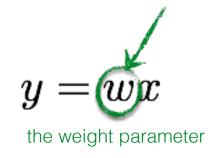
...is the rate at which **this** will change...



$$\mathcal{L} = \frac{1}{2}(y - \hat{y})^2$$

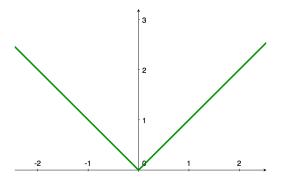
the loss function

... per unit change of this



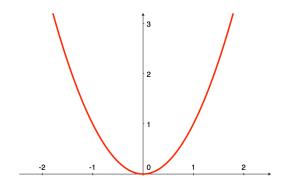
Let's compute the derivative...

$$\ell(\hat{y}, y) = |\hat{y} - y|$$



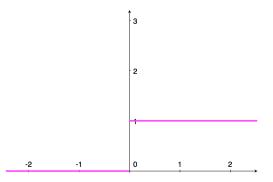
L2 Loss

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$



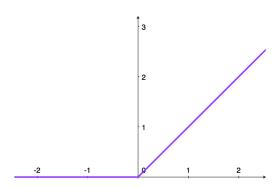
Zero-One Loss

$$\ell(\hat{y}, y) = \mathbf{1}[\hat{y} = y]$$



Hinge Loss

$$\ell(\hat{y}, y) = \max(0, 1 - y \cdot \hat{y})$$



$$\frac{d\mathcal{L}}{dw}$$

...is the rate at which **this** will change...

$$\mathcal{L} = rac{1}{2}(y - \hat{y})^2$$

the loss function

... per unit change of this

$$y=wx$$

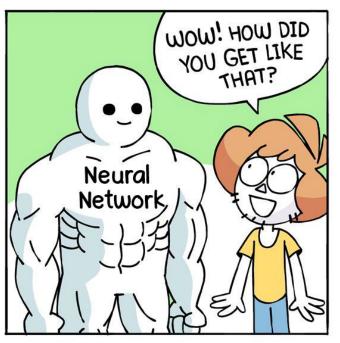
Let's compute the derivative...

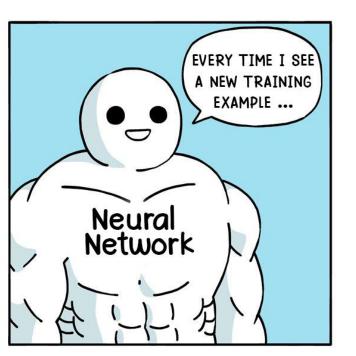
Compute the derivative

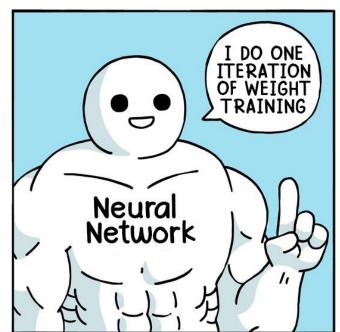
$$\frac{d\mathcal{L}}{dw} = \frac{d}{dw} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\}$$
$$= -(y - \hat{y}) \frac{dwx}{dw}$$
$$= -(y - \hat{y})x = \nabla w$$

That means the weight update for **gradient descent** is:

$$w=w-
abla w$$
 move in direction of negative gradient $=w+(y-\hat{y})x$







Gradient Descent (world's smallest perceptron)

