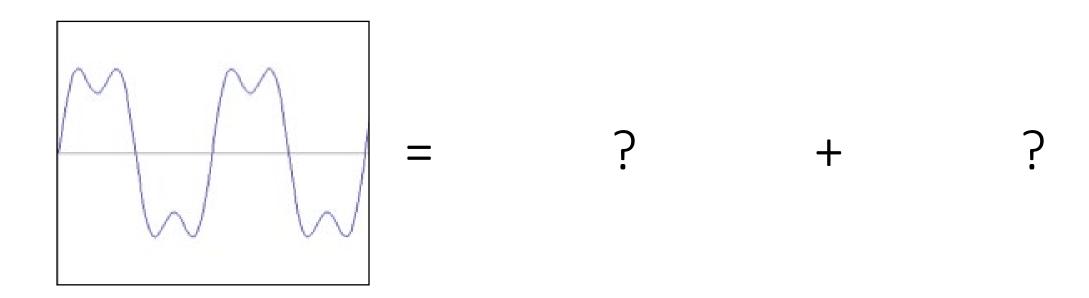
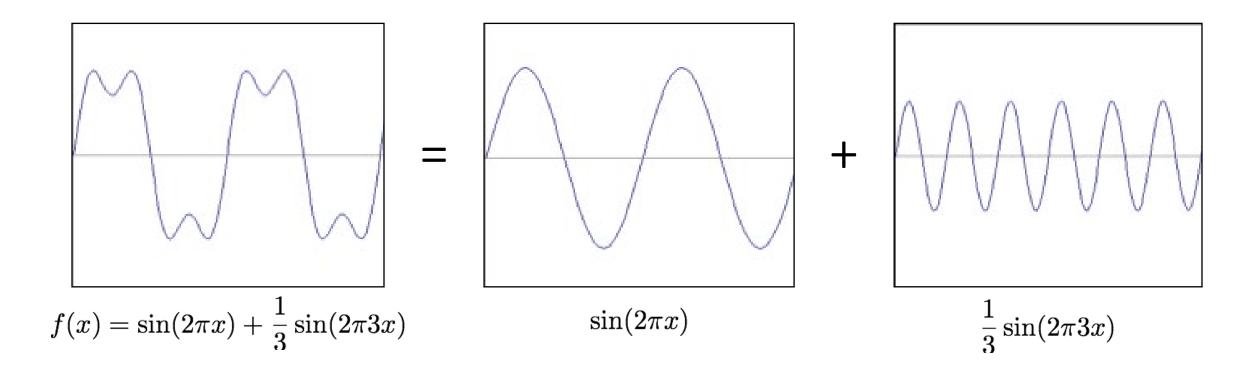
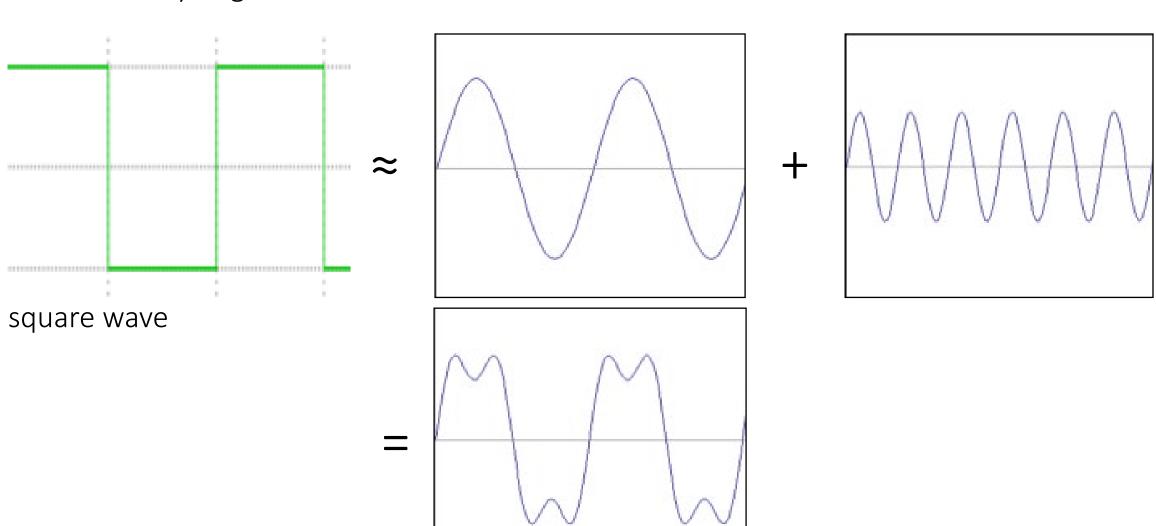
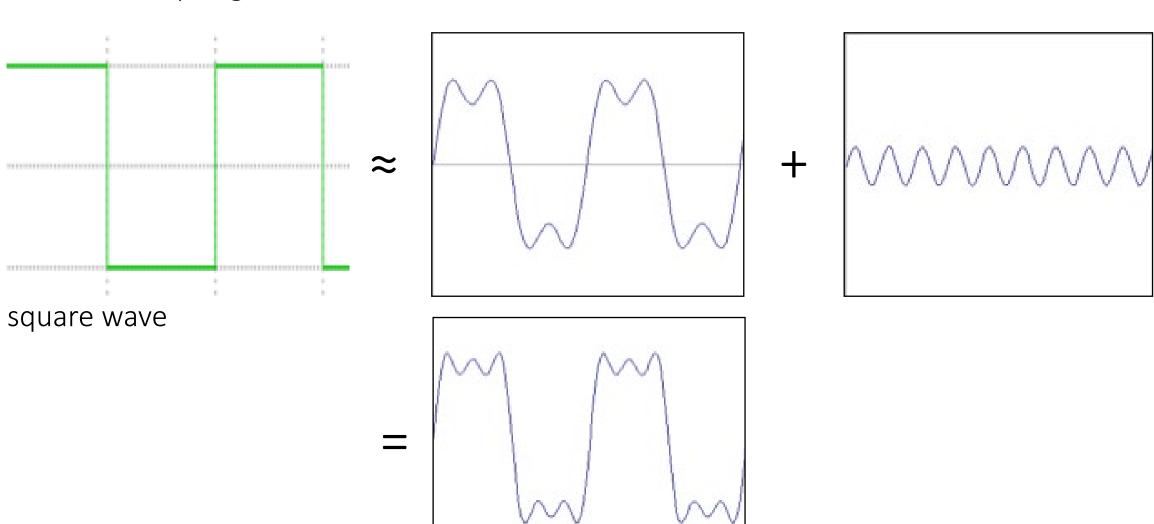
Lecture 4

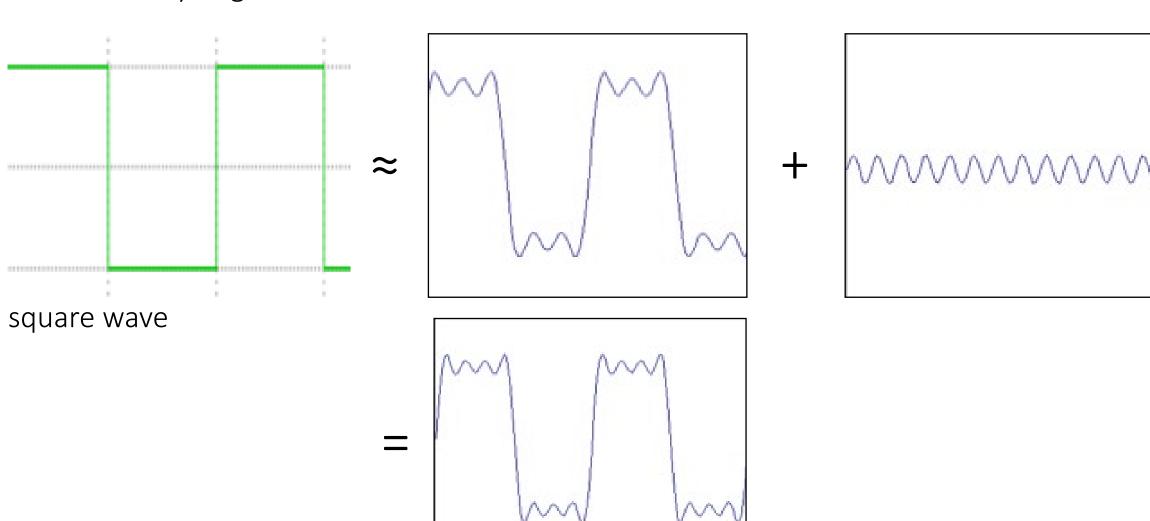
Image Filtering II: Fourier Domain

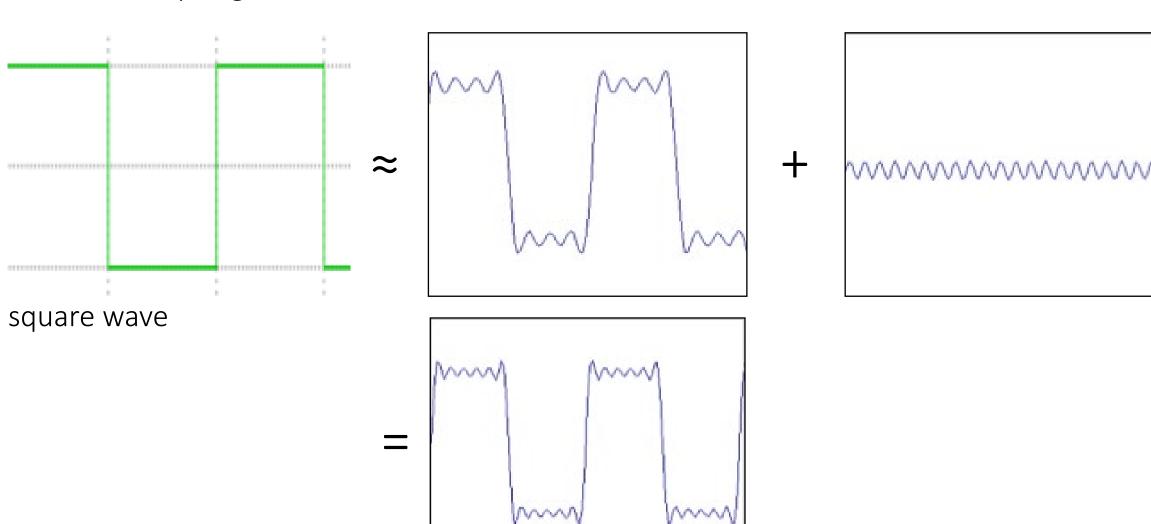


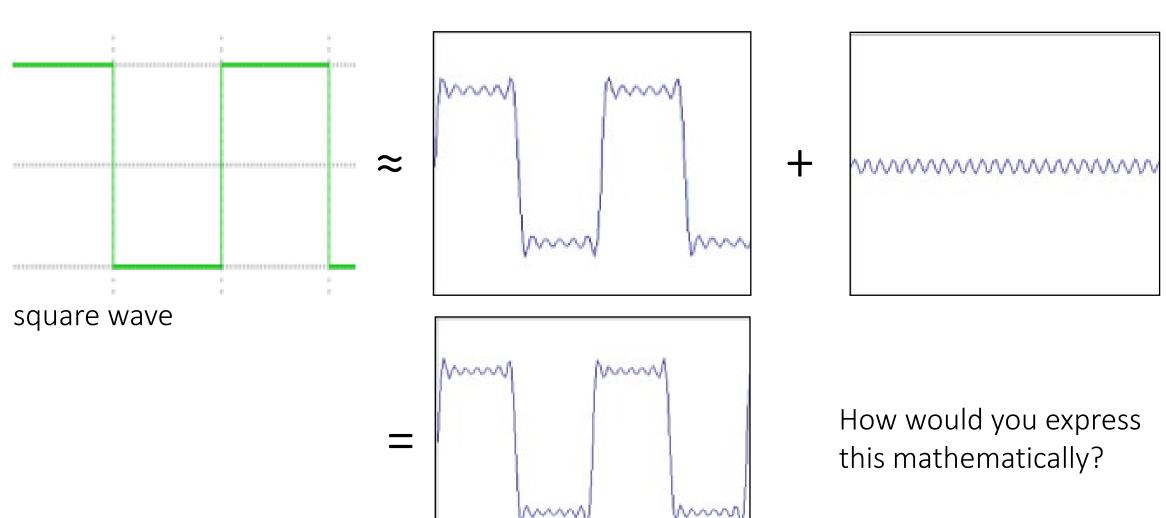


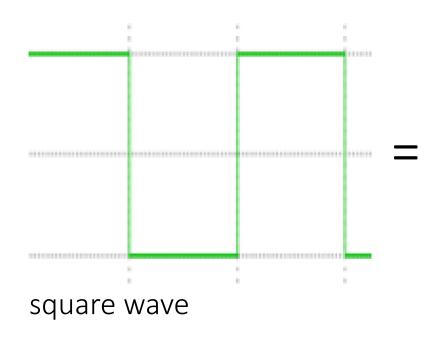








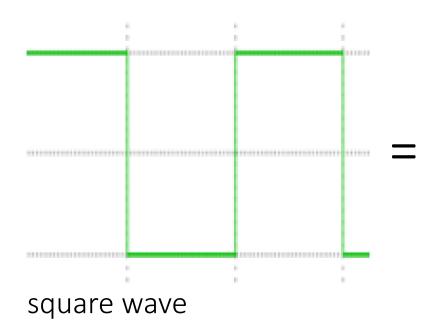




$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

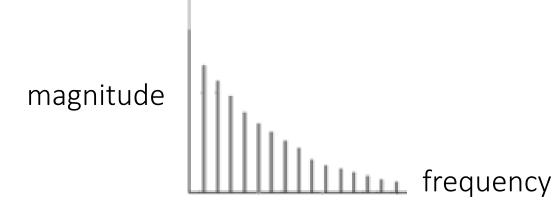
infinite sum of sine waves

How would could you visualize this in the frequency domain?

