CMSC 472/672

Lecture 7
i ' MACHINE » | /=
Machm? Learning EARNING £ conrure
or 4

Computer Vision

Some slides from Isola



Motivation: Image Classification

What is this?
{dog, cat, ailrplane, bus, laptop,
chair ..}

What animal is this ?

{dog, cat, lion, tiger, duck, cow,
giraffe, ..}

What type of cat is this?

{Cheshire, Siamese, Persian,
Shorthailr, Bombay, ..}




Motivation: Image Classification

Central question: What “category” is
this?
How can a computer vision system
make a decision like this?
Ideas

» Based on colors, textures, shapes,
edges, ...

 Based on features !!!




Features: main components

=

1) Detection: Identify the
Interest points

2) Description: Extract
vector feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Recap & Motivation

n i1

* Image features are “interesting”, “unique” regions in an
iImage
— Intuitively these are “important”

« So far — we have seen how to detect and describe
(a.k.a. “represent”) certain types of feature
— Harris Corners, Blobs, ...

« We had a definition for what a “feature” is
— Can we learn that from data?



Challenges: Viewpoint Variation

[123 187 96 86 B3 112 153 149 122 109 104 75 89 107 112 99]

All pixels change when
the camera moves!

Slide Credit; Fei-Fei Li



Challenges: lllumination

Slide Credit: Fei-Fei Li



Challenges: Background Clutter

Slide Credit; Fei-Fei Li



Challenges: Occlusion

Slide Credit; Fei-Fei Li



Challenges: Pose and Deformation
(Cat Yoga)

Slide Credit: Fei-Fei Li



Challenges: Inter-Class Variation

Slide Credit; Fei-Fei Li
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Slide Credit; Fei-Fei Li
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An image classifier
def classify_image(image):
return class_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.



Can we use features to make the decision?

Find edges
>

Find cornersb \V é 4\ >




ALGO RITHMS |
DATA STRUCTURES

Get Ready for

The Good Stuff




When someone uses 'Machine
learning’, 'Al' and 'deep learning'
interchangeably in a discussion

Wall Street / Silicon Valley

can you please stop

| do not think it means
what you think it means.
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™ computérd

Know
Data Structures
your an cestors and Algorithms
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Artificial
HEY Intelligence WHY
DO YOU ALWAYS
WEAR THAT MASK?

The Open Secret




The Open Secret
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“Learn’”’ ?

* Let's look at a “programming’’ task
—> 8
* The task:

Write a program that outputs the number in a 28x28
f —> 5

grayscale image



“Learn’”’ ?

* Approach 1: try to write a program by hand
o How would you do it ? —> 8

A s



“Learn’”’ ?

* Approach 1: try to write a program by hand

o How would you do it ?

* Approach 2: (the machine learning approach)
o Collect a large “dataset” of digit images

o “Label” them with the corresponding numbers (0,1, ..., 9)

o Let the system “write its own program” to map from images to numbers



Machine Learning

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels

Example training set

airplane
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An image classifier
def classify_image(image):
return class_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.



def train(images, labels):

return model

def predict(model, test_images):

return test labels




Nearest Neighbor Classifier

def traln(lmages, labels) Memorize all
il B L data and labels

return model

def predlct(model test 1mages) Predict the label
> of the most similar
training image

= S 1 - T
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return test labels



Nearest Neighbor Classifier

car

= R

Training data with labels

querydata  “)

Distance Metric




Distance Metric to compare images
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The goal of learning is to extract lessons from past
experience in order to solve future problems.



Learning

Data

%

Learner

—  Model

Inference

Input — | Model

—  Output



def train(images, labels):

return model

def predict(model, test_images):

return test labels




The goal of learning is to extract lessons from past
experience in order to solve future problems.



Let’'s LEARN. What does ¥ do?

2w 3=30

(w1=49

5w 2 =100

2 ¥ 2=10



Goal: answer future queries involving

Approach: figure out what ¥ is doing by observing its behavior on examples

Past experience Future query
=7
2 % 3=36 Sk o=s
(Y 1=49
5% 2 =100

2w 2=10
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Learning from examples

(aka supervised learning)

Training data

{input:
{input:
{input:
{input:

2, 3]
7,1]
5,2

2,2

,output:36}
,output:49}
,output:100}
,output:16}

%

Learner




The goal of learning is

to extract lessons from past experience

in order to solve future problems.



Learning from examples

(aka supervised learning)

Training data

{x(l)’ y(l)}
{£@,y} —
{z1), 43}

Learner

— X =Y
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Real-World Application:
A Model for Predicting Electricity Use

* What will the peak power consumption be in <your-favorite-city> tomorrow?