For each sample

$$\{x_i, y_i\}$$

1. Predict

a. Forward pass

 $\hat{y} = wx_i$

b. Compute Loss

$$\mathcal{L}_i = \frac{1}{2}(y_i - \hat{y})^2$$

2. Update

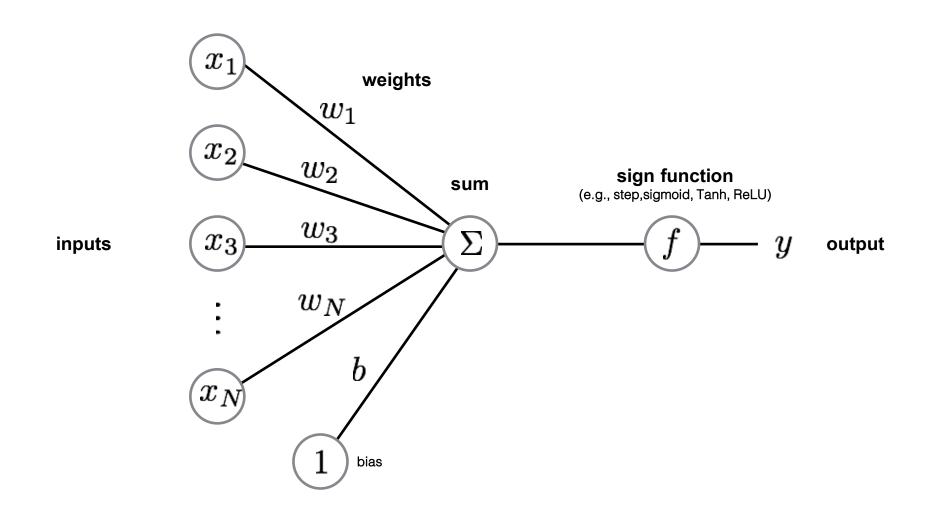
a. Back Propagation

 $\frac{d\mathcal{L}_i}{dw} = -(y_i - \hat{y})x_i = \nabla w$

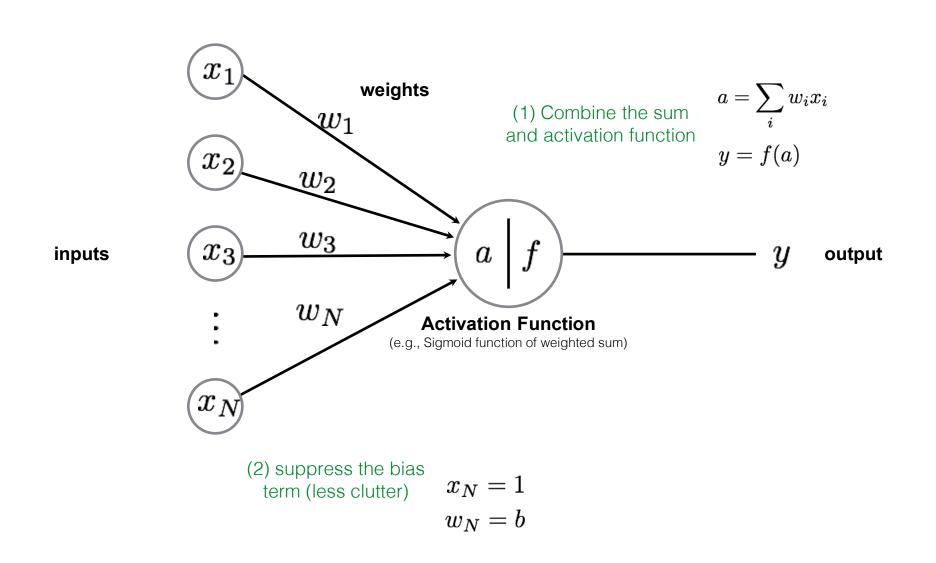
b. Gradient update

$$w = w - \nabla w$$

The Perceptron

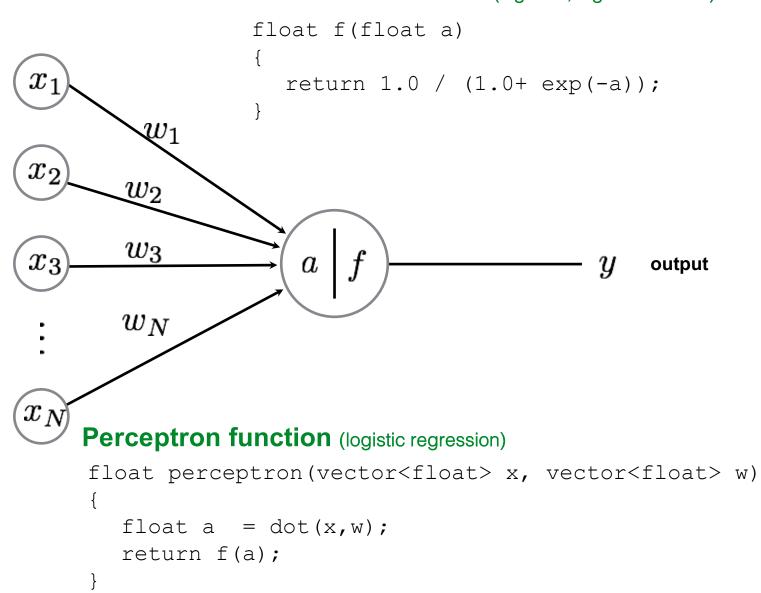


Another way to draw it...



