Reminders /| Announcements

- Homework 1 is due tonight!
o Each student gets 10 late days (total). See the syllabus for details.

o You DO NOT need to email me for permission to use late days!

* Project Proposal is due 10/03
o Group sizes <3 need my explicit permission!

o Proposal needs to be turned in on Blackboard by each group member

e Midterm Exam is on 10/20

o In class; closed-book; 1 hour; everything up to and including 10/15 lecture

o More details in the next class.

A New Useful Reference Book

C
Ll
« Available for free on: https://visionbook.mit.edu/ o
| [N
|| -
 Published in 2024 — a modern take compared to E Foundations =
the other reference books mentioned in the :; of Computer Vision
syllabus (these are also available for free) e TR

Il=llll.lll-lllll=lllll EFET N Em

. I. B el I=II=I | I==I I.l .E

 As areminder: you are encouraged to read ...=..=.=.=............... ...;
B =

relevant chapters of reference books g R
N EEEN BN EEEN
HE B E TFE Em

||
=
||
- Hm !

o Course website lists book chapters for each lecture

2 HE ' "Em
.-
Ll
.
mE
L] [[
||
||
i

|

F

|

]

|

|

|

m

|

]

H

‘ |

W |
IIDIIIIII
IIIIIIII |

H HY BEE 'EFEE. .
- . | FTE E BN N H
o This is optional, but encouraged o H e
HEE 1 ENE H ENE Em
H H BN BEEN "ETEETEEEE BNE BTEE
" H Em] EEENE Hn
ENCE N EEEEEEEECEEEEEEEE N EEE

I've requested UMBC library to buy it, but that might take some time ...

https://visionbook.mit.edu/

L "”~‘ E

't\.\" m{\!

! -

If you choose an answer to this question at random,
what is the chance that you will be correct?

5B 0%

*A: 25% /

50% @ >=<0:25%

tejasgokhale.com

CMSC 472/672 Computer Vision

Lecture 8: Neural Networks

How do Neural Networks é
work?
Neurons: ¥]

B

y
| know a'guy who knows a guy

Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)

UMBC

Artificial
Intelligence

Limitations to linear classifiers

Wrong!

N\

Limitations to linear classifiers

rong!

Limitations to linear classifiers

Wrong!

Goal: Non-linear decision boundary

A brief history of Neural Networks

enthusiasm

time

What comes next? g\

Krizhevsky,
Perceptrons, PDP book, Sutskever,
1958 1986 Hinton, 2012

enthusiasm

Minsky and Papert, Al winter, 9 .
1972 2000 20287 time
28 years 28 years

e =

Parametric Approach

Image
10 numbers givin
> f(x,W) > 9ving
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters

or weights

Parametric Approach: Linear Classifier

f(x,W) = Wx

Image

- f(x,W) _ 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier
3072x1
|mage f(X’W) — IVKI

10x1 10x3072 .
- f(x,W) _ 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier
3072x1

f(x,W)

Image

10x1

Array of 32x32x3 numbers
(3072 numbers total)

WK +

10x3072

T

> f(X,W)

W

parameters
or weights

b

>

10x1

10 numbers giving
class scores

Computation in a neural net

Let’'s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Input Output / weights
representation representation

Vi = i WijX;

Neuron (a.k.a unit) \

Adapted from: Isola, Torralba, Freeman

Computation in a neural net

Let's say we have some 1D input that we want to convert to some new feature space

Linear layer
Input Output / weights
representation representation
Xi Y = ZiWini+ b;
O ‘\
bias
C/L
O
@
o
1 C

Adapted from: Isola, Torralba, Freeman

Example: Linear Regression

Linear layer

Input Output
representation representation
o
®
®
®
X ® k Dy
o
. T
C fwp(X) =x"W+b
1Q

Adapted from: Isola, Torralba, Freeman

Computation in a neural net — Full Layer

Linear layer y=Wx+Db
Input Output Wi1 - Winyxa] (b1l v
representation representation || b X2 4 | b2 = [V2

. Oyl ® y nEn EEn _ L
A O)’Z W: coe W X b :
® QY3 j1 jn1nd Lo 1 L)
O

X - ‘
: E y parameters of the model: H — {W, b}
O
® b Y

10

Adapted from: Isola, Torralba, Freeman

Computation in a neural net — Full Layer

Linear layer Full layer
Input Output Y = Wx +_ b_
representation representation (W11 o Win bq a V1]
C O V1 2 2 2
® Oyz ’ ‘ . X — | ...
o QY3 Wit Win by | [Ly
® - - L4
X ® ‘ |y
. .
: . Can again simplify notation by
] | appendinga 1to X
1 C

