Lecture 5

Image Features

Announcements

HW1 has been released

- Start early. Due on Sept 29
- TA is an expert in Python
 - Seek help early!
- Submit on Blackboard
- What to submit?
 - See instructions
 - We want answers, code snippets, results, ... in the PDF

Announcements

Form team for the group project:

- Proposals will be due soon (around Oct 1)
- Start brainstorming project ideas
- Discuss ideas with me
- For undergrad section:

we will release a list of project topics next week

you can select from these or propose your own ideas (preferred)

Lecture 5

Image Features

Are these images related?

Are these images related?

Yes! They share common **features**.

Are these images related?

NASA Mars Rover images with SIFT feature matches

Properties of "Good Features"

- Image regions that are "important"
- Image regions that are "unusual"
- Uniqueness

How to define "unusual", "important"?

Why are we interested in features?

Motivation I:

Object Search

Why are we interested in features?

Motivation II:

Image Stitching

Step 1: extract features Step 2: match features

Step 3: align images

Why are we interested in features?

Motivation III:

Object Detection

Object Counting

Pattern Recognition

Features are used for ...

- Image alignment, panoramas, mosaics ...
- 3D reconstruction
- Motion tracking (e.g. for augmented reality)
- Object recognition
- Image retrieval
- Autonomous navigation

• ...

Invariant Local Features

Main Idea: Find features that are invariant to transformations

- Geometric invariance (rotation, translation, scaling, ...)
- Photometric invariance (brightness, exposure, shadows, ...)

Local Features: Main Components

1. DETECTION

Identify "interest points"

2. DESCRIPTION

Extract "feature descriptor" vectors surrounding each interest point

3. MATCHING

Determine correspondence between descriptors in two views

Slide Credit: Kristen Grauman

Properties of "Good Features"

- Image regions that are "important"
- Image regions that are "unusual"
- Image regions that are "unique"

define "unusual", "important" ...

Harris Corner Detector [1988]

Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?

Harris Corner Detector: Intuition

Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris Corner Detector: Intuition

- Consider a window operating over an image
- Shift the window by (u, v)
- How do pixels in W change?
 - Measure the change as the sum of squared differences (SSD)

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

- Good feature ← High error !!!
 - We are happy if error is high
 - We are very happy if error is high for all shifts (u, v)
- Slow to compute error exactly for each pixel and each offset (u, v)

Small motion assumption

• We have:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

• Taylor series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

Small motion assumption

• We have:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

- Taylor series expansion of I: $I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$
- If motion (u, v) is small ... use first order approximation

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v \approx I(x,y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

Plugging this in:

Plugging this in: shorthand:
$$I_x = \frac{\partial I}{\partial x}$$

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2 \approx \sum_{(x,y)\in W} [I_x u + I_y v]^2$$

$$E(u,v) \approx \sum_{(x,y)\in W} [I_x u + I_y v]^2$$

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$\approx \left[\begin{array}{ccc} u & v\end{array}\right] \left[\begin{array}{ccc} A & B \\ B & C\end{array}\right] \left[\begin{array}{ccc} u \\ v\end{array}\right]$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

 $(x,y) \in W$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge:
$$I_x = 0$$

$$H = \left| \begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right|$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge:
$$I_y=0$$

$$H = \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$

Quick Aside: Visualizing quadratics

Equation of a circle

$$1 = x^2 + y^2$$

Equation of a 'bowl' (paraboloid)

$$f(x,y) = x^2 + y^2$$

If you slice the bowl at

$$f(x,y) = 1$$

what do you get?

Equation of a circle

$$1 = x^2 + y^2$$

Equation of a 'bowl' (paraboloid)

$$f(x,y) = x^2 + y^2$$

If you slice the bowl at f(x,y)=1 what do you get?

$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[egin{array}{cccc} x & y \end{array}
ight] \left[egin{array}{cccc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{cccc} x \ y \end{array}
ight]$$

$$f(x,y) = \left[egin{array}{cc} x & y \end{array}
ight] \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{cc} x \ y \end{array}
ight]$$

'sliced at 1'

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$
 'sliced at 1'

What happens if you **increase** coefficient on **x**?

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 2 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

and slice at 1

decrease width in x!

What happens if you **increase** coefficient on **x**?

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 2 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

and slice at 1

What happens if you **increase** coefficient on **y**?

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & 2 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

and slice at 1

What happens if you **increase** coefficient on **y**?