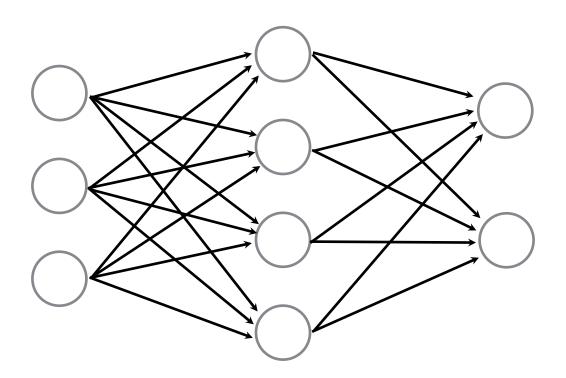
Programming the 'forward pass'

Activation function (sigmoid, logistic function)

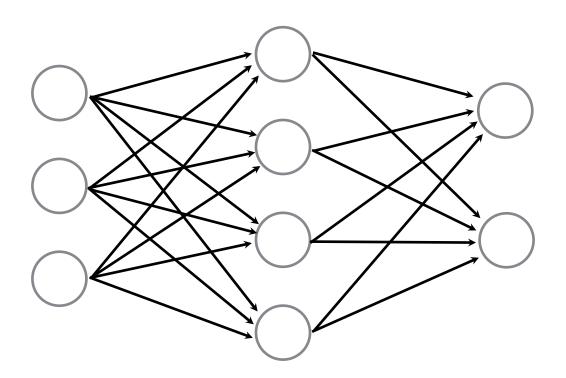


Neural networks

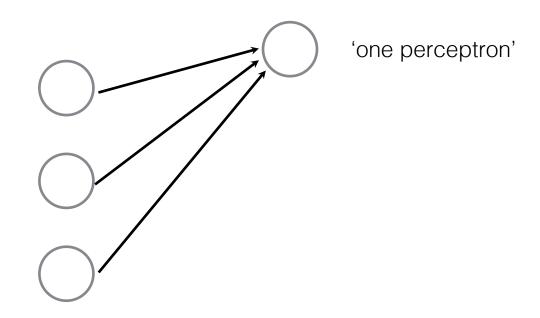
Neural Network



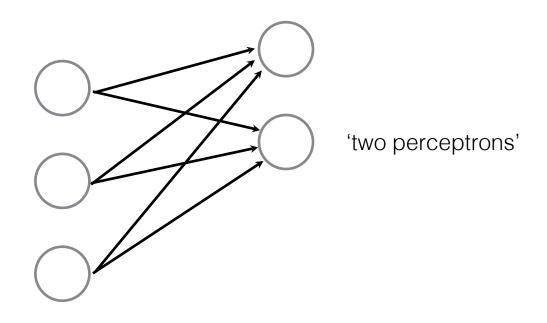
Neural Network