* Difficult to answer this question without data

o Difficult to build an “a priori” model from first principles ...

m High Temperature (F) | Peak Demand (GW)

. . . 2011-06-01  84.0 2.651

* Relatively easy to record consumption history o T - on1
(the utility company has this data) 2011-06-03  75.2 1.844
2011-06-04 84.9 1.959

 Relatively easy to record features that may affect consumption:
O temperature

example from Zico Kolter



Real-World Application:

A Model for Predicting Electricity Use

* What will the peak power consumption be in <your-favorite-city> tomorrow?
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example from Zico Kolter



Real-World Application:
A Model for Predicting Electricity Use

* What will the peak power consumption be in <your-favorite-city> tomorrow?

3.2
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30 —— Prediction
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g
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N
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55 60 65 70 79 80 85 90 95 100
High Temperature (F) example from Zico Kolter



The essence of machine learning:

* A pattern exists
* We cannot pin down the pattern as an equation

* We need to approximate the pattern as a function of the input

o Using data!

o For vision: the pattern is in terms of pixel intensities and features.
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62.0

61.5 A

61.0 -

60.5 A

60.0 A

59.5 A1

59.0 A

58.5 1

Training data

Learner

[ ] °
[ ]
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o °® [
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® e
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. * (@) , ()N
.. Y {:C 7y 1=1
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Hypothesis space

The relationship between X and Y is roughly linear:

—> Jo(z) = bz + bo

yz@laz—l—é’o



62.0

61.5 A

61.0 -

60.5 A

60.0 A

59.5 A1

59.0 A

58.5 1

Training data

Search for the parameters, 6 = {6, 6.},
that best fit the data.

fo(z) = 012 + 6o

Best fit in what sense?



Training data

62.0

Search for the parameters, 6 = {6y, 6.},
that best fit the data.

61.5 A

61.0 -

Y
60.5 - : f@(x) — 0]_33 —I_ 00
60.0 - .
59.5 1 . : Best fit in what sense?
59.0 A L
feo1 By, {z®,y WYL,
58.51 N NN

s90 595 600 605 610 615 620 x |he least-squares objective (aka loss) says the
best fit is the function that minimizes the squared
error between predictions and target values:

— )% 9= fola)



Training data

62.0

Search for the parameters, 6 = {6y, 6.},
that best fit the data.

fo(z) = 61z + O

61.5 A
61.0
60.5 A
60.0 A
59.5 A1

Best fit in what sense?

59.0 A

58.5 1

se.0 595 600 605 610 615 620 x The least-squares objective (aka loss) says the
best fit is the function that minimizes the squared
error between predictions and target values:

—y)? 9= folx)



Training data

Y
- Complete learning problem:

. o
60.0- 0* — arggmln ;(fe (3;(%)) _ y(z))

" g
sl I = arg min ;(6’1:13( ) + 0 — y®)
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How to minimize the objective w.r.t. 67
N
6* = argmin ) (fo(z) — )
O =1

Use an optimizer!

Machine with knobs



Learning

Data

%

Learner

—  Model

Inference

Input — | Model

—  Output



How to minimize the objective w.r.t. 67

In the linear case: Learning problem
A N
0* — 0,20 + 0y — ()2
argemlnzz:;( 1T 0o—y") :
N (1) (1)
: : x 1 i
J(0) = 0 () O — (7))2 () (2)
(9) ;( 12" + 6 — y'*’) x=|" 1 0= (0 0) y= y:
= (y — X0)" (y — X0) o o
0% = argemin J(6) 2(XTX0* — XTy) =0 Solution
2(6) _, XTX0* = XTy /
o0 _ 9* _ (XTx)—ley




Empirical Risk Minimization

(formalization of supervised learning)

Linear least squares learning problem



Empirical Risk Minimization

(formalization of supervised learning)

Objective function
(loss)

/

—a,rgmmZE x(), y ()
fer 4 X ’

Training data
Hypothesis space



Case study #1: Linear least squares

Learner

Objective
L(fo(x),y) = (folx) —y)?
Data

(o), gy [ Tpothesisspace ) g

f9(aj) — ‘91517+(90

Optimizer




Data —

Learner

Objective
Hypothesis space

Optimizer

+

Compute



Example 1: Linear least squares

o0 Data

= Learner | — fo

=

= [ j

ge Input — —  QOutput
-




Example 2: Program Induction

o0 Data

.EE . h def predict(x):
= — Learner S s
S return y

—

-

def predict(x):

y = 0.8%x + 2 —> Output

return y

Testing




Example 3: “Deep’ Learning (with Neural Networks)