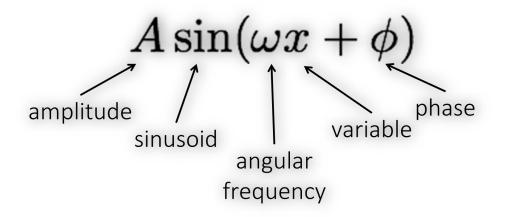


$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

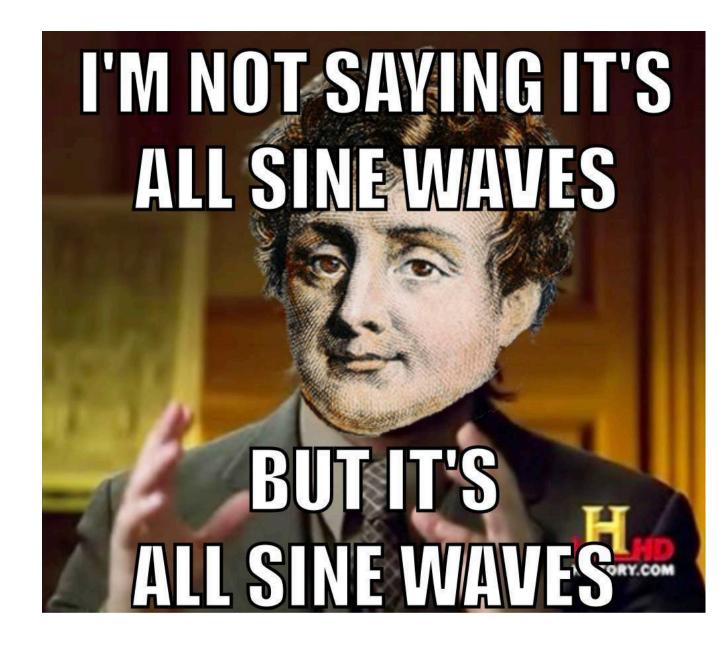
infinite sum of sine waves



Fourier Series

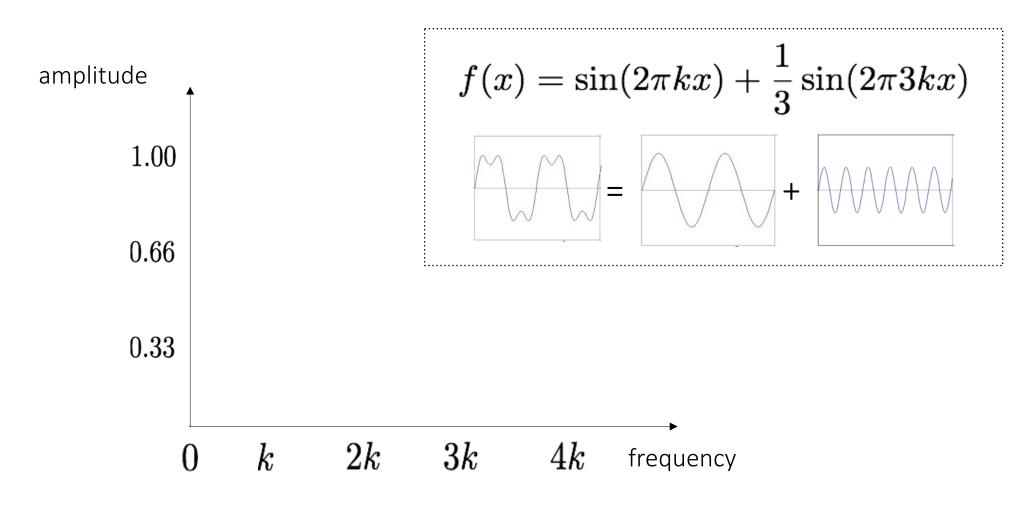


Fourier's claim:
Add enough of these
to get <u>any periodic</u> signal you
want!



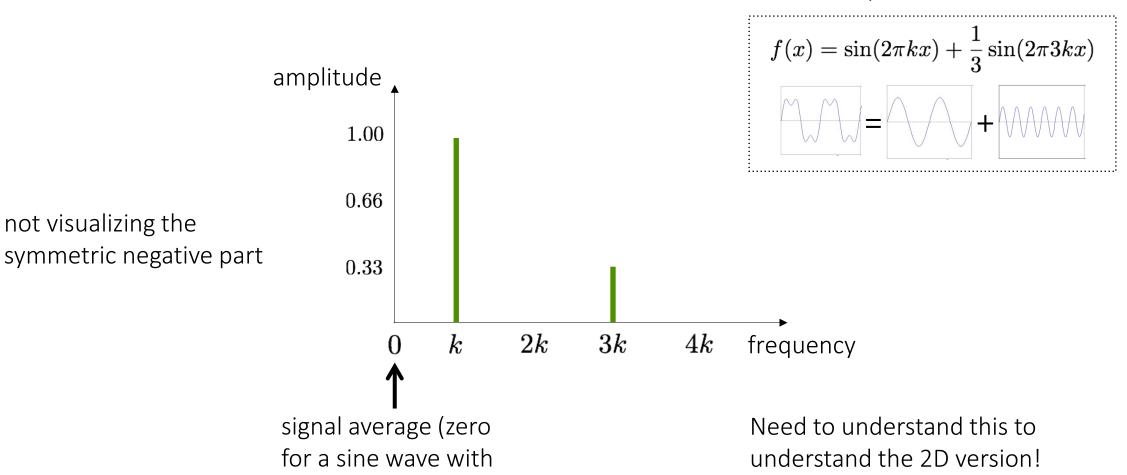
Visualizing the frequency spectrum

Recall the temporal domain visualization



Visualizing the frequency spectrum

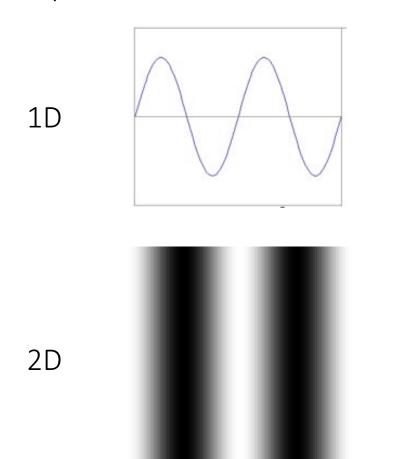
Recall the temporal domain visualization



no offset)

Spatial domain visualization

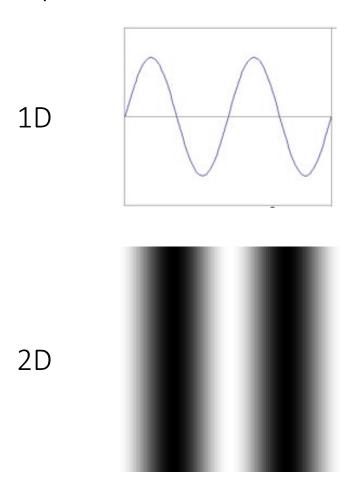
Frequency domain visualization

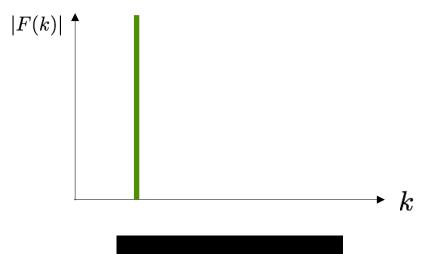


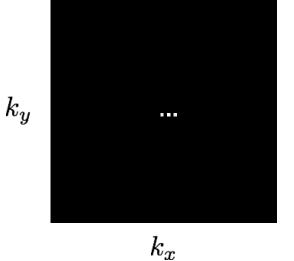
?

Spatial domain visualization

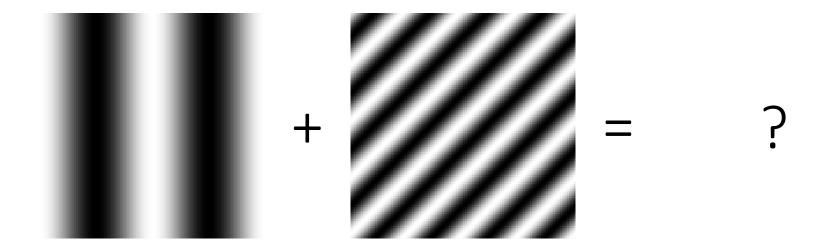
Frequency domain visualization

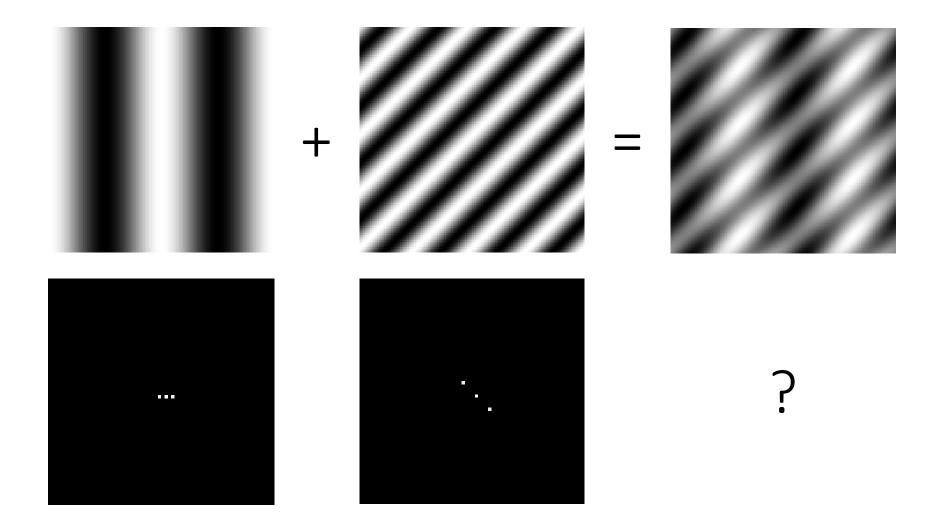


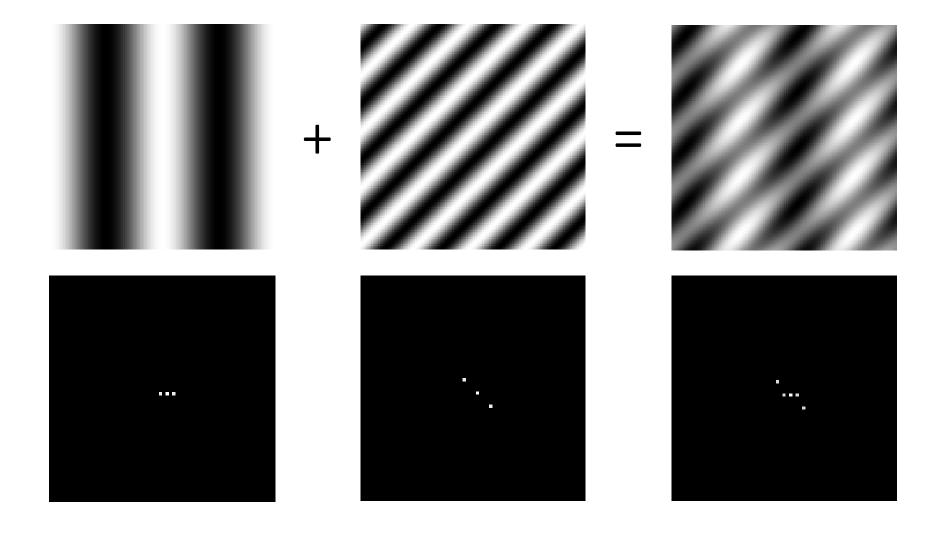




What do the three dots correspond to?