Adapted from: Isola, Torralba, Freeman

Connectivity patterns

Input Output Input Output

representation Wb representation representation —c representation

Fully connected layer Locally connected layer
(Sparse W)

Computation in a neural network

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

Input Output
representation representation
®) O O
®) O O
8 8 8 We can repeat this as
X S Y O Z '®) many times as we want!
O O O
O O O
®) O O

41

What is the problem with this idea?

00000000

¢
=
=

=
00000000

%,

=

=
00000000

L

\mm

=

00000000
<

What is the problem with this idea?

E
e
S
=
S

=
=

E
»e

OO0O0O0000O0
OO0O0O000O0O0
OO0O00000O0

OO0O00000O0

Can be expressed as single linear layer!

—

Wx

Limited power: can't solve XOR ®

Recall

Goal: Non-linear decision boundary

Solution: simple nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
° Oo—O
O O0—O0
® O—O 0.6
® O—O
) o T = 9(y) ..
® : 0.2
° Oo0—O
® o—-0 0.0
bj —4 —2 0 2 4
10 y g)

_ d
Pointwise

Non-linearity

The Perceptron

WHAT PERCEPTRON SOUNDS LIKE wHat pERceptRoNS Ark

out(t)

in(t) <

Example: linear classification with a perceptron

L2

80

60

40

20

Source: Isola, Torralba, Freeman

Example: linear classification with a perceptron

L2

y=x'w+b

() = 1, if y>0
S = 0, otherwise

80

60

40

20

Example: linear classification with a perceptron

L2

80

60

40

20

y=x'w+b

1, if y>0

0, otherwise
“when vy is greater than 0, set all
pixel values to 1 (green),

otherwise, set all pixel valuesto 0
(red)”

Example: linear classification with a perceptron
9(y)

L2

y=x'w+b

80

60

9(y) = 0, otherwise

40

{1, it y>0

? “when vy is greater than 0, set all

pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

Computation in a neural net - nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
o O—O
® O—O 0.8
o O—O0 0e
® O—0O)
X () }) N g(y)o4
® o—-O0 0>
® O—O
o o—-0 0.0
b N T T
10 y g)

d
Can’t use gradient-based optimization, 359 = 0

Computation in a neural net - nonlinearity

Linear layer Sigmoid
1
Input Output g(y) =o(y) = 11+ e
representation representation o

- .

® 0.8

: 0.6
X A~ \ g(y) 0.4

o 0.2

®

- bj o —4 =2 0 2 4
10 y 9O) Y

Computation in a neural net - nonlinearity

- Bounded between [0,1] Sigmoid
B B 1
» Saturation for large +/- inputs 9(y) =o(y) = 1+ e Y
- Gradients go to zero 0:8:
0.6 1
9(Y) ..

Computation in a neural net — nonlinearity

» Unbounded output (on positive side) Rectified linear unit (ReLU)
. ' ' . 99 _)0, if y<0 = max/(0
Efficient to implement: By = {1, £ g0 g9(y) (0,9)

* Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012]) >
9(y) -
« Drawback: if strongly in negative region, |

unit is dead forever (no gradient).

» Default choice: widely used in current
models! Y

Computation in a neural net — nonlinearity

» where a is small (e.g., 0.02)

« Efficient to implement:

» Has non-zero gradients everywhere

(unlike ReLU)

@_ —a, if y<0

Oy

L,

if y>0

Leaky RelLU

max(0,y), if y>0
9(y) = . .
amin(0,y), if y <O

Perceptron:
Old Idea!

Late 1950s video on
Rosenblatt’s
perceptron research

“While promising, this
approach to machine
intelligence virtually died
out...”

Perceptron:
Old Idea!

Late 1950s video on
Rosenblatt’s
perceptron research

“While promising,
this approach to
machine intelligence
virtually adied out ..."

