## Lecture 4

Image Filtering II: Fourier Domain



















$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

infinite sum of sine waves

How would could you visualize this in the frequency domain?



$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

infinite sum of sine waves



### **Fourier Series**



Fourier's claim:
Add enough of these
to get <u>any periodic</u> signal you
want!



## Visualizing the frequency spectrum

Recall the temporal domain visualization



## Visualizing the frequency spectrum

Recall the temporal domain visualization



no offset)

Spatial domain visualization

Frequency domain visualization





?

Spatial domain visualization

Frequency domain visualization







What do the three dots correspond to?







### Fourier transform

Fourier transform

inverse Fourier transform

ontinuous

$$F(k) = \int_{-\infty}^{-\infty} f(x)e^{-j2\pi kx}dx$$

$$f(x) = \int_{-\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

liscrete

$$F(k) = rac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N} \qquad \qquad f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N} \ _{x=0,1,2,\ldots,N-1}$$

### Fourier transform

Where is the connection to the 'summation of sine waves' idea?

$$f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N}$$
 Euler's formula 
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 sum over frequencies 
$$f(x) = \sum_{k=0}^{N-1} F(k) \bigg\{ \cos(2\pi kx) + j\sin(2\pi kx) \bigg\}$$
 scaling parameter wave components

#### 2D Fourier Transform

#### Definition

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy,$$
  
$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

where u and v are spatial frequencies.

Also will write FT pairs as  $f(x, y) \Leftrightarrow F(u, v)$ .

• F(u, v) is complex in general,

$$F(u,v) = F_{R}(u,v) + jF_{I}(u,v)$$

- $\bullet$  |F(u, v)| is the magnitude spectrum
- $arctan(F_I(u, v)/F_R(u, v))$  is the phase angle spectrum.

Slides courtesy of A.

Zissserman





### The Discrete Fourier transform

Discrete Fourier Transform (DFT) transforms a signal f[n] into F[u] as:

$$F[u] = \sum_{n=0}^{N-1} f[n] \exp\left(-2\pi j \frac{un}{N}\right)$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix}=\cos x+i\sin x$$

Discrete Fourier Transform (DFT) is a linear operator. Therefore, we can write:



Source: Torralba, Freeman, Isola

### For images, the 2D DFT

1D Discrete Fourier Transform (DFT) transforms a signal f [n] into F [u] as:

$$F[u] = \sum_{n=0}^{N-1} f[n] \exp\left(-2\pi j \frac{un}{N}\right)$$

2D Discrete Fourier Transform (DFT) transforms an image f[n,m] into F[u,v] as:

$$F[u, v] = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2\pi j \left(\frac{un}{N} + \frac{vm}{M}\right)\right)$$

### Simple Fourier transforms



# Simple Fourier transforms



### Some important Fourier transforms



### **Translation**

Shifts of an image only produce changes on the phase of the DFT.

### Some important Fourier transforms



### Scale

Small image details produce content in high spatial frequencies

### Some important Fourier transforms



# Magnitude & Phase

Magnitude encodes most of the color (intensity) information

Phase encodes most of the "location" information



### The DFT Game: find the right pairs



fx(cycles/image pixel size)

fx(cycles/image pixel size)

fx(cycles/image pixel size)

### The DFT Game: find the right pairs



### Fourier transforms of natural images



### More examples











mag

phase

### Fourier transforms of natural images











phase



#### Magnitude only and phase only reconstructions



Reconstruction using magnitude only
Top Left Photo: Ralph's magnitude is the same,
Phase = 0
Top Right Photo: Meg's magnitude is the same,
Phase = 0



Reconstruction using phase only
Top Left Photo: Ralph's magnitude normalized to one, Phase is the same
Top Right Photo: Meg's magnitude normalized to one, Phase is the same



### Fourier transforms of natural images





original









phase

What if we took the phase of each image, swapped it, and did the inverse Fourier transform?

### Phase Swapping

#### Image phase matters!



cheetah phase with zebra amplitude



zebra phase with cheetah amplitude

#### The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g * h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

### Low-Pass Filter (Pixel Domain)

· low-pass filter: convolution in primal domain

$$b = x * c$$









Slides courtesy of G. Wetzstein

#### Low-Pass Filter (Frequency Domain)

• low-pass filter: multiplication in frequency domain  $F\{b\} = F\{x\} \cdot F\{c\}$ 



Slides courtesy of G. Wetzstein

### High Pass Filter (Frequency Domain)



Slides courtesy of G. Wetzstein

### Band-Pass filtering (Frequency Domain)



Slides courtesy of G. Wetzstein

edges with specific orientation (e.g., hat) are gone!



Slides courtesy of G. Wetzstein

#### The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g * h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

**Convolution** in the pixel domain = multiplication in the Fourier domain

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

Fourier Domain Filtering: Can be much faster for big filters because speed is independent of filter size

Convolution: Speed is proportional to filter size!



FT(x)



This is a low-pass filter in Fourier Domain

Look how it is centered around (0, 0) – it allows low frequencies and rejects high frequencies.

How can we apply this to the image?

Use the Convolution Theorem



FT(f)

Fourier Transform of Low-Pass Filter

FT(x)

Fourier Transform of Image

$$FT(x) \times FT(f) = FT(x * f)$$

**Multiplication** 

**Convolution** 



$$FT(x) \times FT(f) = FT(x * f)$$



$$FT^{-1}[FT(x) \times FT(f)]$$

Low-Pass Filtered Image

$$FT(x) \times FT(f) = FT(x * f)$$



Source: Fred Weinhaus



Source: Fred Weinhaus

# **Blurring / Smoothing**



## **Opposite of Blurring: Sharpening**







## Gaussian Filter vs Laplacian Filter





#### For each level

- 1. Blur input image with a Gaussian filter
- 2. Downsample image







512×512



128×128 64×64 32×32









(original image)





#### For each level

- 1. Blur input image with a Gaussian filter
- 2. Downsample image

### The Laplacian pyramid

Compute the difference between **upsampled** Gaussian pyramid level k+1 and Gaussian pyramid level k. Recall that this approximates the blurred Laplacian.



Source: Torralba, Freeman, Isola

## Upsampling



## The Laplacian pyramid



## Inverting the Laplacian Pyramid



The Laplacian pyramid



# Applications of Laplacian Pyramid

- Image Blending
- Image Compression
- Noise Removal
- IMAGE FEATURES → IMAGE CLASSIFICATION ...



Application 1: Image Blending

# Image Blending



# Image Blending





### Simplest (but far from the best) Solution



- How would you do this?
- Give me an equation

## Simplest (but far from the best) Solution



$$I = m * I^A + (1 - m) * I^B$$

## Image Blending with the Laplacian Pyramid



$$l_k = l_k^A * m_k + l_i^B * (1 - m_k)$$

Source: Torralba, Freeman, Isola

### Simple Masked Summation vs. Laplacian Pyramid







Source: A. Efros



Photo credit: Chris Cameron

## Image Pyramids





And many more: steerable filters, wavelets, ... convolutional networks!