Fourier transform

Fourier transform

inverse Fourier transform

ontinuous

$$F(k) = \int_{-\infty}^{-\infty} f(x)e^{-j2\pi kx}dx$$

$$f(x) = \int_{-\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

liscrete

$$F(k) = rac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N} \qquad \qquad f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N} \ _{x=0,1,2,\ldots,N-1}$$

Fourier transform

Where is the connection to the 'summation of sine waves' idea?

$$f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N}$$
 Euler's formula
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 sum over frequencies
$$f(x) = \sum_{k=0}^{N-1} F(k) \bigg\{ \cos(2\pi kx) + j\sin(2\pi kx) \bigg\}$$
 scaling parameter wave components

2D Fourier Transform

Definition

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy,$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

where u and v are spatial frequencies.

Also will write FT pairs as $f(x, y) \Leftrightarrow F(u, v)$.

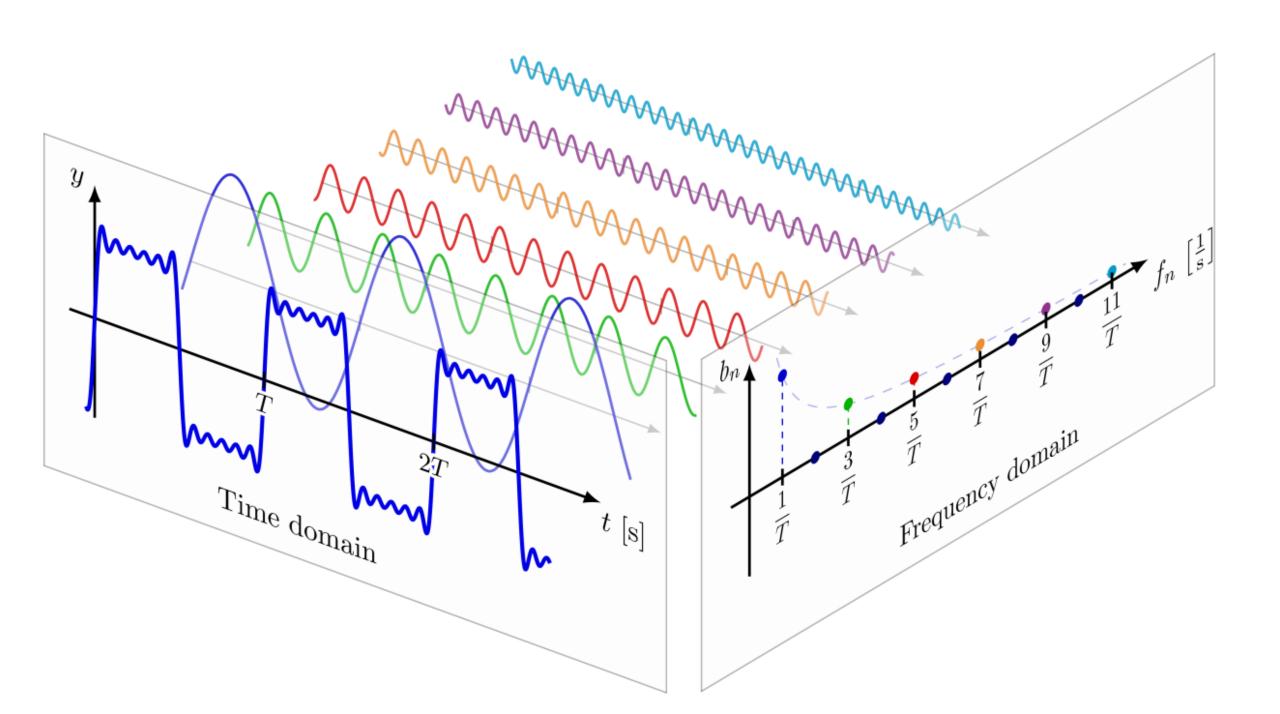
• F(u, v) is complex in general,

$$F(u,v) = F_{R}(u,v) + jF_{I}(u,v)$$

- \bullet |F(u, v)| is the magnitude spectrum
- $arctan(F_I(u, v)/F_R(u, v))$ is the phase angle spectrum.

Slides courtesy of A.

Zissserman



The Discrete Fourier transform

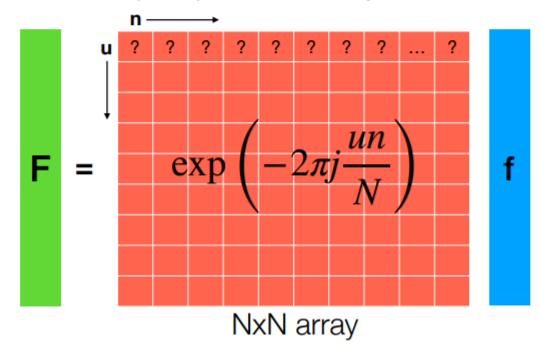
Discrete Fourier Transform (DFT) transforms a signal f[n] into F[u] as:

$$F[u] = \sum_{n=0}^{N-1} f[n] \exp\left(-2\pi j \frac{un}{N}\right)$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix}=\cos x+i\sin x$$

Discrete Fourier Transform (DFT) is a linear operator. Therefore, we can write:



Source: Torralba, Freeman, Isola

For images, the 2D DFT

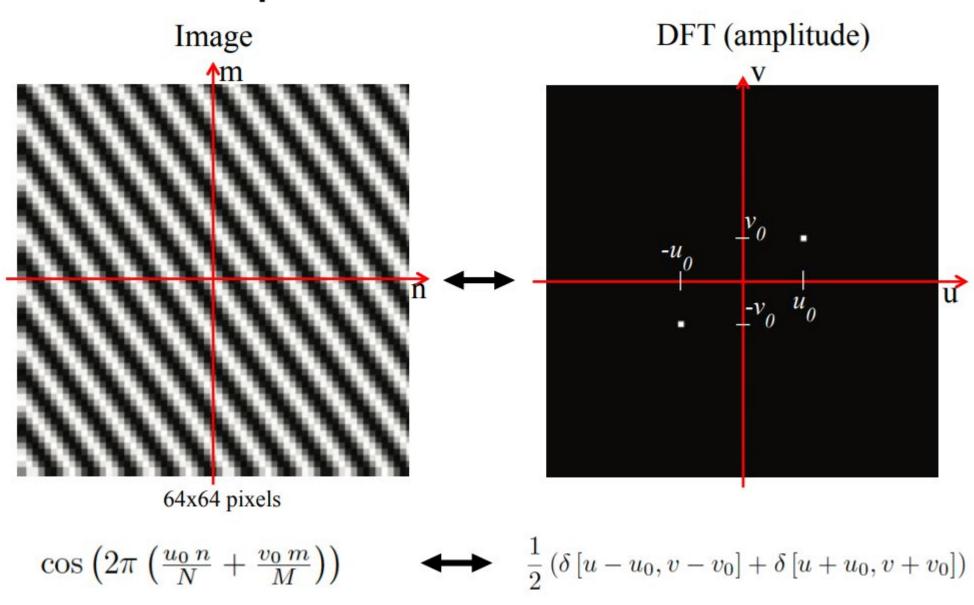
1D Discrete Fourier Transform (DFT) transforms a signal f [n] into F [u] as:

$$F[u] = \sum_{n=0}^{N-1} f[n] \exp\left(-2\pi j \frac{un}{N}\right)$$

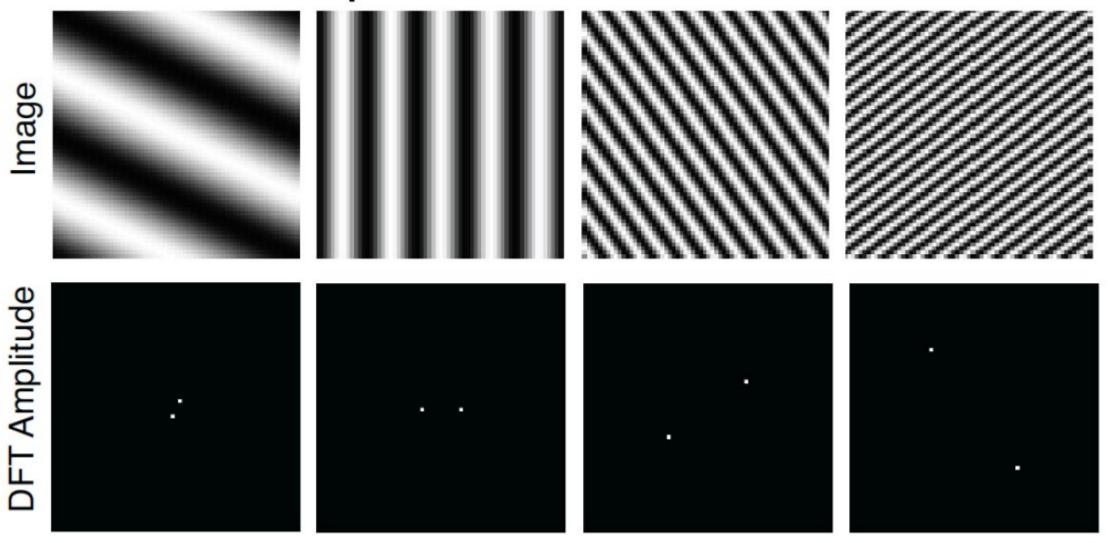
2D Discrete Fourier Transform (DFT) transforms an image f[n,m] into F[u,v] as:

$$F[u, v] = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2\pi j \left(\frac{un}{N} + \frac{vm}{M}\right)\right)$$

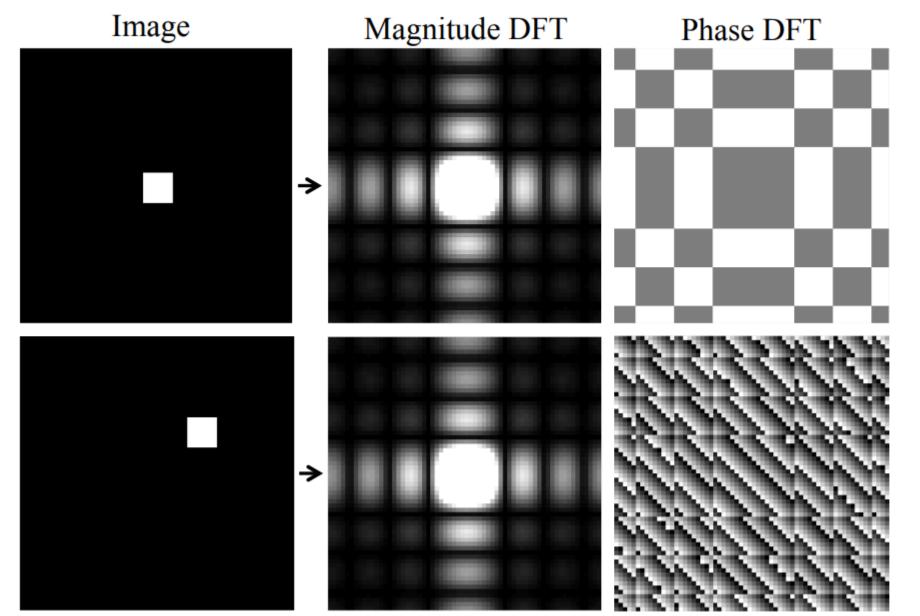
Simple Fourier transforms



Simple Fourier transforms



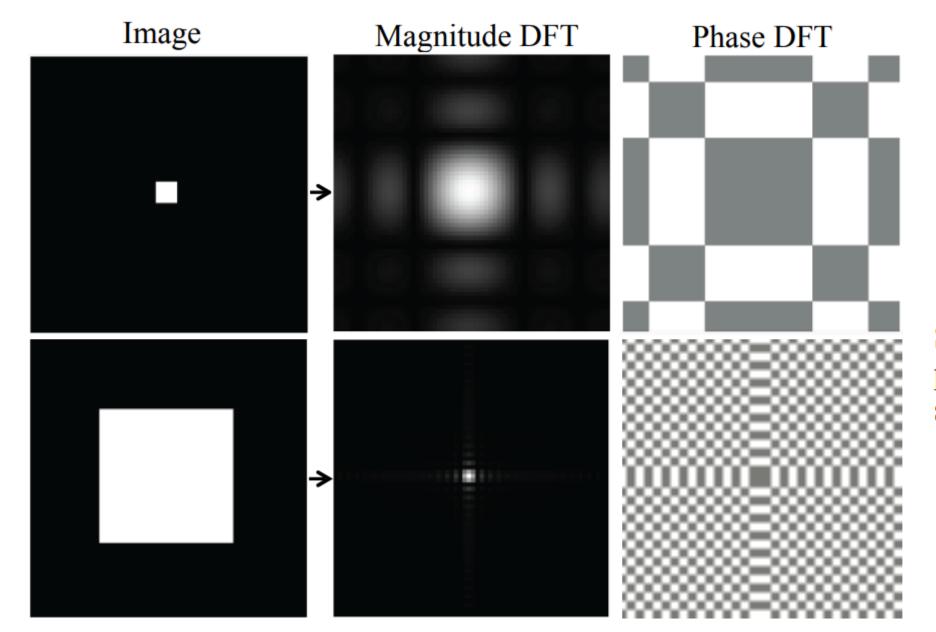
Some important Fourier transforms



Translation

Shifts of an image only produce changes on the phase of the DFT.