Data

Training
1

x Y
Learner | — O(vg)O

x Y
Input — O(:g:‘.O — Output

Testing




Space of all functions O Hypothesis space (haystack)

d True solution (needle)

Space we will
search




Space of all functions O Hypothesis space (haystack)

d True solution (needle)

Space we will
search

—_—

Linear functions

True solution is linear




Space of all functions Hypothesis space (haystack)

True solution (needle)

Space we will
search

T

Linear functions

True solution is nonlinear




Space of all functions O Hypothesis space (haystack)

d True solution (needle)

Space we will
search

Deep nets




Space of all functions Hypothesis space (haystack)

True solution (needle)

Hypotheses consistent with data




Space of all functions Hypothesis space (haystack)

True solution (needle)

Hypotheses consistent with data

What happens as we increase
the data?




Space of all functions O Hypothesis space (haystack)
J True solution (needle)

‘ Hypotheses consistent with data

What happens as we shrink the
hypothesis space?




The essence of machine learning:

* A pattern exists
* We cannot pin down the pattern as an equation

* We need to approximate the pattern as a function of the input

o Using a set of observations (data) to uncover an underlying process



Regression vs. Classification

* Regression tasks: predicting real-valued outputs y ER
* Classification tasks: predicting discrete-valued quantity
y
oBinary Classification y €{—1,1}

oMulticlass Classification y €{1,2,...,k}



Learning for vision

Big questions:

1. How do you represent the input and output?

2. What is the objective?

3. What is the hypothesis space? (e.g., linear, polynomial, neural net?)
4. How do you optimize? (e.g., gradient descent, Newton’s method?)

5. What data do you train on?



Case study #2: Image classification

1. How do you represent the input and output?
2. What is the objective?
3. Assume hypothesis space is sufficienly expressive

4. Assume we optimize perfectly

5. Assume we train on exactly the data we care about



Image classification

e —

image x label y



Image classification

e —

image x label y



Image classification

e —

image x label y



Image classification

e —

image X label y
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How to represent class labels?

One-hot vector

Training data Training data Training data
X Y
\ ’ /
“Grizzly” ¢

s

<« “Chameleon”}
Y,




What should the loss be?

0-1 loss (number of misclassifications)

L(y,y) =1(y =y) <= discrete, NP-hard to optimize!

Cross entropy

K
continuous,

c(}A’UY) — (y y Z?/k log yx e= differentiable,

k=1 convex



Ground truth label y

[0,0,0,0,0,1,0,0,...]




Ground truth label y

dolphin
cat
grizzly bear

angel fish

chameleon

clown fish (I

iguana

elephant

00 0 Prob



Prediction logy Ground truth label y

f@ : X — RE
dolphin || dolphin
cat |l cat
grizzly bear || grizzly bear
f angel fish ||l angel fish
chameleon ||} chameleon
clown fish | IIGTEN clown fish || GG
iguana |l iguana
elephant | elephant

- 00 log prob O O Prob



Prediction logy Ground truth label y Score —L(y,y)

K
fo : X - R"® —H(y,9) =) _yrlog i
dolphin (I dolphin =
cat |l cat
grizzly bear || grizzly bear
f angel fish ||l angel fish How much better you
chameleon ||} @ chameleon could hT’fdone
clown fish | Gz clown fish | G ﬁ
iguana |l iguana
elephant | elephant

-00 log prob O O Prob 1 - 00 - Loss 0O



Prediction logy Ground truth label y Score —L(y,y)

fo : X - R"® —H(y,9) =) _yrlog i
dolphin [ dolphin =

ol | cat

grizzly bear ([N  orizzly bear |GG . .
f angel fish ] angel fish
chameleon || @ chameleon
clown fish || clown fish
iguana |l iguana
elephant [ | elephant

-00 log prob O O Prob 1 - 00 - Loss 0O



Prediction logy Ground truth label y Score —L(y,y)

fo : X - RY ~H(y,9) =) yxlog g
dolphin | dolphin =
cat |l cat
grizzly bear || grizzly bear
f angel fish (|} angel fish
chameleon (Il @ chameleon |GGG -
clown fish [l clown fish
iguana |INGEG iguana
elephant i elephant

-00 log prob O O Prob 1 - 00 - Loss 0O



Softmax regression (a.k.a. multinomial logistic regression)

f@ : X — RK
Z = fp (X) <4 |logits: vector of K scores, one for each class
y = softmax(z) <— squash into a non-negative vector that sums to 1
— i.e. a probability mass function!
. e
Yy; = K B dolphin [
Zk:l e %k cat i
grizzly bear |
angel fish |1l
1t — chameleon |l
y clown fish |
iguana |l

elephant [l

0 1



Softmax regression (a.k.a. multinomial logistic regression)