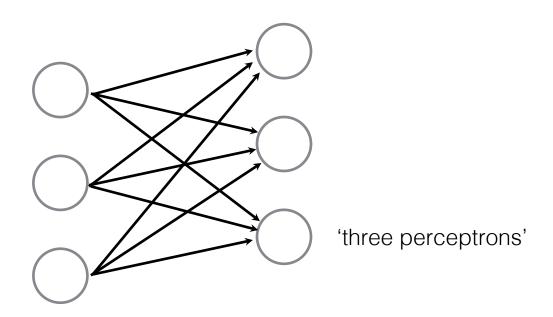
Neural Network



Neural Network

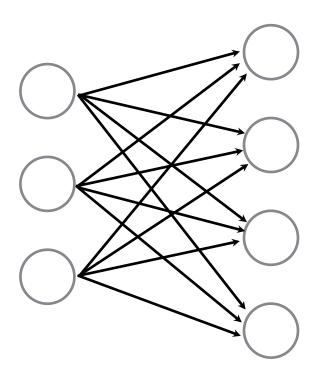


Neural Network



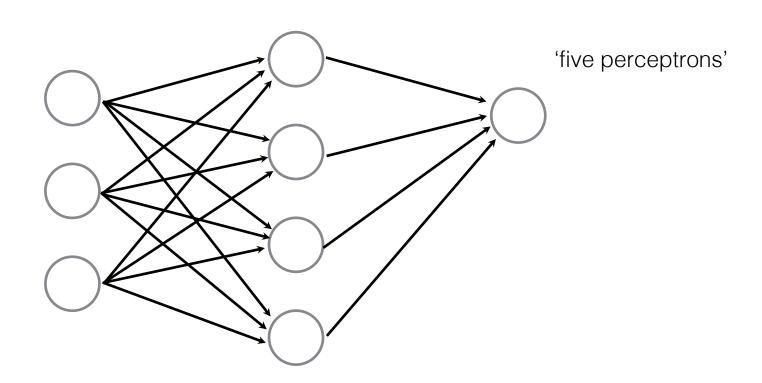
Neural Network

a collection of connected perceptrons

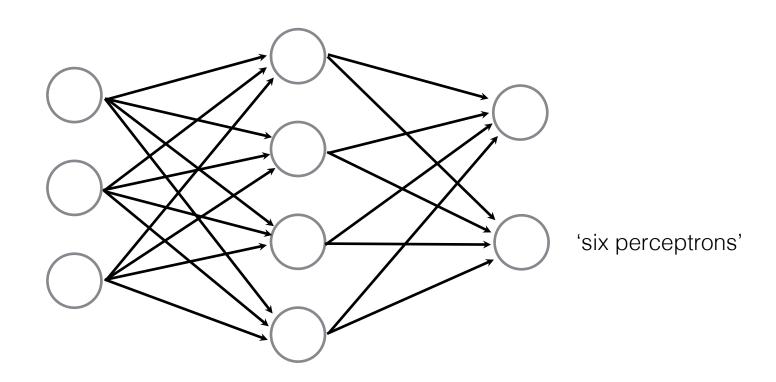


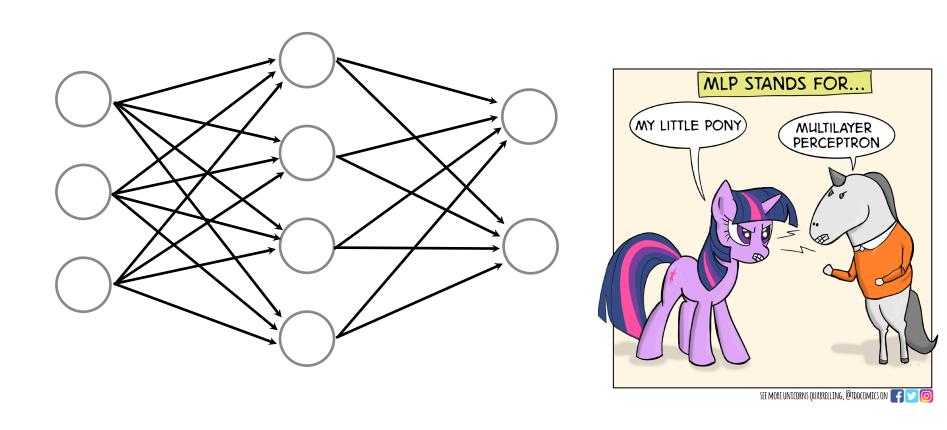
'four perceptrons'