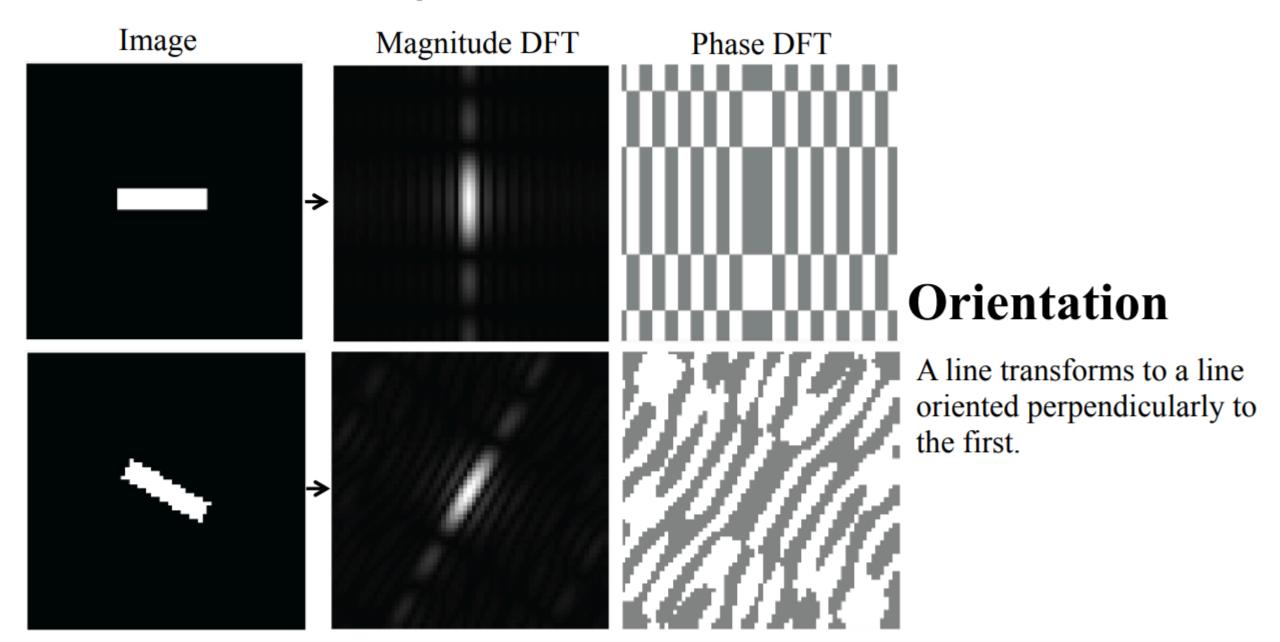
Some important Fourier transforms



Scale

Small image details produce content in high spatial frequencies

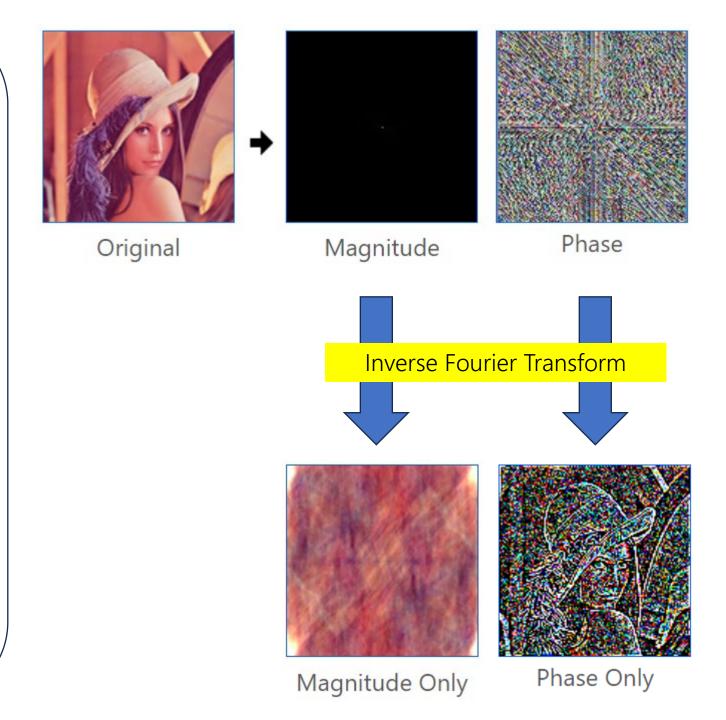
Some important Fourier transforms



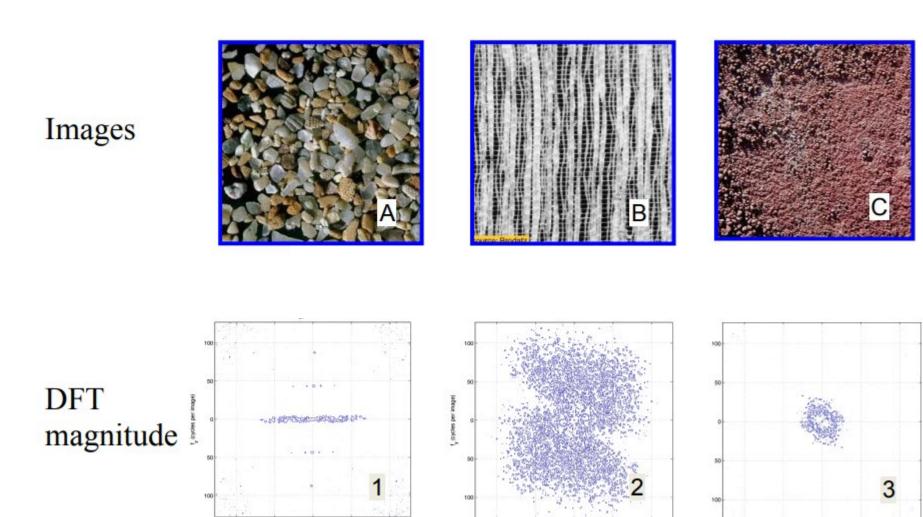
Magnitude & Phase

Magnitude encodes most of the color (intensity) information

Phase encodes most of the "location" information



The DFT Game: find the right pairs

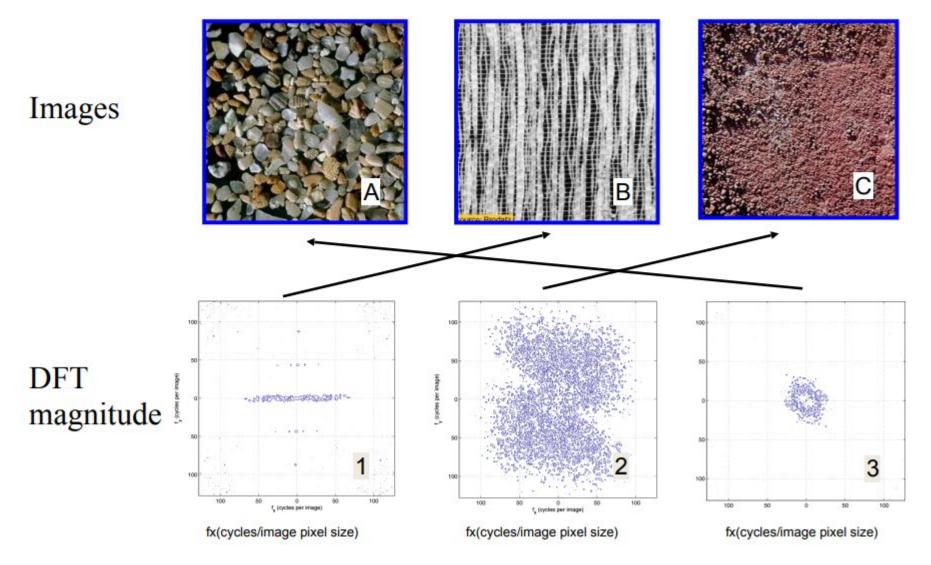


fx(cycles/image pixel size)

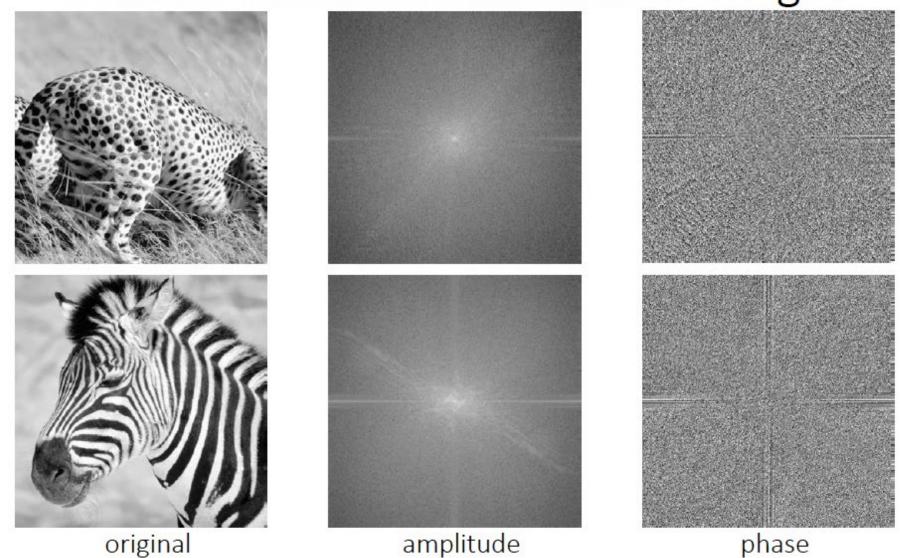
fx(cycles/image pixel size)

fx(cycles/image pixel size)