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & 2 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

and slice at 1

$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

What's the shape?
What are the eigenvectors?
What are the eigenvalues?

$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

Result of Singular Value Decomposition (SVD)

Eigenvectors Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Recall:

you can smash this bowl in the y direction

$$igcolum_{} f(x,y) = \left[egin{array}{cccc} x & y \end{array}
ight] \left[egin{array}{cccc} 1 & 0 \ 0 & 4 \end{array} \right] \left[egin{array}{cccc} x \ y \end{array}
ight]$$

you can smash this bowl in the x direction

Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 3.25 & 1.30 \\ 1.30 & 1.75 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors

Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 7.75 & 3.90 \\ 3.90 & 3.25 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors

Error function for Harris Corners

The surface E(u,v) is locally approximated by a quadratic form

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

What kind of image patch do these surfaces represent?

flat

Harris Corner Recipe

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient
- 3. Compute the covariance matrix
- 4.Compute eigenvectors and eigenvalues
- 5.Use threshold on eigenvalues to detect corners

$$I_y = \frac{\partial I}{\partial y}$$

$$\left[\begin{array}{ccc} \sum\limits_{p\in P} I_x I_x & \sum\limits_{p\in P} I_x I_y \\ \sum\limits_{p\in P} I_y I_x & \sum\limits_{p\in P} I_y I_y \end{array}\right]$$

Harris Corner Recipe

- 1.Compute image gradients over small region
- 2. Subtract mean from each image gradient

4.Compute eigenvectors and eigenvalues

$$I_{y} = \frac{\partial I}{\partial y}$$

$$\left[\begin{array}{ccc} \sum\limits_{\boldsymbol{p}\in P} I_{\boldsymbol{x}}I_{\boldsymbol{x}} & \sum\limits_{\boldsymbol{p}\in P} I_{\boldsymbol{x}}I_{\boldsymbol{y}} \\ \sum\limits_{\boldsymbol{p}\in P} I_{\boldsymbol{y}}I_{\boldsymbol{x}} & \sum\limits_{\boldsymbol{p}\in P} I_{\boldsymbol{y}}I_{\boldsymbol{y}} \end{array}\right]$$

eigenvalue

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

2. Find the roots of polynomial $\det(M)$

$$\det(M - \lambda I) = 0$$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(M - \lambda I) = 0$$

3. For each eigenvalue, solve (returns eigenvectors)

$$(M - \lambda I)\mathbf{e} = 0$$

Harris Corner Recipe

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient
- 3. Compute the covariance matrix
- 4.Compute eigenvectors and eigenvalues
- 5.Use threshold on eigenvalues to detect corners

$$I_y = \frac{\partial I}{\partial y}$$

$$\left[\begin{array}{ccc} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{array}\right]$$

interpreting eigenvalues

interpreting eigenvalues

interpreting eigenvalues

Harris Corner Recipe

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient
- 3. Compute the covariance matrix
- 4.Compute eigenvectors and eigenvalues
- 5.Use threshold on eigenvalues to detect corners

$$I_y = \frac{\partial I}{\partial y}$$

$$\left[\begin{array}{ccc} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{array}\right]$$

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners (a function of)

Use the smallest eigenvalue as the response function

$$R = \min(\lambda_1, \lambda_2)$$

5. Use threshold on eigenvalues to detect corners

corner

Eigenvalues need to be bigger than one.

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

Can compute this more efficiently...

5. Use threshold on eigenvalues to detect corners

corner R > 0 $R = \det(M) - \kappa \operatorname{trace}^2(M)$ R < 0

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

$$det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

$$trace\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

flat

Harris & Stephens (1988)

$$R = \det(M) - \kappa \operatorname{trace}^{2}(M)$$

Kanade & Tomasi (1994)

$$R = \min(\lambda_1, \lambda_2)$$

Nobel (1998)

$$R = \frac{\det(M)}{\operatorname{trace}(M) + \epsilon}$$

Harris Corner Recipe

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient
- 3. Compute the covariance matrix
- 4.Compute eigenvectors and eigenvalues
- 5.Use threshold on eigenvalues to detect corners

$$I_y = \frac{\partial I}{\partial y}$$

$$\left[\begin{array}{ccc} \sum\limits_{p\in P} I_x I_x & \sum\limits_{p\in P} I_x I_y \\ \sum\limits_{p\in P} I_y I_x & \sum\limits_{p\in P} I_y I_y \end{array}\right]$$

Corner response

Thresholded corner response

Non-maximal suppression