Neural Network



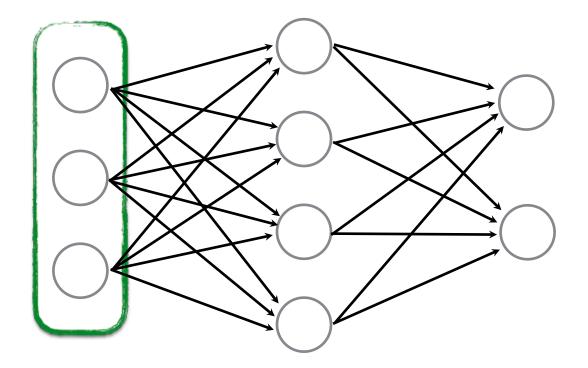
Neural Network

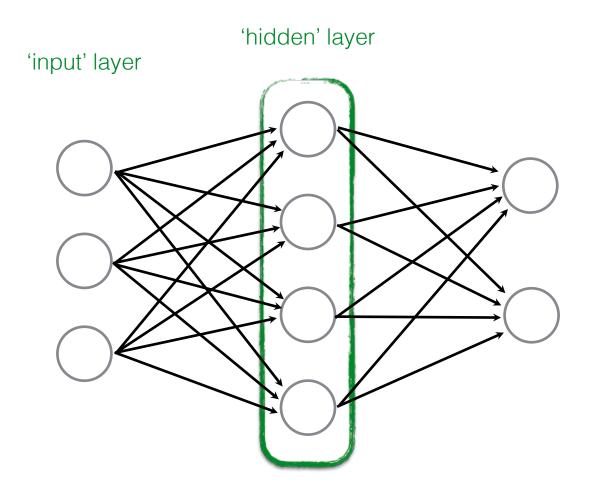




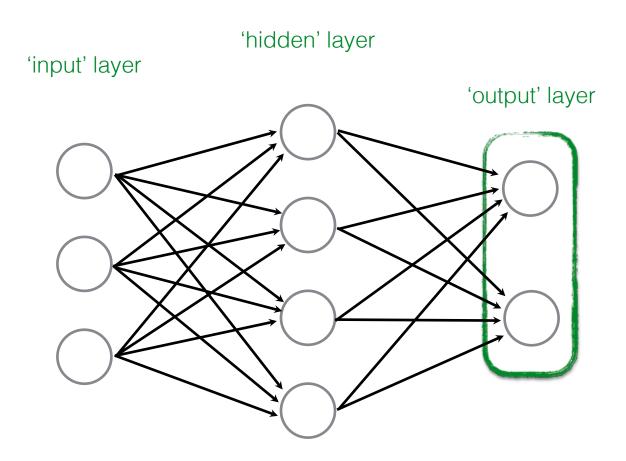
...also called a Multi-layer Perceptron (MLP)

'input' layer

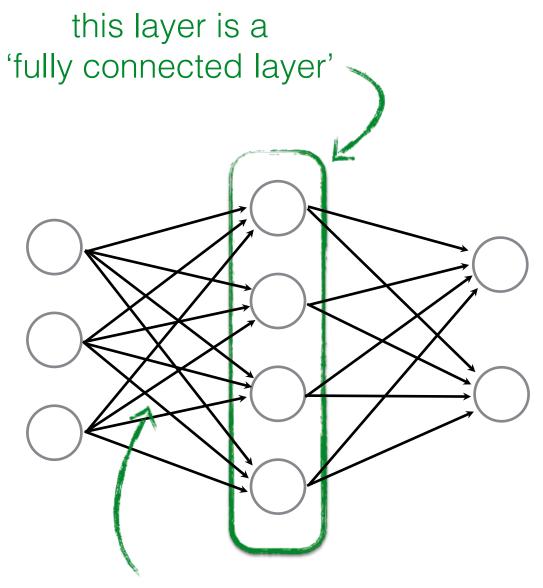




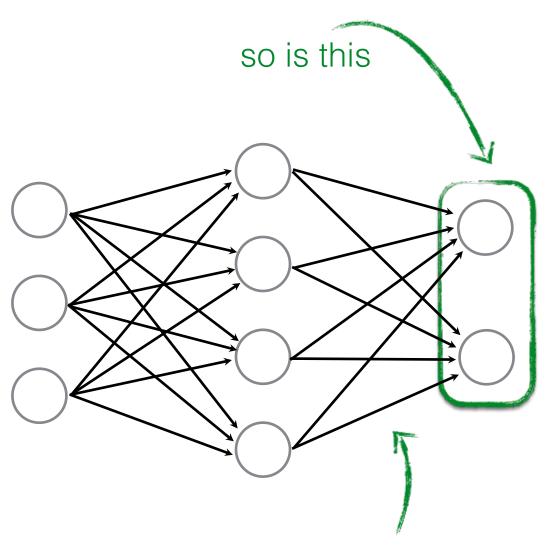
...also called a **Multi-layer Perceptron** (MLP)



...also called a **Multi-layer Perceptron** (MLP)

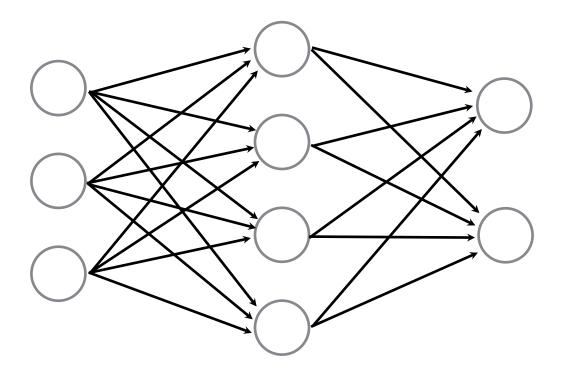


all pairwise neurons between layers are connected



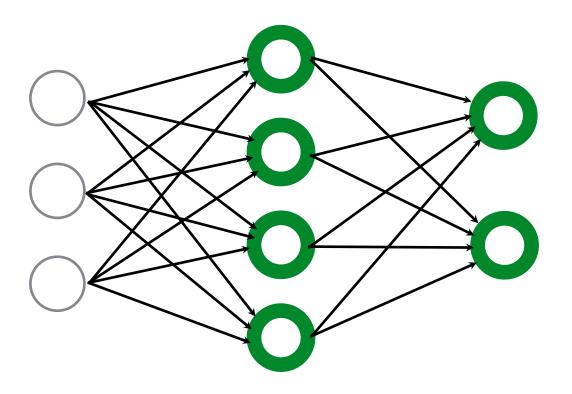
all pairwise neurons <u>between</u> layers are connected

How many weights (edges)?