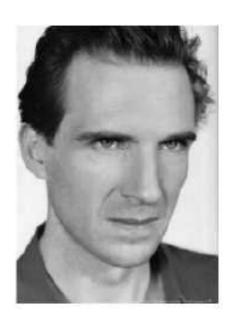
The DFT Game: find the right pairs

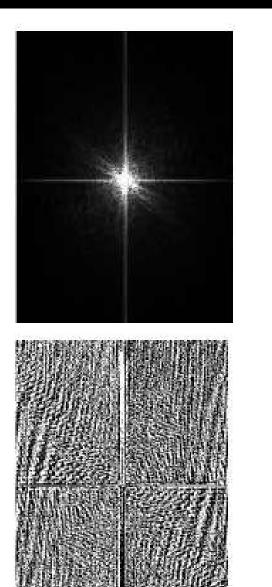


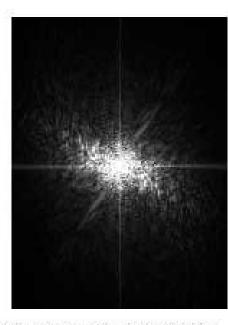
Fourier transforms of natural images

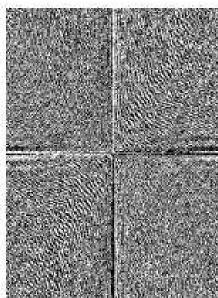


More examples





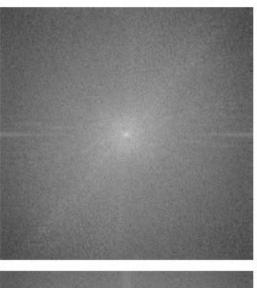


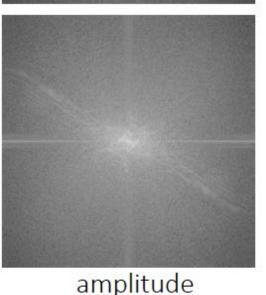


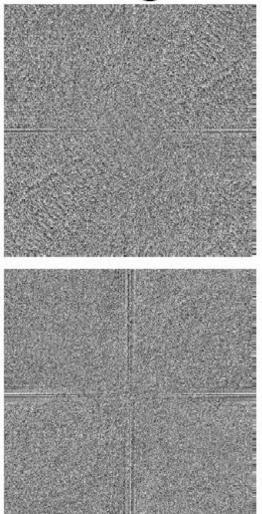
mag

phase

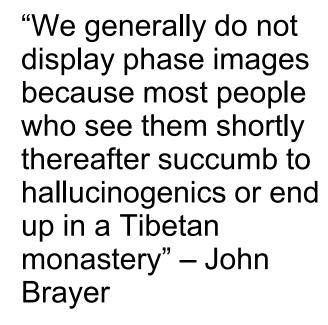
Fourier transforms of natural images





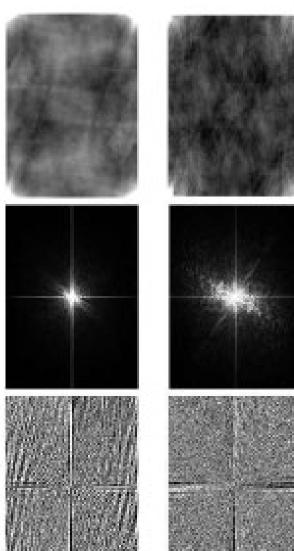


phase

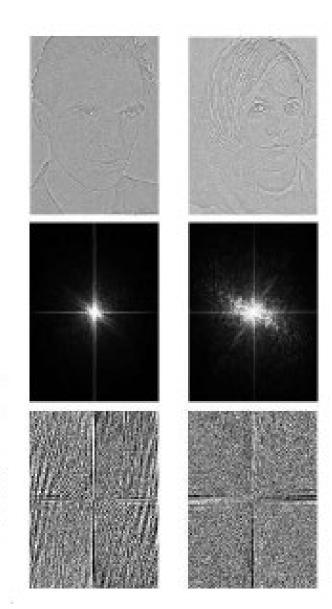


Magnitude only and phase only reconstructions

Reconstruction using magnitude only
Top Left Photo: Ralph's magnitude is the same,
Phase = 0
Top Right Photo: Meg's magnitude is the same,
Phase = 0

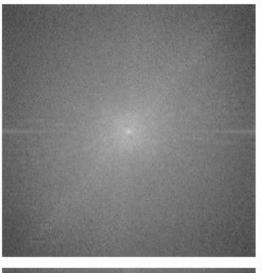


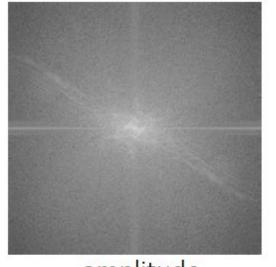
Reconstruction using phase only
Top Left Photo: Ralph's magnitude normalized to one, Phase is the same
Top Right Photo: Meg's magnitude normalized to one, Phase is the same

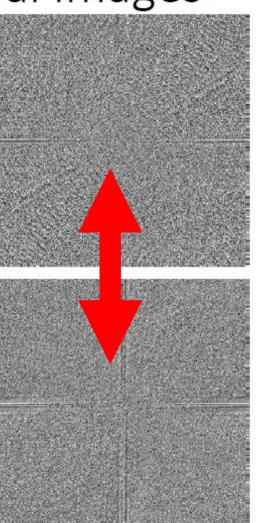


Fourier transforms of natural images

original





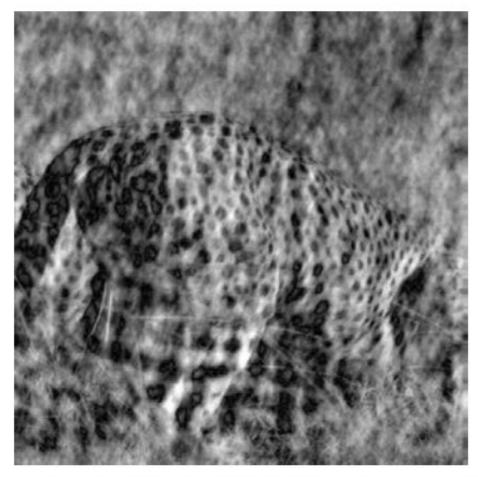


phase

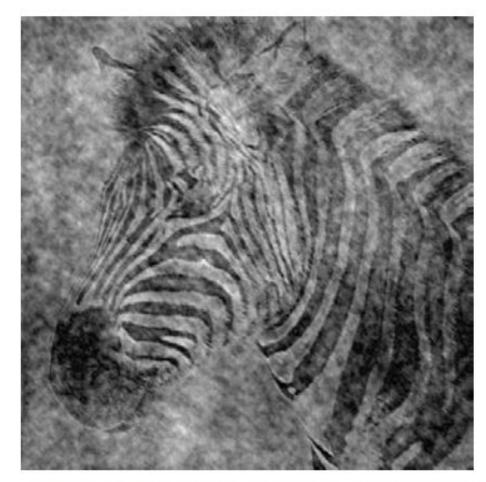
What if we took the phase of each image, swapped it, and did the inverse Fourier transform?

Phase Swapping

Image phase matters!



cheetah phase with zebra amplitude



zebra phase with cheetah amplitude

The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g * h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

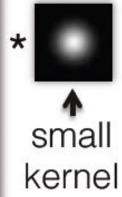
$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

Low-Pass Filter (Pixel Domain)

· low-pass filter: convolution in primal domain

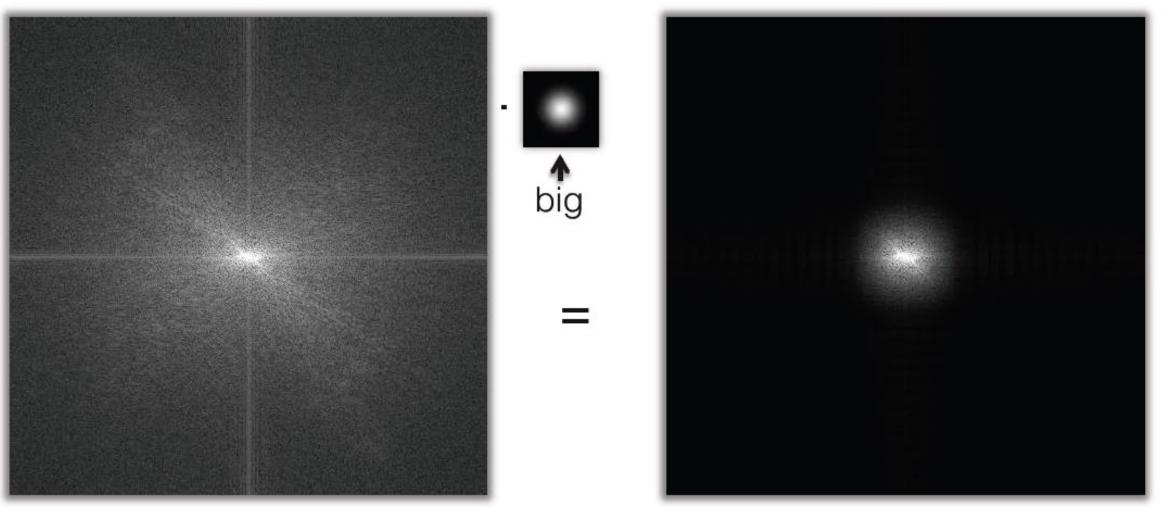
$$b = x * c$$



Slides courtesy of G. Wetzstein

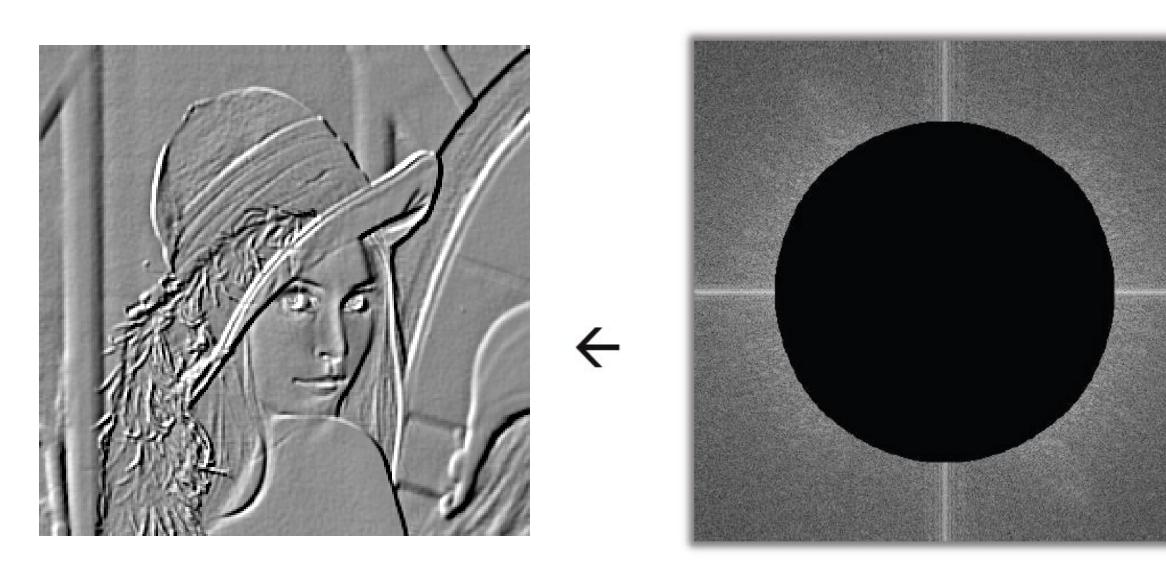
Low-Pass Filter (Frequency Domain)

• low-pass filter: multiplication in frequency domain $F\{b\} = F\{x\} \cdot F\{c\}$



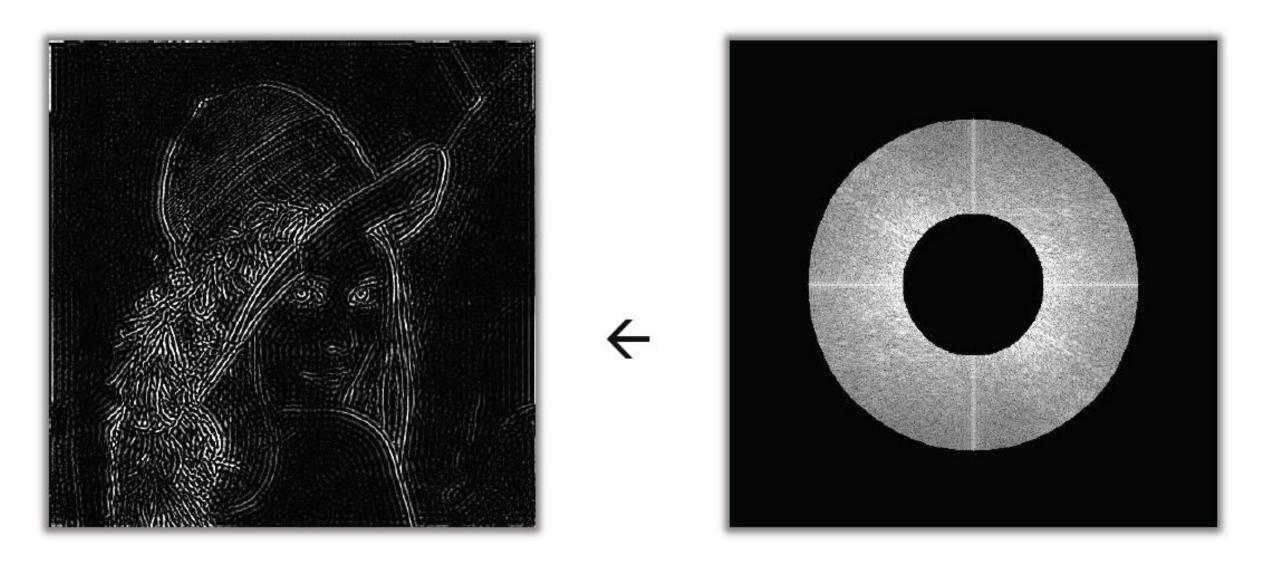
Slides courtesy of G. Wetzstein

High Pass Filter (Frequency Domain)



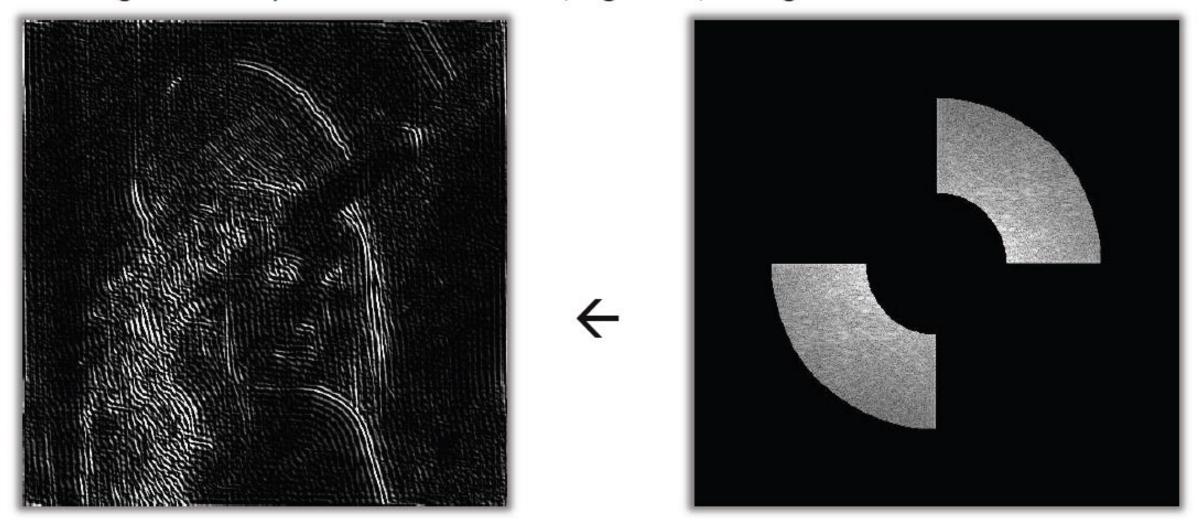
Slides courtesy of G. Wetzstein

Band-Pass filtering (Frequency Domain)



Slides courtesy of G. Wetzstein

edges with specific orientation (e.g., hat) are gone!



