
Announcements / Reminders
• Homework 1 is due on 09/29

• If you are sending me a question, please cc the TA 
• One of us will respond to you faster!

• Project Proposal is due on 10/03 (see Blackboard)
• written collaboratively by the group
• submitted individually by each student

• You are highly encouraged to choose your own topic

• On Wednesday (09/24) we will release a set of seed ideas



Lecture 6
Addendum

Image Features III

CMSC 472/672



Features: Main Components
1. DETECTION 

 Identify “interest points”

2. DESCRIPTION
 Extract “feature descriptor” vectors 
 surrounding each interest point 
 

3. MATCHING
 Determine correspondence between
 descriptors in two views
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Slide Credit: Kristen Grauman



Invariance and Discriminability

• Invariance:
• Descriptor shouldn’t change even if image is transformed

• Discriminability:
• Descriptor should be highly unique for each point



Invariant descriptors
• We looked at invariant / equivariant detectors

• Most feature descriptors are also designed to be invariant to: 
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)
• Limited affine transforms (some are fully affine invariant)
• Limited illumination/contrast changes



Classical Feature Detector+Descriptor: SIFT





• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations
• Shift the bins so that the biggest one is first

Scale Invariant Feature Transform

0 2π

angle histogram



SIFT descriptor
Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor



Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint (up to about 60 degree out of plane rotation)
– Can handle significant changes in illumination (sometimes even day vs. night (below))
– Pretty fast—hard to make real-time, but can run in <1s for moderate image sizes
– Lots of code available



Feature Detection and Description
• Feature detection: repeatable and distinctive

– Corners, blobs
– Harris, DoG

• Descriptors: robust and selective
– spatial histograms of orientation
– SIFT and variants are typically good for stitching 

and recognition
– But, need not stick to one



Which features match?



Feature Matching: Problem Statement
Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance



Feature distance
– Simple approach: L2 distance, || f1 - f2 || 
– can lead to small distances for ambiguous (incorrect) matches 

I1 I2

f1 f2

How to define the difference 
between two features f1, f2?



f1 f2f2'

Feature distance
Better approach:  ratio distance = 

|| f1 − f2 ||
|| f1 − f2’ ||

• f2 is the best SSD match to f1 in I2
• f2’ is the 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2

How to define the difference 
between two features f1, f2?



Feature Selection

Each “match” (i.e. pair of features) has a ratio score 
associated with it.

A high ratio score indicates more ambiguity (i.e. 1st best and 
2nd best matches have identical distances)

Solution:  use a threshold and only select the matches 
below the threshold.



Feature matching example

58 matches (thresholded by ratio score)



Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with 
outliers later



Evaluating the results
How can we measure the performance of a feature matcher?
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True/false positives

The distance threshold affects performance
• True positives = # of correctly detected matches that survive the threshold
• False positives = # of incorrectly detected matches that survive the threshold

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



True/false positives

Suppose we want to maximize true positives. 
How do we set the threshold? 
(Note: we keep all matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



True/false positives

Suppose we want to minimize false positives. 
How do we set the threshold? 
(Note: we keep all matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



Example

• Suppose our matcher computes 1,000 matches between 
two images
– 800 are correct matches, 200 are incorrect (according to an 

oracle that gives us ground truth matches)
– A given threshold (e.g., ratio distance = 0.6) gives us 600 correct 

matches and 100 incorrect matches that survive the threshold
– True positive rate = 600 / 800 = ¾
– False positive rate = 100 / 200 = ½
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Evaluating the results
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How can we measure the performance of a feature matcher?

recall

1 - specificity

# true positives surviving threshold
# total correct matches (positives)

# false positives surviving threshold
# total incorrect matches (negatives)



0.7

0 1
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false positive rate

true
positive

rate
# true positives surviving threshold
# total correct matches (positives)

0.1
# false positives surviving threshold
# total incorrect matches (negatives)

ROC curve  (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

recall

1 - specificity

Single number: Area 
Under the Curve (AUC)

E.g. AUC = 0.87
1 is the best

Evaluating the results



ROC curves – summary

• By thresholding the match distances at different 
thresholds, we can generate sets of matches with different 
true/false positive rates

• ROC curve is generated by computing rates at a set of 
threshold values swept through the full range of possible 
threshold

• Area under the ROC curve (AUC) summarizes the 
performance of a feature pipeline (higher AUC is better)



Lots of applications
Features are used for:

– Image alignment (e.g., mosaics)
– 3D reconstruction
– Motion tracking
– Object recognition
– Indexing and database retrieval
– Robot navigation
– … other



Feature Matching is Useful for …



Feature Matching is Useful for …

NEXT 
HOMEWORK 

!!!



3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and 
points



Augmented Reality



Now,
 
The Good Stuff 
You’ve All Been Waiting For …
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