Probabilistic interpretation:

y=[P(Y =1X =x),...,P(Y = K|X =x)] <= predicted probability of
each class given input x

K
H(y,y) =— Zyk log 1. <= picks out the -log likelihood
k=1 of the ground truth class y

under the model prediction y

N
f*=argmin) H(y",y") <= max likelihood learner
fer 3



Softmax regression (a.k.a. multinomial logistic regression)

f@lX-)RK

z = fo(x)

y = softmax(z)

Data
{m(i)a y(i)}ﬁ\le —

Learner

Objective
L(y, fo(x)) = H(y, softmax(fy(x)))




(Generalization

“The central challenge in machine learning is that our algorithm must perform
well on new, previously unseen inputs—not just those on which our model
was trained. The ability to perform well on previously unobserved inputs is
called generalization.

... [this is what] separates machine learning from optimization.”

— Deep Learning textbook (Goodfellow et al.)



Recap:
Linear Regression

( fo is a linear function )



LInear regression

Training data

f9($) — (90 + (91$

1 1




LInear regression

Training data

f9($) — (90 + (91$

1 1




Linear Regression

( fo Is a linear function )



Polynomial Regression

( fo Is a polynomial function )



Polynomial regression

Training data

fg(ﬂ?) — (9() + 91ZE + 92332

K
fo(x) = Z 6, "
k=0

10 X K-th degree polynomial regression




20 A

15 A

10 A

Training data

=1

(20 4NN



Training data Test data,

Y 251 Y 251

207 201 ’

15 A 15 A / /

’/
10 A 10 A /
5 5 .
/./
0] T (1) (4) 0 o -0 ¢
{z (iraln)’ y(zraln)}z 1 {x (test) y(test) j
4 5 6 7 8 9 10 x 4 5 6 7 8 9 10 ¥
Training objective: Test time evaluation:
N M

Z (f9 (:’E'E?;E’)aln) y‘Ei”)aLln)2 Z (f9 (x‘gze)st ) yé?st ) :

1=1 1=1



What happens as we add more basis
functions?

K
fo(x) = Z 6, "
k=0




What happens as we add more basis
functions?

K
fo(x) = Z 6, "
k=0




What happens as we add more basis
functions?




What happens as we add more basis

functions?




What happens as we add more basis
functions?




Y25-

20 A

15 4

10 A

What happens as we add more basis
functions?

K
fo(x) = Z O x”
k=0

This phenomenon is called overfitting.

It occurs when we have too high capacity
a model, e.qg., too many free parameters,
too few data points to pin these parameters
down.



Y 25

20 A

15 A

10 -

When the model does
not have the capacity to
capture the true function,
we call this underfitting.

An underfit model will have
high error on the training
points. This error is known
as approximation error.



Y 254

20 -

15 A

10 -

Training data

""""" {x‘” (orain) J11

(train)’ y(traln)

4 5 6 7 8 9 10

.True data-generating process.

Pdata

X

Y 251

20 A

15 A

10 A

Test data

PR
-
-
-

{x(test)’ y(test) }’& 1

8

9

10

X



Training data Test data,

Y 254 Y 251
20 - 20 ,,/
15 A 15 A '/
’//

101 10 1

5 7 5 7 R

/’.,
0{ Tt (i) (i) 0 e J
{x(traln) ’ y(traln) }z 1 {x(test) ’ y(test) }z 1
4 5 6 7 8 9 10 4 5 6 7 8 9 10
X X

This is a huge assumption!
Almost never true in practice!




Y 251

20

15 A

10 A

Training data

(¢) (7)
{x(traln)’ y(traln) }’L 1

> 6 7 8 9 10

X

Much more commonly, we have

Dtrain 7é Ptest

Test data
Y 254
20 1
15 1
[ )
10 A
[ ]
® o
5_
[ )
0 o ([ ) [ ] ;
{x(teSt)’ygtzest) }z 1
—
X

iid

{ (tra1n)7y(tra1n)} ~ Ptrain

(%)

iid
{x(teSt)’y(test)} ~ Ptest




(Generalization

“The central challenge in machine learning is that our algorithm must perform
well on new, previously unseen inputs—not just those on which our model
was trained. The ability to perform well on previously unobserved inputs is
called generalization.

... [this is what] separates machine learning from optimization.”

— Deep Learning textbook (Goodfellow et al.)



testing domain

training domain (where we actual use our model)

p

Domain gap between Ptrain and Ptest
will cause us to fail to generalize.

Space of natural images

Training data

Test data
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