Slides courtesy of G. Wetzstein

The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g * h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

Convolution in the pixel domain = multiplication in the Fourier domain

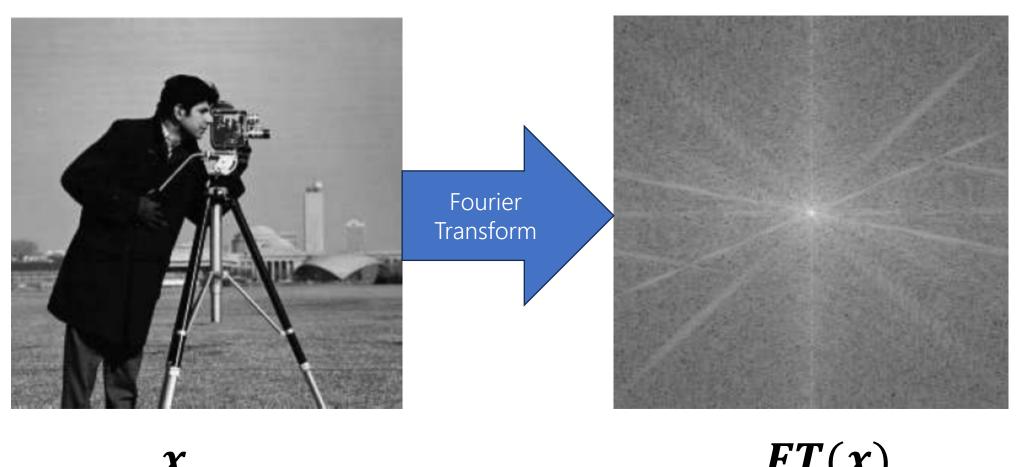
The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

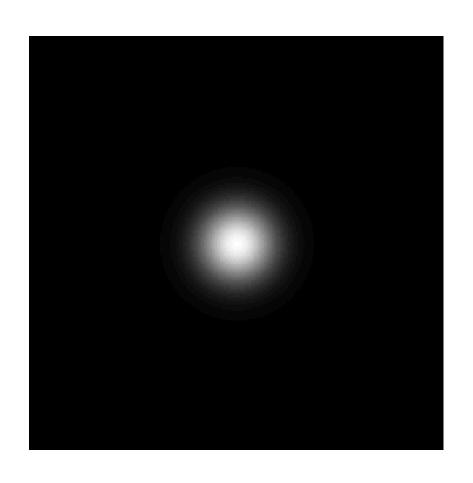
Convolution in spatial domain is equivalent to multiplication in frequency domain!

Fourier Domain Filtering: Can be much faster for big filters because speed is independent of filter size

Convolution: Speed is proportional to filter size!



FT(x)

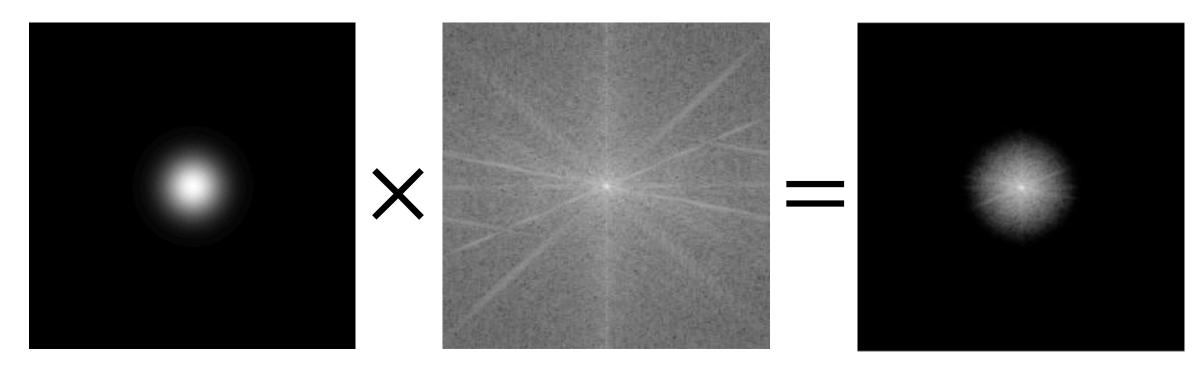


This is a low-pass filter in Fourier Domain

Look how it is centered around (0, 0) – it allows low frequencies and rejects high frequencies.

How can we apply this to the image?

Use the Convolution Theorem



FT(f)

Fourier Transform of Low-Pass Filter

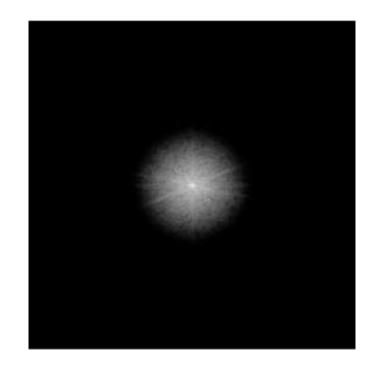
FT(x)

