Lecture 2

Image Formation

Course Staff

Instructor: Tejas Gokhale Assistant Professor, CSEE

Wednesday 2:30 - 3:30 PM

ITE 342-B gokhale@umbc.edu

TA: Yu Liu Ph.D. Student (Research: Computer Graphics)

Office Hours

Monday 2:30 – 3:30 PM & Tuesday 1 – 2 PM ITE 340

yul2@umbc.edu

last class ...

Let's say we have a sensor...

digital sensor (CCD or CMOS)

... and an object we like to photograph

digital sensor (CCD or CMOS)

What would an image taken like this look like?

Bare-sensor imaging

real-world

object

digital sensor (CCD or CMOS)

All scene points contribute to all sensor pixels

What does the image on the sensor look like?

Bare-sensor imaging

All scene points contribute to all sensor pixels

Let's add something to this scene

What would an image taken like this look like?

Each scene point contributes to only one sensor pixel

What does the image on the sensor look like?

copy of real-world object (inverted and scaled)

Each scene point contributes to only one sen

copy of real-world object (inverted and scaled)

Pinhole camera terms

Focal length

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length? object projection is half the size real-world object focal length 0.5 f

Magnification depends on focal length

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

Photograph made with small pinhole

Photograph made with larger pinhole

(Recall) Extreme Case: Infinite Pinhole

Bare-sensor imaging

Resulting Image

All scene points contribute to all sensor pixels

Problems with Pinholes

- Pinhole size (aperture) must be "very small" to obtain clear images
 - If aperture size is large, images will be blurry
- But if pinhole is made smaller, less light is received by the image plane
- If pinhole is as small as the wavelength of light ...
 DIFFRACTION blurs the image!
- Thumb rule for sharp images:

Pinhole diameter
$$d = 2\sqrt{f'\lambda}$$

Example: If
$$f' = 50mm$$
; $\lambda_{red} = 600nm$

then d = 0.36mm

Fig. 5.96 The pinhole camera. Note the variation in image clarity as the hole diameter decreases. [Photos courtesy Dr. N. Joel, UNESCO.]

Ok. Pinholes are Cute and Simple.

But they have problems ...

Solution?

Ok. Pinholes are Cute and Simple.

But they have problems ...

Solution?

Lenses!

Lenses are Cool

Lenses are Cool

Photograph made with small pinhole

Photograph made with lens

Pinhole camera

1. Image is blurry.

2. Signal-to-noise ratio is high.

Image is sharp.

2. Signal-to-noise ratio is low.

Best of Both Worlds?

Almost, by using lenses

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

- 1. Rays passing through lens center are unaffected.
- 2. Parallel rays converge to a single point located on focal plane.

Can we verify the thin lens model?

From Gauss's ray construction to the Gaussian lens formula

From Gauss's ray construction to the Gaussian lens formula

Exercise: Derive Relationship between

 s_o , s_i , f

Hint: Similar Triangles

From Gauss's ray construction to the Gaussian lens formula

$$\frac{|y_i|}{|y_o|} = \frac{|s_i|}{|s_o|} \quad \text{and} \quad \frac{|y_i|}{|y_o|} = \frac{|s_i|}{|f|}$$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Depth of Field (effect of varying aperture diameter)

Smaller aperture → larger DoF

Field of View

What does FOV depend on?

Field of View (effect of varying focal length)

Smaller *f* → larger DoF

$$lpha=2rctanrac{d}{2f}$$

Microscopes?

Same Mechanism

Your Eyes?

The Eye is a "Camera"

- Iris
 - colored annulus
 with radial muscles
- Pupil
 - the hole (aperture)
 - size is controlled by the iris

Digital Images

What is Color?

Subjective terms to describe color

Hue

Name of the color (yellow, red, blue, green, . . .)

Value/Lightness/Brightness How light or dark a color is.

Saturation/Chroma/Color Purity How "strong" or "pure" a color is.

Image from Benjamin Salley. Munsell Student Color Set

What is Color?

Light waves with different wavelengths have different color

Recall: Basics of Waves

Recall: Basics of Waves

What is Color?

Light waves with different wavelengths have different color

Generally, wavelengths from 380 to 720nm are visible to most humans

A very small range of electromagnetic radiation

Biology of color sensations

 Our eye has three receptors (cone cells) that respond to visible light and give the sensation of color

Spectral power distribution (SPD)

- We rarely see monochromatic light in real world scenes
- Instead, objects reflect a wide range of wavelengths.
- This can be described by a spectral power distribution (SPD)
- The SPD plot shows the relative amount of each wavelength reflected over the visible spectrum.

Tristimulus color theory (Grassman's Law)

Source color can be matched by a linear combination of three independent "primaries".

If we combined source lights 1 & 2 to get a new source light 3

The amount of each primary needed to match the new light #3 is the sum of the weights that matched lights sources #1 & #2.

This may seem obvious now, but discovering that "light obeys the laws of linear algebra" was a huge achievement.

RGB Cameras

Millions of

Incoming Visible light Visible Light passes through IR-Blocking Filter Color Filters control light sensors the color light reaching a sensor Color blind sensors convert light reaching each sensor into electricity

RGB in Cameras - Bayer Pattern

25% pixels see Red25% pixels see Blue50% pixels see Green

RGB in Cameras – Bayer Pattern

Then how do we get all colors at all pixels?

Original (High Resolution)

Bayer (120x80) Intensities

Bayer Color-Coded

After Interpolation

RGB in Cameras - Debayering / Demosaicing

How? → Interpolation!

Method 1: nearest-neighbor interpolation

• For each pixel, for the missing channel, assign the value of the closest pixel with that channel available

Method 2: Bi-Linear Interpolation

- Red-value of a non-red pixel = avg of 2 or 4 adjacent reds
- Similar for green and blue

More Advanced Methods ...

Finally! Digital RGB images!

What the camera stores

What we see

Computer Vision

"understanding" the visual world by processing (RGB) images

Point Processing vs Image Filtering

point processing

Neighborhood Operation

"filtering"

How would you

implement these? Examples of point processing

original

non-linear lower contrast

How would you implement these?

Examples of point processing

original

darken

lower contrast

non-linear lower contrast

x

x - 128

v

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

How would you implement these?

Examples of point processing

original

 \boldsymbol{x}

x - 128

 $\times 255$

invert

How would you

implement these? Examples of point processing

original

x - 128

 $\times 255$

invert

raise contrast

255 - x

 $x \times 2$

$$\left(\frac{x}{255}\right)^2 \times 255$$

Point Processing vs Image Filtering

point processing

Neighborhood Operation

"filtering"

Next class: Filtering and Convolution