" i
o h
.J!m;'

- 2y " |
i s = I8 e, Vel
! Y | e A
M .0 ' L
-1 .] y s ¥ g e
-t - : ¢ - : Foonidid) $2URTYS
\ " o b N
/) . i . .-
/ - 1] Y A s
/ _-.' &] i pe s ’-" et ‘,-_1
- E . %' Hih - J 1‘ W
P, i1 i f ! 0§
- i ¢ L]
/ J 3 Rl |
§ - | A\ . R | (1
/ . - iy 3 I .
_ P) (W PRl .
. 1] f L .'. :
o’ ¢ / /
“y 3 A fiat it . LI]
» " » -
| o y .

| guess you guys aren't ready for that yet. But your kids are gonna Ié)ve it.

2o R e

?srsun 0.84 1 o o

¥ person Cr.?dé %
":"'"'Mrﬁ-‘m' . Hi!m»?— '''' . B]

Stacking layers

Input Intermediate Output
representation representation representation

00000000

h = “hidden units”

Stacking layers

Input Intermediate Output
representation representation representation

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}

Source: Isola, Torralba, Freeman

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ... b1}

Source: Isola, Torralba, Freeman

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU -~ O = {W1, ..., WL b1, .. bL

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelLU

o = (Wl .. WLbl .. bL

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelLU

o = (Wl .., WLbl .. bl

A\
0
B

I =W
VRV
=Y

N/
NS,
28\

Y
hox

XN)
=

N/
\NY,7
28\

“
7O
o

N/
Xk
N
8\

YUY
O
\\

</ ..
v\mm m.m.A

N <7 D
EREK
RPN

_./Aﬂ(\hv\i
/mmum\&\

INSAN \\
CRIEEKD
L2}

Stacking layers - What's actually happening?

Low level features: higher level features: even higher level features:
e.g., edge, texture, ... e.g., shape e.g., “paw”, “fur”

OO0O0O0000O0

OO0O0O000O0O0
\/

00000000

OOO0000O0O0

Source: Isola, Torralba, Freeman

Deep nets
R

|
1
1
\l/

fx)=f(. . :(f2(fi(x)))

“dog”

Computation has a simple form

« Composition of linear functions with nonlinearities in between

- E.g. matrix multiplications with ReLU, max(0, X) afterwards

* Do a matrix multiplication, set all negative values to O, repeat

But where do we get the weights from?

Computation has a simple form

y = ax® + bk Coo il
X, x,) T= b 2N

a :

But where do we get the weights from?

Where do we get the weights from ?

“DEEP LEARNING"

%; o
ﬁ\ 4 -

O TN ==
SOUTH PARK

CHATGPT, DUDE.

How would we learn the parameters?

Y1
“dog”

JV

— L(fo(x1),y1)
/ AN

predicted ground truth

Learned EEE— (91 (92 93 94 95 ‘96

N
0* = arg min Z L(fo(xi),¥3)

0 1=1

Training neural networks

Let’'s start easy

world’'s smallest neural network!
(a “perceptron™)

Training a Neural Network

Given a set of samples and a Perceptron

{mi: yi—}
y = frer(z;w)

Estimate the parameter of the Perceptron

w

Given training data:

x Y
10 | 10.1
2 1.9
3.5 | 3.4
1 1.1

What do you think the weight parameter is?

Y = W

Given training data:

x Y
10 | 10.1
2 1.9
3.5 | 3.4
1 1.1

What do you think the weight parameter is?
Yy = wx

not so obvious as the network gets more complicated so we use ...

An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 01),(z2,%2),-. ., (ZN,yN)}

and a perceptron

o

Y = W

An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 01),(z2,%2),-. ., (ZN,yN)}

and a perceptron

o

Y = W

Modify weight W suchthat 9 gets ‘closer’to Y

An Incremental Learning Strategy

(gradient descent)

Given several examples

{(1,11), (z2,92),-.., (ZN,YN)}

and a perceptron

o

Y = W

Modity weight such that ?} gets ‘closer’ to

perceptron perceptron true
parameter output label

Gradient descent:

update rule:

dLl

— ...Is the rate at which this will change...

dw
1 AN 2
L=_-(y—19) (B

2

the loss function

... per unit change of this

the weight parameter

Let's compute the derivative...

L1 Loss L2 Loss

0(g,y) = 19—yl £3,y) = (§ —y)*

Zero-One Loss Hinge Loss
£(9,y) = 1[g =y £(9,y) = max(0,1 —y-g)

dLl

— ...Is the rate at which this will change...

dw
L)
L=-(y—9) <

2

the loss function

... per unit change of this

e

the weight parameter

Let's compute the derivative...