Fourier Transform of Image

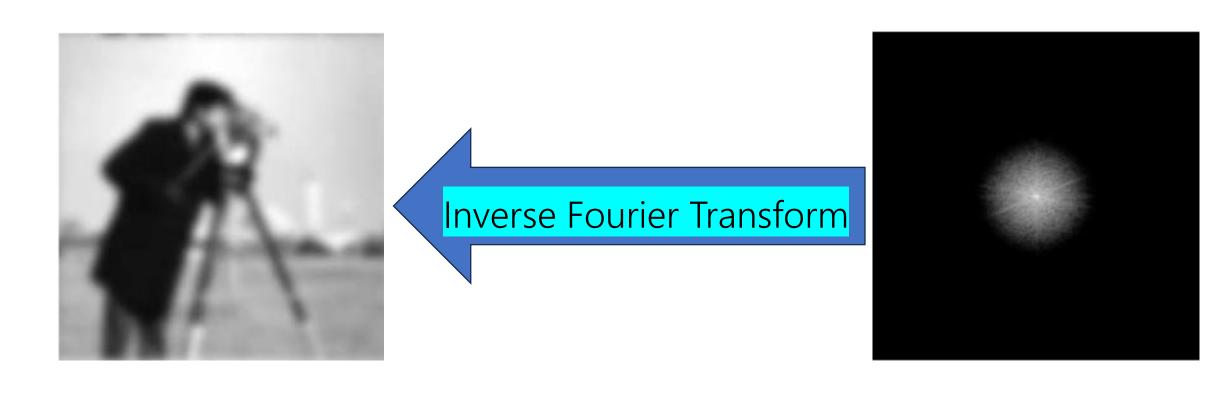
$$FT(x) \times FT(f) = FT(x * f)$$

Multiplication

Convolution



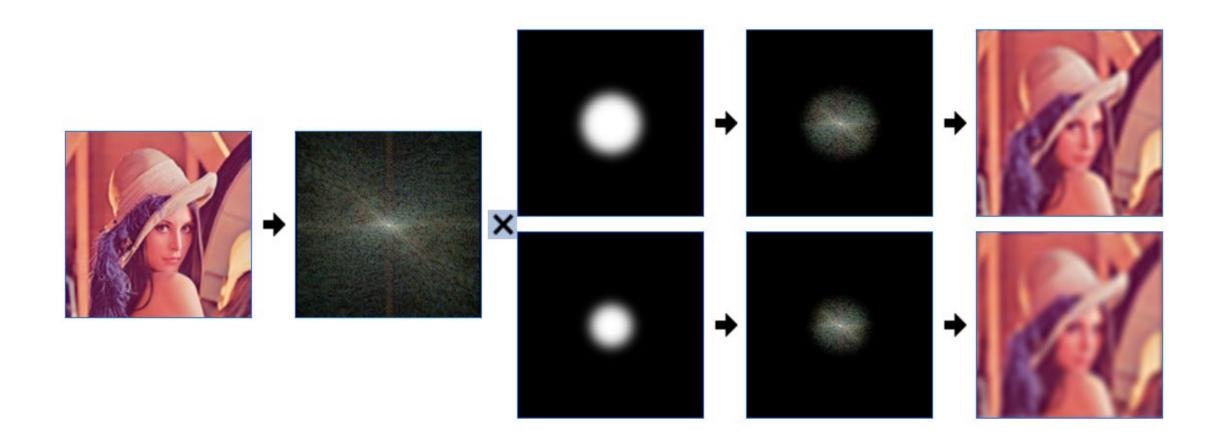
$$FT(x) \times FT(f) = FT(x * f)$$



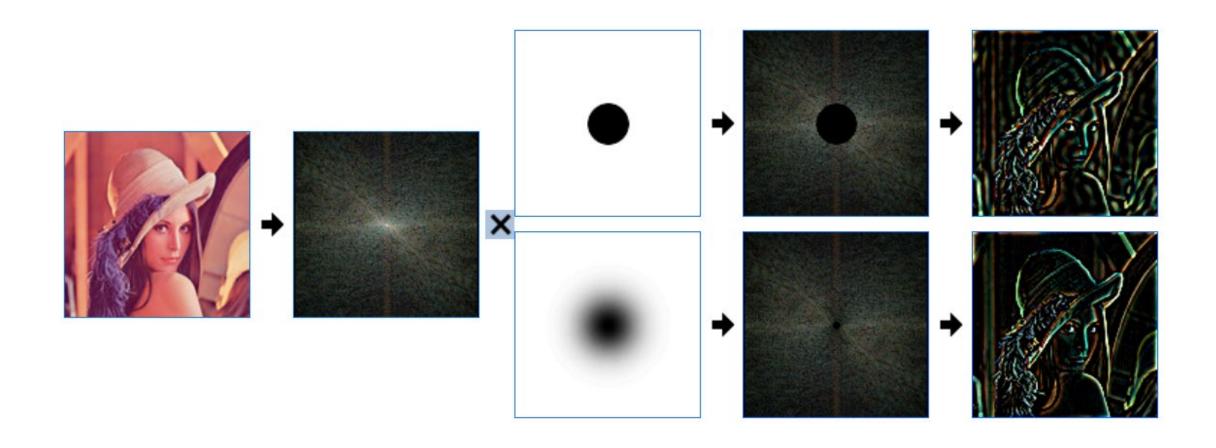
$$FT^{-1}[FT(x) \times FT(f)]$$

Low-Pass Filtered Image

$$FT(x) \times FT(f) = FT(x * f)$$

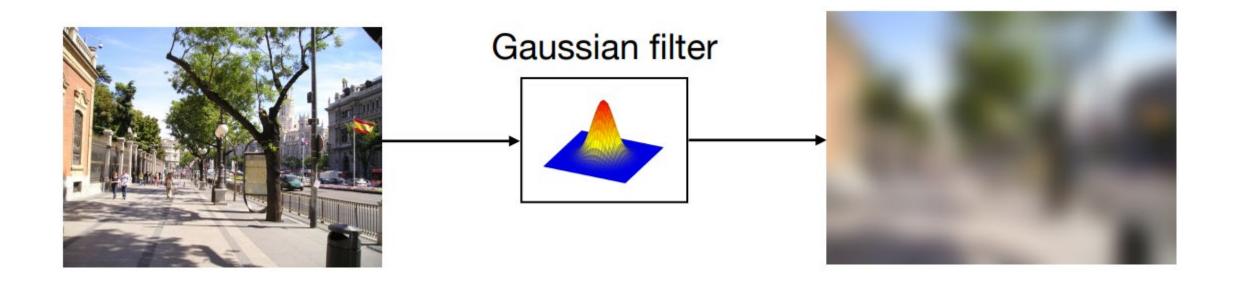


Source: Fred Weinhaus

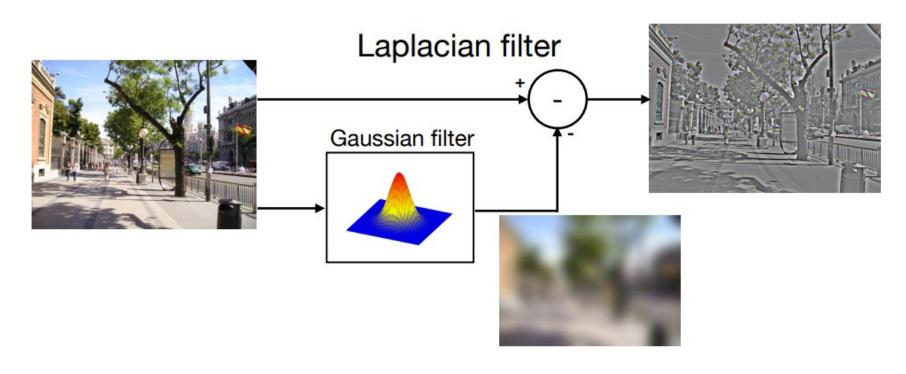


Source: Fred Weinhaus

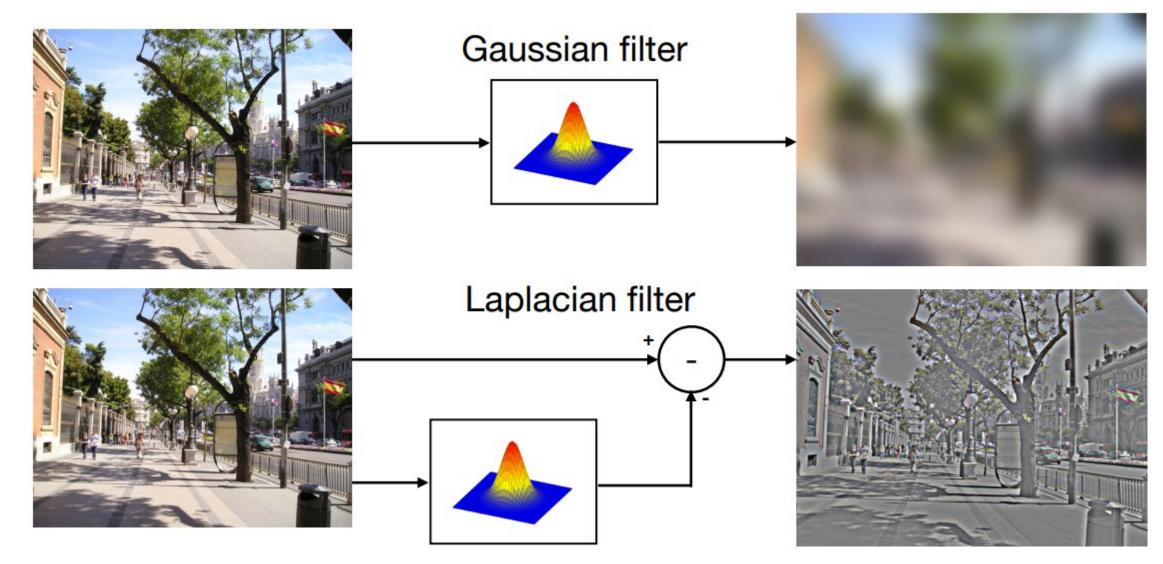
Blurring / Smoothing



Opposite of Blurring: Sharpening

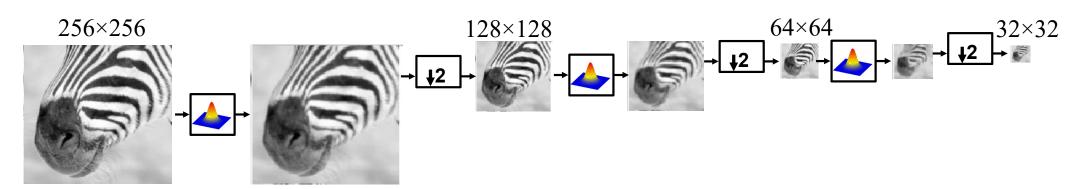


Gaussian Filter vs Laplacian Filter

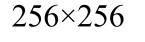


For each level

- 1. Blur input image with a Gaussian filter
- 2. Downsample image

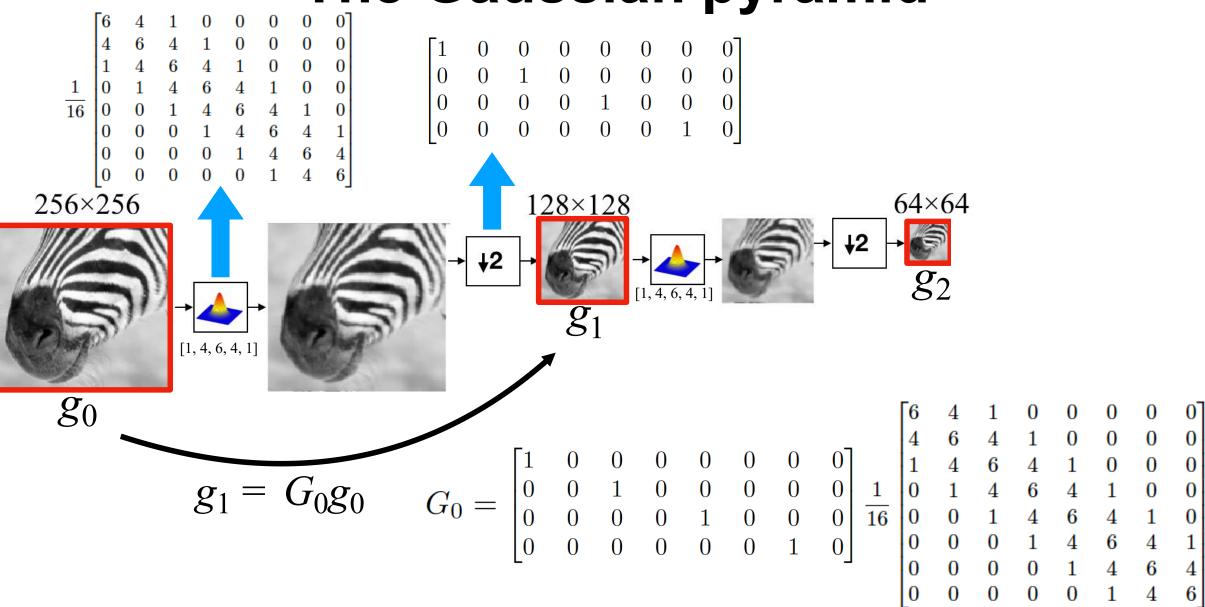


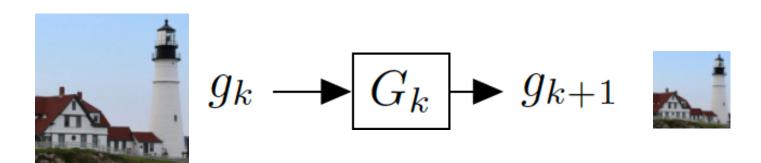
512×512



128×128 64×64 32×32

(original image)



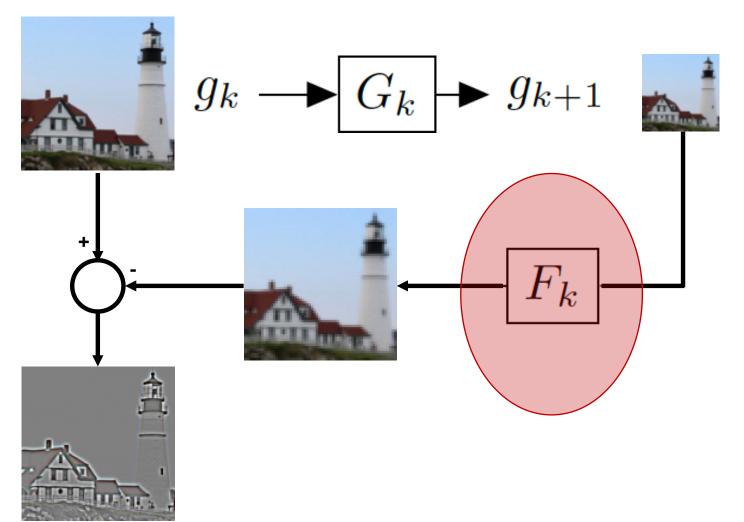


For each level

- 1. Blur input image with a Gaussian filter
- 2. Downsample image

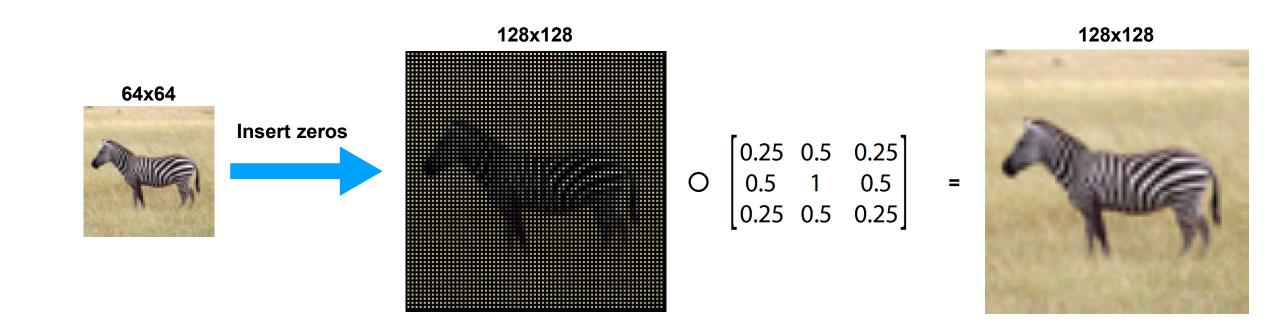
The Laplacian pyramid

Compute the difference between **upsampled** Gaussian pyramid level k+1 and Gaussian pyramid level k. Recall that this approximates the blurred Laplacian.