4 + 2 = 6

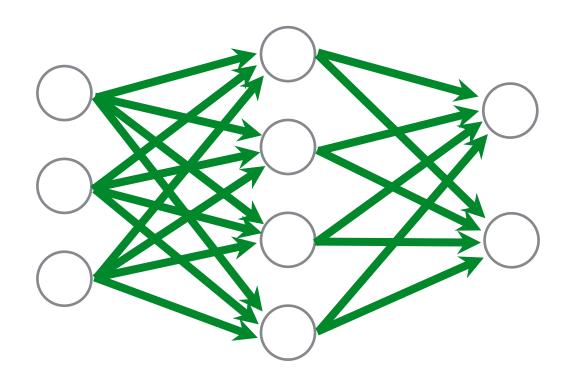
How many weights (edges)?



$$4 + 2 = 6$$

How many weights (edges)?

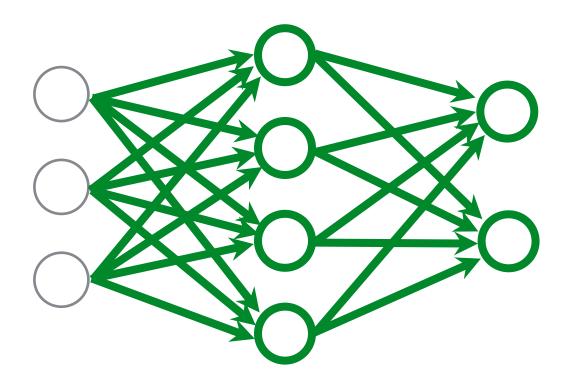
$$(3 \times 4) + (4 \times 2) = 20$$



$$4 + 2 = 6$$

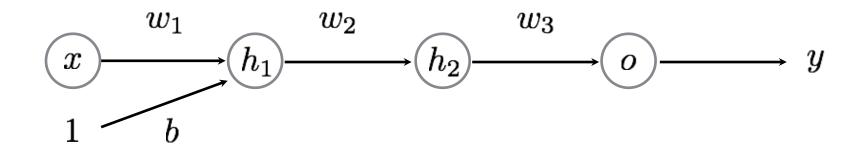
How many weights (edges)?