Compute the derivative

iwod(1,
%—%{ﬁ(y—y)}

ol
|
@ =
]
S =
&
| ‘
<
S

That means the weight update for gradient descent is:

w = U — V’{U move in direction of negative gradient

=w+ (y —9)x

wow:* How dID

GET UIKE
THAT?

\/—

Neural
Network

.

L

EVERY TIME I SEE

A NEW TRAINING
EXAMPLE ...

L

N

\/‘

Neural
Network

N

I DO ONE
ITERATION
OF WEIGHT
TRAINING

SHEN COMIX

Gradient Descent (world’s smallest perceptron)

For each sample

1Zi ¥i }

1. Predict
a. Forward pass i = wx;
b. Compute Loss Eizzl@ﬁ__gﬁ
2
2. Update
. dl; .
a.Back Propagation ¥ = —(y; — 9)x; = Vw
w

b.Gradient update w=w-— Vw

The Perceptron

weights

sign function
(e.g., step,sigmoid, Tanh, ReLU)

@7 Y output

inputs

Another way to draw it...

weights a4 — Wi T
1 (1) Combine the sum ; ©
and activation function
y = f(a)
Wwa
w
inputs @ 3 - f Y output

wN Activation Function

(e.g., Sigmoid function of weighted sum)

(2) suppress the bias
term (less clutter) TN =1

’IUN—b

Programming the 'forward pass’

Activation function (sigmoid, logistic function)

float f(float a)
{

return 1.0 / (1.0+ exp(-a)):
}

Y output

Perce ptron function (logistic regression)

float perceptron(vector<float> x, vector<float> w)
{

float a

dot (x,w) ;
return f(a);

Neural networks

Connect a bunch of perceptrons together ...

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

O O
s
RS

XS 20
O Q/

O

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

O O
s
RS

XS 20
O Q/

O

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

7

‘one perceptron’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

two perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

‘three perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

Q ‘four perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

A Q\Qm
O——

O
O

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

O

O
S O
‘é:z Q

XN =() sixpercsptrons
O A S

Some terminology...

[MLP STANDS FOR... |

77 =
=
/

...also called a Multi-layer Perceptron (MLP)

() O

O\ IA‘\ /O
X

@

SEE MORE UNTCORNS QUARRELLING, @TODCOMICS N n r@)

Some terminology...

e .
>
XX

— X >
e =0
Q%

...also called a Multi-layer Perceptron (MLP)

Some terminology...

‘hidden’ layer
‘input’ layer

{

«

O
3
=0

4

O\ IA‘\ O
W/
%
sféfe)e

)

...also called a Multi-layer Perceptron (MLP)

Some terminology...

‘hidden’ layer
‘input’ layer
‘output’ layer

.

...also called a Multi-layer Perceptron (MLP)

O O
X/

O\ IA‘\ /O
X

@

this layer is a
fully connected Iayer’)
4

all pairwise neurons between layers are connected

SO IS th"s\
Y

all pairwise neurons between layers are connected

How many neurons (perceptrons)?

How many weights (edges)?

O
\" ®

0 IS -
A B
O O%

How many learnable parameters total?

How many neurons (perceptrons)? 4+2=06

How many weights (edges)?

O

O

How many learnable parameters total?

How many neurons (perceptrons)? 4+2=06

How many weights (edges)? (3x4)+(4x2)=20

O

ST
395

O
s O

How many learnable parameters total?

How many neurons (perceptrons)? 4+2=06

How many weights (edges)? (3x4)+(4x2)=20

O

How many learnable parameters total? 20+4+2=20

bias terms

Example of a
multi-layer perceptron

function of FOUR parameters and FOUR layers!

sum activation activation activation

input weight weight weight

r — Wb~ W9 |— w3 —

input hidden hidden output
layer 1 bl layer 2 layer 3 layer 4

=. —

e

i sum activation activation activation
input weight weight weight
r — W]~ Wy — w3 —
|
input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4