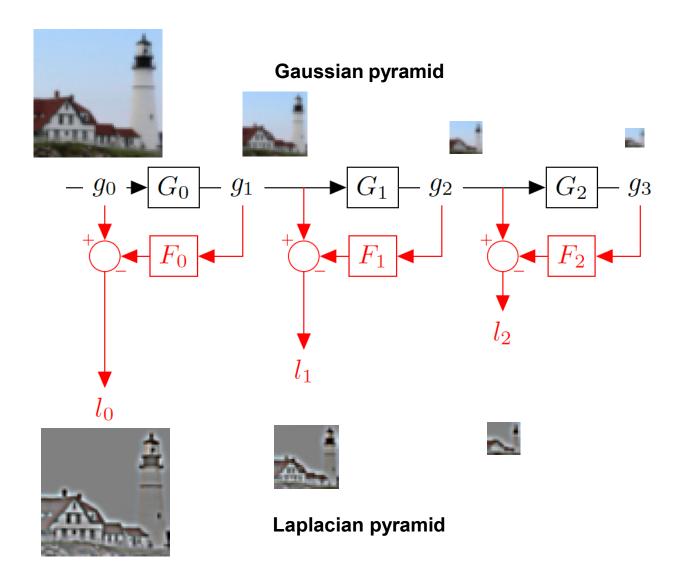


Source: Torralba, Freeman, Isola

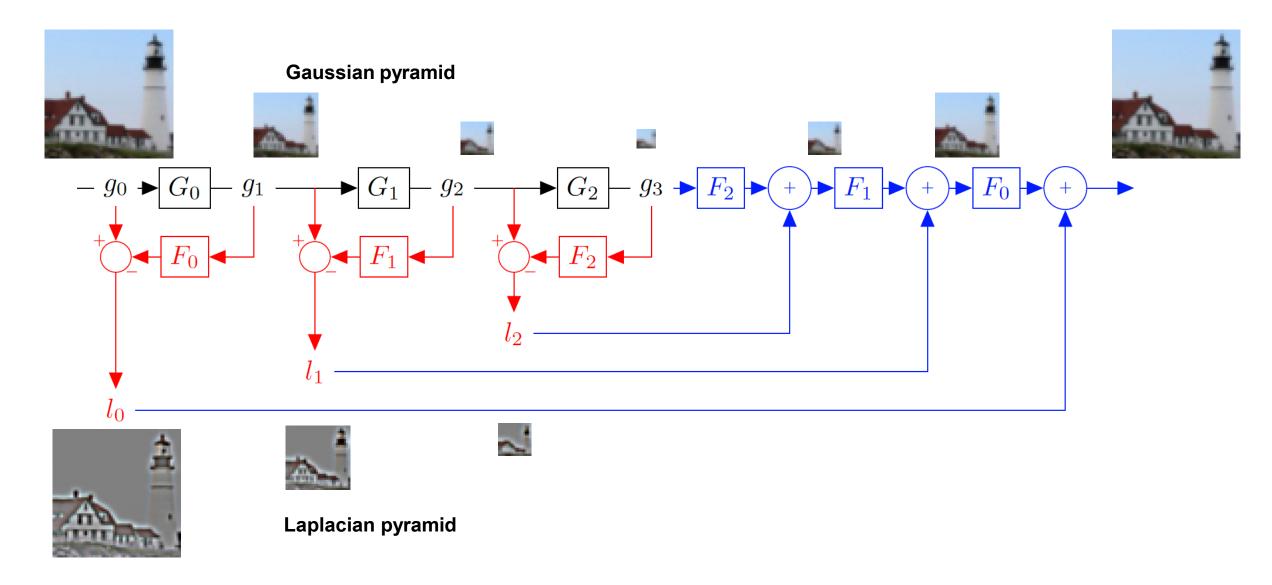
Upsampling



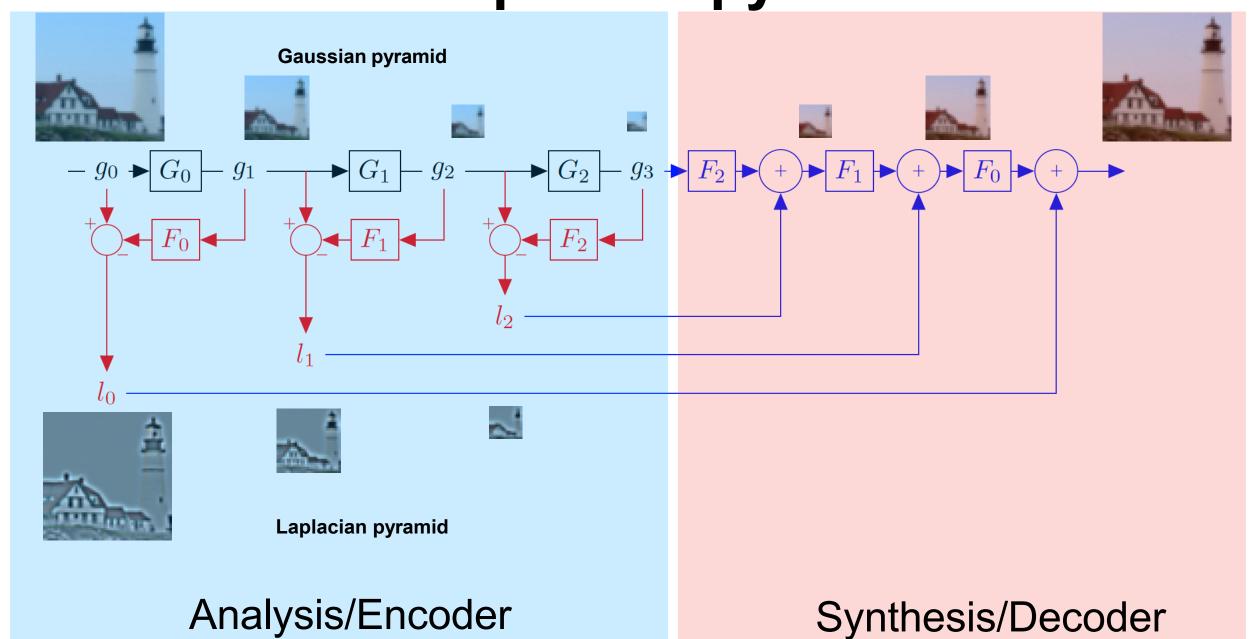
The Laplacian pyramid



Inverting the Laplacian Pyramid



The Laplacian pyramid



Applications of Laplacian Pyramid

- Image Blending
- Image Compression
- Noise Removal
- IMAGE FEATURES → IMAGE CLASSIFICATION ...

Application 1: Image Blending

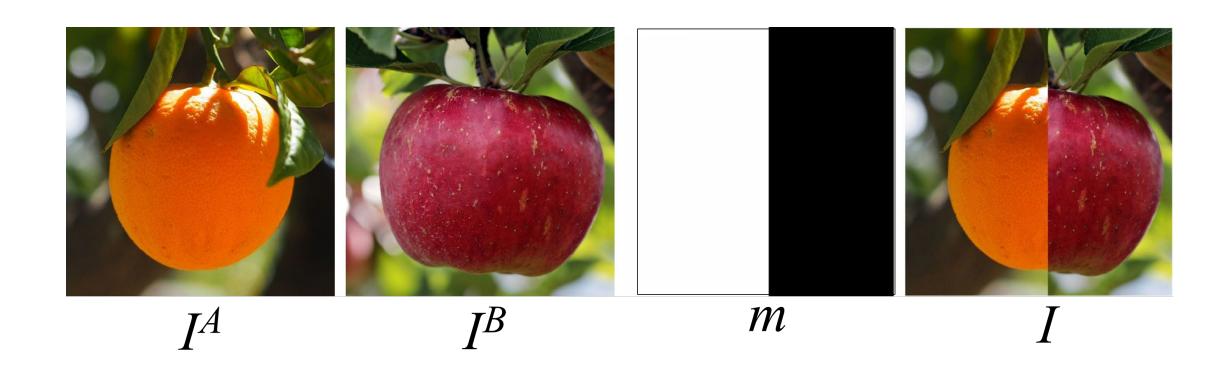
Image Blending

Image Blending

Simplest (but far from the best) Solution

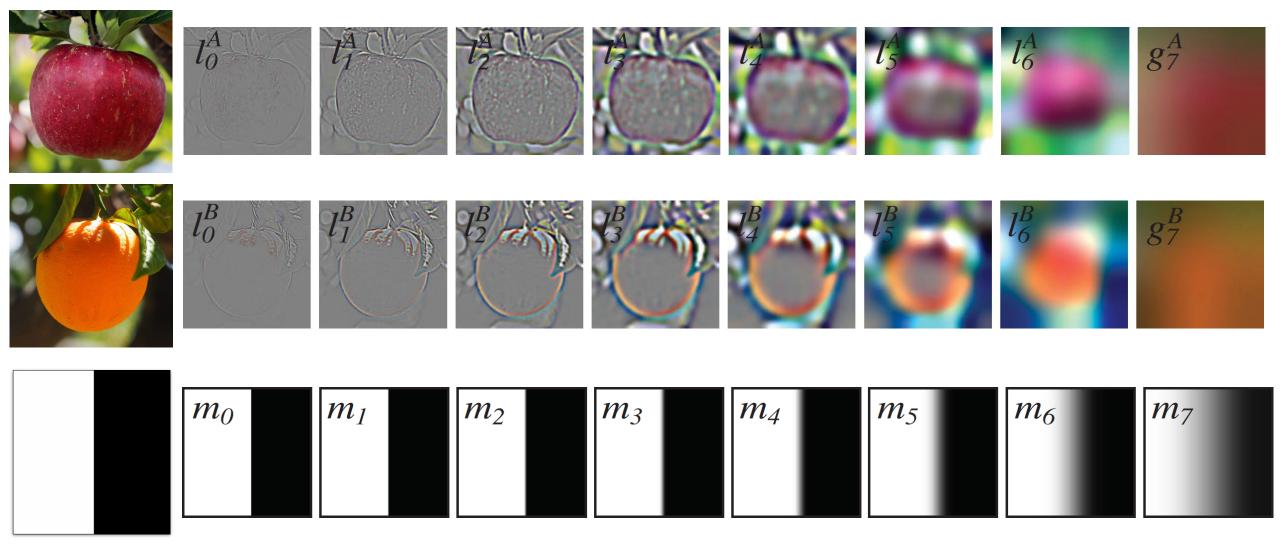
- How would you do this?
- Give me an equation

Simplest (but far from the best) Solution



$$I = m * I^A + (1 - m) * I^B$$

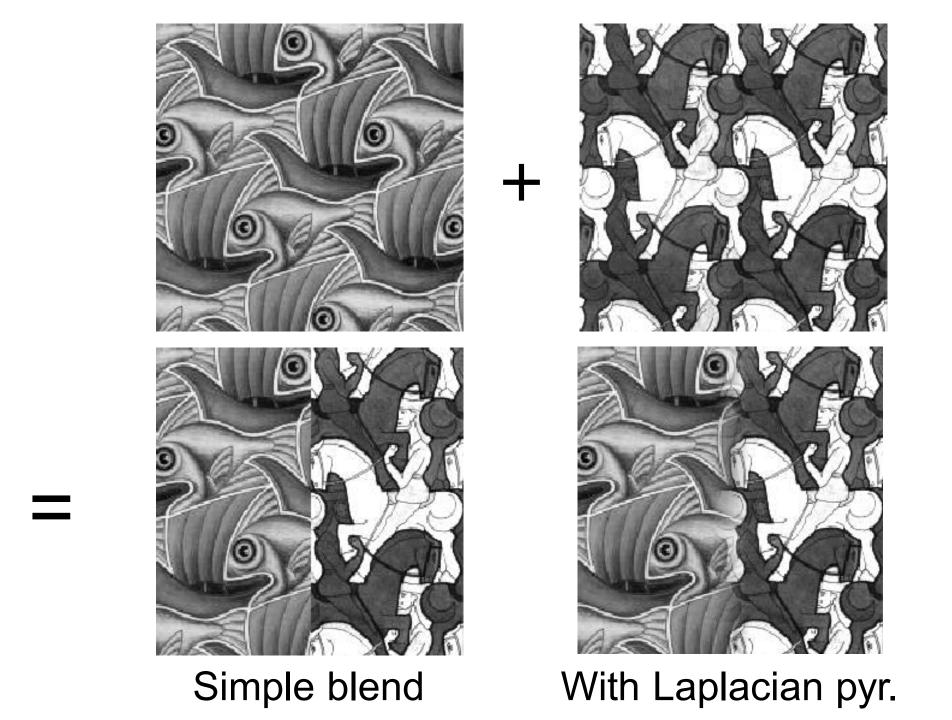
Image Blending with the Laplacian Pyramid



$$l_k = l_k^A * m_k + l_i^B * (1 - m_k)$$

Source: Torralba, Freeman, Isola

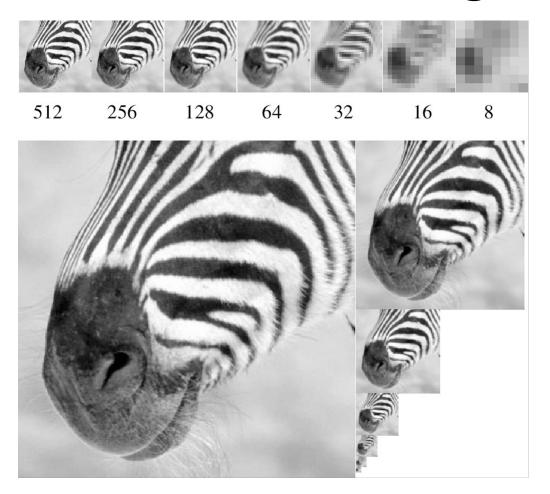
Simple Masked Summation vs. Laplacian Pyramid

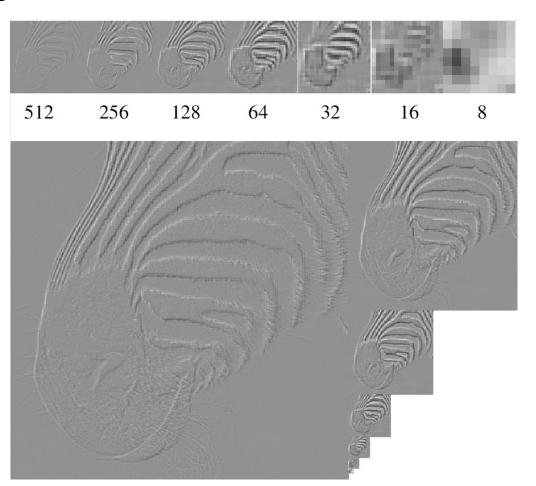


Source: A. Efros

Photo credit: Chris Cameron

Image Pyramids





And many more: steerable filters, wavelets, ... convolutional networks!