
Announcements / Reminders
• Homework 1 is due on 09/29

• If you are sending me a question, please cc the TA
• One of us will respond to you faster!

• Project Proposal is due on 10/03 (see Blackboard)
• written collaboratively by the group
• submitted individually by each student

• You are highly encouraged to choose your own topic

• On Wednesday (09/24) we will release a set of seed ideas

Lecture 6
Addendum

Image Features III

CMSC 472/672

Features: Main Components
1. DETECTION

 Identify “interest points”

2. DESCRIPTION
 Extract “feature descriptor” vectors
 surrounding each interest point

3. MATCHING
 Determine correspondence between
 descriptors in two views

],,[)1()1(
11 dxx =x

],,[)2()2(
12 dxx =x

Slide Credit: Kristen Grauman

Invariance and Discriminability

• Invariance:
• Descriptor shouldn’t change even if image is transformed

• Discriminability:
• Descriptor should be highly unique for each point

Invariant descriptors
• We looked at invariant / equivariant detectors

• Most feature descriptors are also designed to be invariant to:
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)
• Limited affine transforms (some are fully affine invariant)
• Limited illumination/contrast changes

Classical Feature Detector+Descriptor: SIFT

• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations
• Shift the bins so that the biggest one is first

Scale Invariant Feature Transform

0 2π

angle histogram

SIFT descriptor
Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint (up to about 60 degree out of plane rotation)
– Can handle significant changes in illumination (sometimes even day vs. night (below))
– Pretty fast—hard to make real-time, but can run in <1s for moderate image sizes
– Lots of code available

Feature Detection and Description
• Feature detection: repeatable and distinctive

– Corners, blobs
– Harris, DoG

• Descriptors: robust and selective
– spatial histograms of orientation
– SIFT and variants are typically good for stitching

and recognition
– But, need not stick to one

Which features match?

Feature Matching: Problem Statement
Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

Feature distance
– Simple approach: L2 distance, || f1 - f2 ||
– can lead to small distances for ambiguous (incorrect) matches

I1 I2

f1 f2

How to define the difference
between two features f1, f2?

f1 f2f2'

Feature distance
Better approach: ratio distance =

|| f1 − f2 ||
|| f1 − f2’ ||

• f2 is the best SSD match to f1 in I2
• f2’ is the 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2

How to define the difference
between two features f1, f2?

Feature Selection

Each “match” (i.e. pair of features) has a ratio score
associated with it.

A high ratio score indicates more ambiguity (i.e. 1st best and
2nd best matches have identical distances)

Solution: use a threshold and only select the matches
below the threshold.

Feature matching example

58 matches (thresholded by ratio score)

Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with
outliers later

Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance

True/false positives

The distance threshold affects performance
• True positives = # of correctly detected matches that survive the threshold
• False positives = # of incorrectly detected matches that survive the threshold

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

True/false positives

Suppose we want to maximize true positives.
How do we set the threshold?
(Note: we keep all matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

True/false positives

Suppose we want to minimize false positives.
How do we set the threshold?
(Note: we keep all matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

Example

• Suppose our matcher computes 1,000 matches between
two images
– 800 are correct matches, 200 are incorrect (according to an

oracle that gives us ground truth matches)
– A given threshold (e.g., ratio distance = 0.6) gives us 600 correct

matches and 100 incorrect matches that survive the threshold
– True positive rate = 600 / 800 = ¾
– False positive rate = 100 / 200 = ½

0.7

Evaluating the results

0 1

1

false positive rate

true
positive

rate

0.1

How can we measure the performance of a feature matcher?

recall

1 - specificity

true positives surviving threshold
total correct matches (positives)

false positives surviving threshold
total incorrect matches (negatives)

0.7

0 1

1

false positive rate

true
positive

rate
true positives surviving threshold
total correct matches (positives)

0.1
false positives surviving threshold
total incorrect matches (negatives)

ROC curve (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

recall

1 - specificity

Single number: Area
Under the Curve (AUC)

E.g. AUC = 0.87
1 is the best

Evaluating the results

ROC curves – summary

• By thresholding the match distances at different
thresholds, we can generate sets of matches with different
true/false positive rates

• ROC curve is generated by computing rates at a set of
threshold values swept through the full range of possible
threshold

• Area under the ROC curve (AUC) summarizes the
performance of a feature pipeline (higher AUC is better)

Lots of applications
Features are used for:

– Image alignment (e.g., mosaics)
– 3D reconstruction
– Motion tracking
– Object recognition
– Indexing and database retrieval
– Robot navigation
– … other

Feature Matching is Useful for …

Feature Matching is Useful for …

NEXT
HOMEWORK

!!!

3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and
points

Augmented Reality

Now,

The Good Stuff
You’ve All Been Waiting For …

	Announcements / Reminders
	Lecture 6�Addendum
	Features: Main Components
	Invariance and Discriminability
	Invariant descriptors
	Slide Number 6
	Slide Number 7
	Scale Invariant Feature Transform
	SIFT descriptor
	Properties of SIFT
	Feature Detection and Description
	Which features match?
	Feature Matching: Problem Statement
	Feature distance
	Slide Number 15
	Feature Selection
	Feature matching example
	Feature matching example
	Evaluating the results
	True/false positives
	True/false positives
	True/false positives
	Example
	Evaluating the results
	Slide Number 25
	ROC curves – summary
	Lots of applications
	Feature Matching is Useful for …
	Feature Matching is Useful for …
	3D Reconstruction
	Augmented Reality
	Now,� �The Good Stuff �You’ve All Been Waiting For …