= —

e

i sum activation activation activation
input weight weight weight
r — wi Wy |— w3 —
1
|
input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4

input

weight

r’“ . .
& sum activation

weight

activgtion

Wo

input
layer 1

“hidden
layer 2

a1 = w1 -+ by

“hidden
layer 3

activation

output
layer 4

7 -
& sum activation

input weight weight weight
Tr — W1 Wo Ws
input Thidden ~hidden
layer 1 bl layer 2 layer 3

activation

output
layer 4

sum activation ra activation

A

input weight weight { weight
J — 'UJl f— w2 wB
input hidden hidden
layer 1 b 1 layer 2 layer 3 layer 4

sum activation & i activation

input weight weight { weight

layer 1 bl layer 2 layer 3

a1 = w1 -+ by
az = ws f1(wy - x + b1)
a3 = ws - fa(wa - f1(wy -z + b1))

Tr — W

layer 1 bl

a1 = w1 -+ by
az = ws f1(wy - x + b1)
a3 = ws - fo(wy - f1(w1 -z +b1))

sum activation activation

a1 =wy T+ by
az = ws f1(wy - x + b1)
a3 = ws -+ fo(ws - fr(wy -z + by))
y = f3(ws - fo(wsz - fi(wi-z+b1)))

Entire network can be written out as one long equation

y = fa(ws - fa(wz - fi(w1 -z + b1)))

We need to train the network:
What is known? What is unknown?

Entire network can be written out as one long equation

y = fs(ws - fa(wsz - f1(ws & b1)))

A

\\ nown -

We need to train the network:

What is known? What is unknown?

Entire network can be written out as one long equation

y = fa(ws - fa(wz - fi(w1 -z + b1)))

AR OA A A A
/ \ K /

activation function - .

sometimes has - unknown -

parameters

We need to train the network:
What is known? What is unknown?

Learning an MLP

Given a set of samples and a MLP
{mi: y’a}
y = fmrp(z; 0)

Estimate the parameters of the MLP

f={f,w,b}

Gradient Descent
For each random sample {z;,v;}
1. Predict
a. Forward pass § = fmre(zs; 0)
b. Compute Loss

2. Update
oL o
D vector of parameter partial derivatives

a. Back Propagation o0

b. Gradient update -

vector of parameter update equations

SO we need to compute the partial derivatives

oL | 9L 0L 0L oL
89 - _(‘)wg 8’&)2 é)wl 66_

Remember,

oL

Partial derivative —— describes...
awl

affect...

his
‘.E_O'e's,./“'t—‘—-— ~Lis
NOW.
_..--"-“"“E“#.d
. _-¥' (loss layer)
Tr — W1 p— — W9 |— w3 — ‘y

According to the chain rule...

S_L o oL 8f3 aag
8’&)3 B 8f3 8(13 8’&)3

Intuitively, the effect of weight on loss function : oL
w3
U
rest of the network = « « f2 — ws IS ?j L(y’ ?j)

depends on
8f3 depends on

Oag daz oL
Ows 3—f3

v depends on \/

rest of the network f2 — wS _>—> ‘3} L(y’ g)

9L 0L Ofs das
8w3 - afg 8a3 a’w;g

Chain Rule!

Next Class:

How to use chain rule and "backpropagation” to train
any neural network

	Reminders / Announcements
	A New Useful Reference Book
	Quiz 3!
	Lecture 8: Neural Networks
	Slide Number 5
	Limitations to linear classifiers
	Limitations to linear classifiers
Wrong!
	Limitations to linear classifiers
	Goal: Non-linear decision boundary
	A	brief	history	of	Neural	Networks
	What comes next?
	Slide Number 29
	f(x,W) = Wx
	Slide Number 31
	Slide Number 32
	Computation in a neural net
	Computation in a neural net
	Example: Linear Regression
	𝑦 = 𝑊𝑥 + 𝑏
	Computation in a neural net – Full Layer
	Connectivity patterns
		Computation in a neural network
	What is the problem with this idea?
	What is the problem with this idea?
	Recall�Goal: Non-linear decision boundary
	Solution: simple nonlinearity
	The Perceptron
	Slide Number 45
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net — nonlinearity
	Computation in a neural net — nonlinearity
	Perceptron: �Old Idea!
	Perceptron: �Old Idea!
	Slide Number 58
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Slide Number 66
	Stacking layers - What’s actually happening?
	Deep nets
	Computation has a simple form
	Computation has a simple form
	Where do we get the weights from ?
	How would we learn the parameters?
	Training neural networks
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Neural networks
	Slide Number 98
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Neural Network
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136