$$(3 \times 4) + (4 \times 2) = 20$$

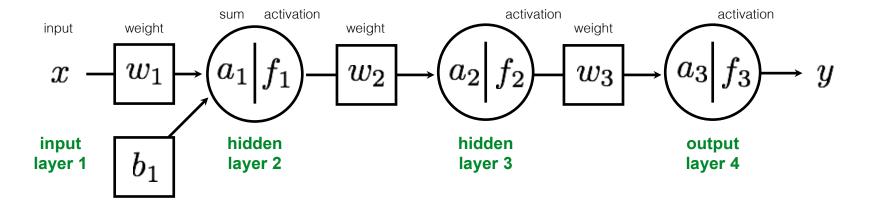


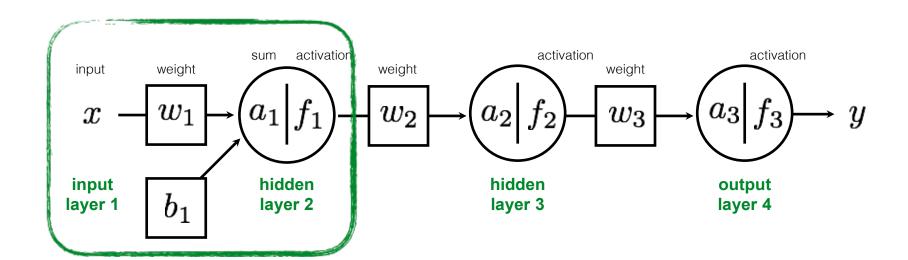
$$20 + 4 + 2 = 26$$

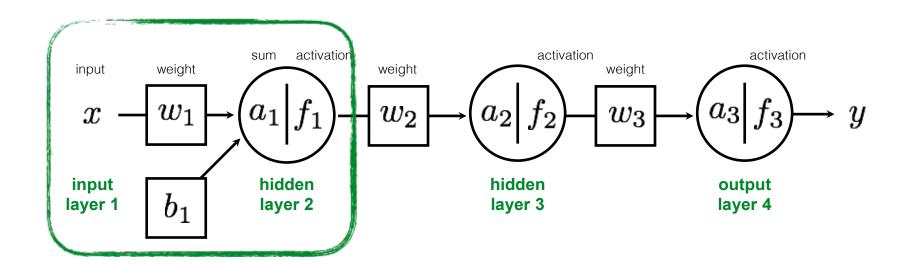
Example of a multi-layer perceptron



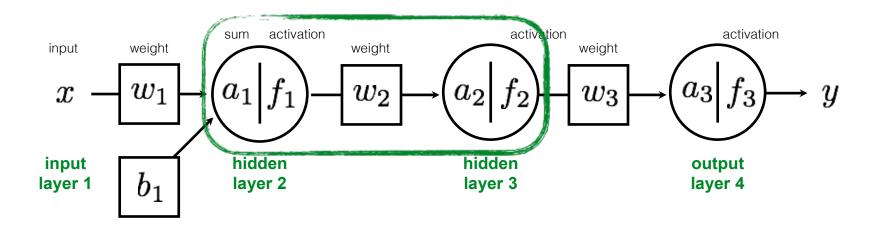
function of FOUR parameters and FOUR layers!



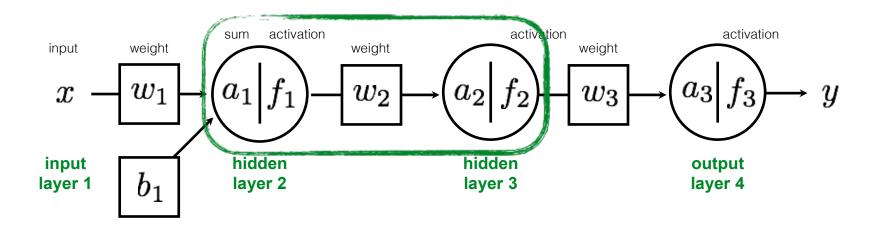




$$a_1 = w_1 \cdot x + b_1$$

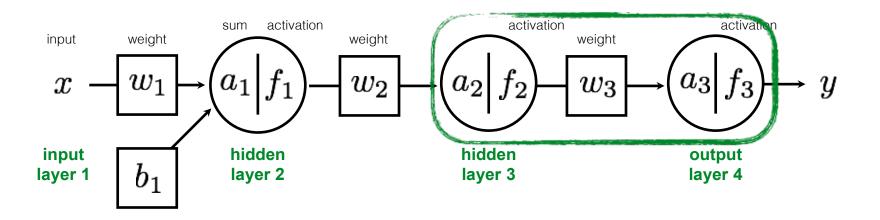


$$a_1 = w_1 \cdot x + b_1$$



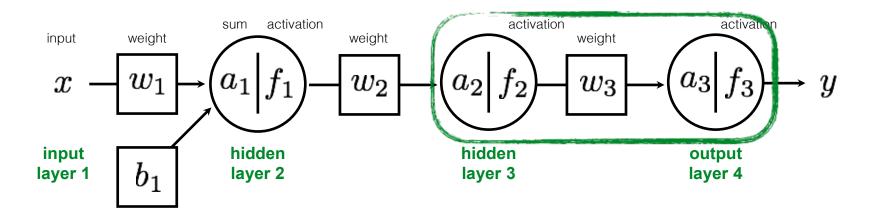
$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$



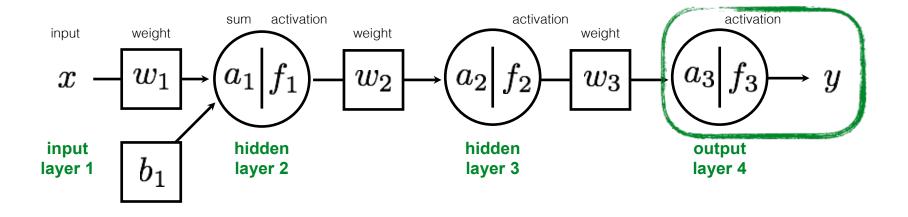
$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$



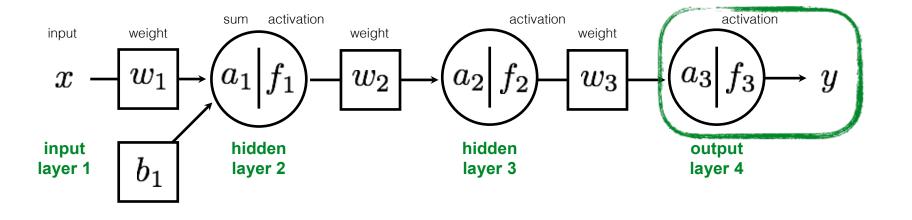
$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$



$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$



$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$
 $y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$

Entire network can be written out as one long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$

We need to train the network:

What is known? What is unknown?

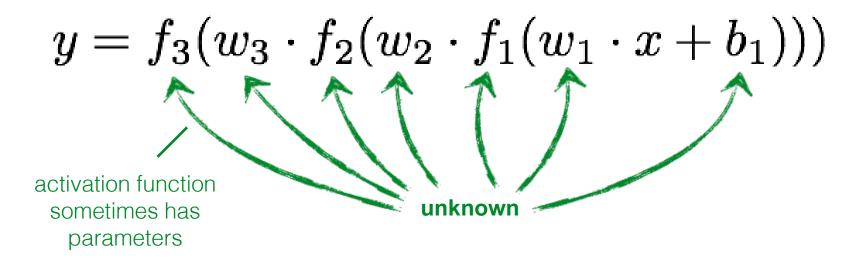
Entire network can be written out as one long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$
known

We need to train the network:

What is known? What is unknown?

Entire network can be written out as one long equation



We need to train the network:

What is known? What is unknown?

Learning an MLP

Given a set of samples and a MLP

$$\{x_i, y_i\}$$
$$y = f_{\text{MLP}}(x; \theta)$$

Estimate the parameters of the MLP

$$\theta = \{f, w, b\}$$

Gradient Descent

For each ${f random}$ sample $\{x_i,y_i\}$

- 1. Predict
 - a. Forward pass

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

- b. Compute Loss
- 2. Update
 - a. Back Propagation
 - b. Gradient update

$$rac{\partial \mathcal{L}}{\partial heta}$$

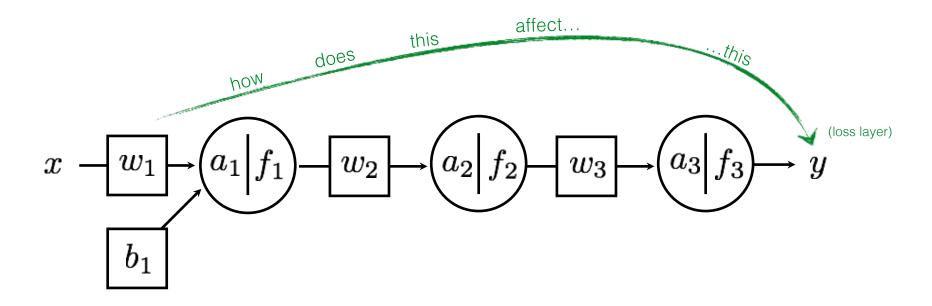
vector of parameter partial derivatives

 $\theta \leftarrow \theta - \eta \nabla \theta$

So we need to compute the partial derivatives

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \left[\frac{\partial \mathcal{L}}{\partial w_3} \frac{\partial \mathcal{L}}{\partial w_2} \frac{\partial \mathcal{L}}{\partial w_1} \frac{\partial \mathcal{L}}{\partial b} \right]$$

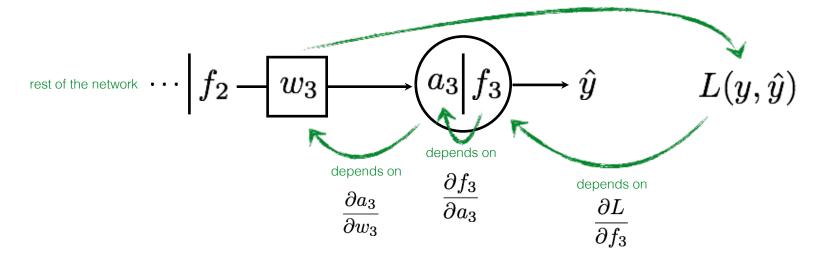
Remember, $\frac{\partial L}{\partial w_1} \ \ \text{describes...}$

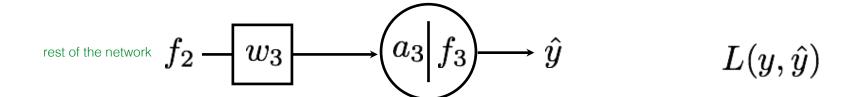


According to the chain rule...

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

Intuitively, the effect of weight on loss function : $\frac{\partial L}{\partial w_3}$





$$rac{\partial L}{\partial w_3} = rac{\partial L}{\partial f_3} rac{\partial f_3}{\partial a_3} rac{\partial a_3}{\partial w_3}$$
 Chain Rule!

Next Class:

How to use chain rule and "backpropagation" to train any neural network