Neural Networks for

Machine Learning
History and Concepts

Overview

e The neural network computing model has a
long history

e Evolved over 75 years to solve its inherent
problems, becoming thje dominant model
for machine learning in the 2010s

e Neural network models typically give better
results than all earlier ML models

e But they are expensive to train and apply
e The field is still evolving rapidly

Deep Learning Timeline

1950 2006
279 Comp.uting 1974 1985 1986 ‘ Deep
s Machinery 1960 Backpropaga Boltzmann Restricted 1997 Boltzmann
1940 and ADALINE tion 1980 Machine Boltzmann 1990 LSTMs Machines 2014
Dark Era Intelligence Widrow & Werbos (and Neocogitron Hinton & Machine LeNet Hochreiter & Salakhutdinov GANSs
Until 1940 Alan Turing Hoff more) Fukushima Sejnowski Smolensky Lecun Schmidhuber & Hinton Goodfellow
? 7 ? ?
é ¢ ¢)
1943 1958 1969 1980 1982 1986 1986 1997 2006 2012 2017
Neural Nets Perceptron ~ XOR problem Self Hopfield Multilayer RNNs Bidirectional Deep Belief Dropout Capsule
McCulloch & Rosenblatt Minsky & Organizing Network Perceptron Jordan RNN Networks- Hinton Networks
pitt Papert Map John Hopfield Rumelhart, Schuster & pretraining Sabour, Frosst,
Kohonen Hinton & Paliwal Hinton Hinton
Williams

Made by Favio Vézquez

How do
animal brains
work?

Outputs

Myelin sheat

Myelinated axon

-€ -

Neuron and myelinated axon, with signal flow from inputs at
dendrites to outputs at axon terminals

Neurons have body, axon and many dendrites

e|n one of two states: firing and rest

eThey fire if total incoming stimulus > threshold
Synapse: thin gap between axon of one neuron
and dendrite of another

eSignal exchange

https://en.wikipedia.org/wiki/Neuron

McCulloch & Pitts

Threshold T

e First mathematical model of biological
neurons, 1943

e All Boolean operations can be implemented
by these neuron-like nodes

e Competitor to Von Neumann model for
general purpose computing device

e Origin of automata theory

Artificial neural network

Inputs Summation and Bias Activation Output

* Model still used today!

 Set of nodes with inputs and outputs

* Node performs computation via an activation function

* Weighted connections between nodes

* Connectivity gives network architecture

* NN computations depend on connections, weights, and
activation function

Common Activation Functions

defines the output of that node given an input

Choice of activation function depends on
problem and available computational power

https://en.wikipedia.org/wiki/Activation_function

Rosenblatt’s perceptron (1958-60)

e Single layer network of nodes

e Real valued weights +/-

e Supervised learning using a
simple learning rule

— out(t)

in(t) <

. @ wo(t) = 0

e Essentially a linear classifier

e Widrow & Hoff (1960-62)
added better learning rule
using gradient descent

Mark 1 perceptron computer, Cornell
Aeronautical Lab, 1960

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Gradient_descent

Single Layer Perceptron

NEW NAVY DEVICE LEARNS BY DOINGs:;
Psychologist Shows Embryo of Computer
Designed to Read and Grow Wiser

SPECIAL TO THE NEW YORK TIMES JULY 8, 1958

WASHINGTON, July 7 (UPI) -- The Navy revealed the
embryo of an electronic computer today that it expects will

NV

be able to walk, talk, see, write, reproduce itself and be
conscious of its existence.

e See the full 1958 NYT article above here

e Rosenblatt: it can learn to compute functions
by learning weights on inputs from examples

https://en.wikipedia.org/wiki/Perceptron
https://www.csee.umbc.edu/courses/undergraduate/471/spring18/01/resources/MBC-Rosenblatt-Perceptron-NYT-article.jpg.pdf

Setback in mid 60s — late 70s

e Perceptrons, Minsky and Papert, 1969

e Described serious problems with
perceptron model

— Single-layer perceptrons cannot represent (learn) simple
functions that are not linearly separable, such as XOR

— Multi-layers of non-linear units may have greater power but
there is no learning rule for such nets

— Scaling problem: connection weights may grow infinitely

— First two problems overcame by latter effort in 80s, but
scaling problem persists

e Death of Rosenblatt (1964)

e Al focused on programming intelligent systems
on tradional von Neuman computers

https://en.wikipedia.org/wiki/Perceptrons_(book)

Not with a perceptron ®

Consider Boolean operators (and, or, xor)
with four possible inputs: 0001 10 11

X1) X1y X1y
10 O 1l @ O N O
?
00O O— 00O o— 00O o—
0 I X 0 | %) 0 | %)
(a) x; and x, (b) x, of X (¢) x; xor x,

Training examples are not linearly separable
for one case: sum=1 iff x1 xor x2

11

Renewed enthusiasm 80s

e Use multi-layer perceptron

e Backpropagation for multi-layer feed forward nets,
with non-linear, differentiable node functions

— Rumelhart, Hinton, Williams, Learning representations by
back-propagating errors, Nature, 1986.

e Other ideas:

— Thermodynamic models (Hopfield net, Boltzmann
machine ...)

— Unsupervised learning

e Applications to character recognition, speech
recognition, text-to-speech, etc.

https://en.wikipedia.org/wiki/Backpropagation
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

Input Layer {

‘\ MLP:
Multilayer

@— s

/ - Perceptron

Hidden Layer h' Hidden Layer h?

> 1 “hidden layers” between inputs & output
Can compute non-linear functions (why?)
Training: adjust weights slightly to reduce error
between output y and target value t; repeat
Introduced in 1980s, still used today

https://en.wikipedia.org/wiki/Multilayer_perceptron

Feed Forward Neural Network

Input Layer

Hidden Layer

Output Layer

>
Information flows in forward direction only

© machinelearningknowledge.ai

igé é.gi MAKING Al SIMPLE

Neural Network — Backpropagation &%

Output Layer

I
|
Input Layer | Hidden Layer
|
|

© machinelearningknowledge.ai

But problems remain...

e |t's often the case that solving a problem
just reveals a new one that needs solving

eFor a large MLPs, backpropagation takes
forever to converge!

* TWO Issues:
—Not enough compute power to train the model

—Not enough labeled data to train the neural net

e SVMs dominate, since they converge to
global optimum in O(n"2)

16

GPUs solve compute -

power problem

e GPUs (Graphical Processing i
Units) became popularin

the 1990s to handle computing needed for better
computer graphics

e GPUs are SIMD (single instruction, multiple data)
pProcessors

e Cheap, fast, and easy to program

e GPUs can do matrix multiplication vary fast

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/SIMD

Need lots of data!

¢ 2000s introduced big
data

e Cheaper storage

e Parallel processing

Global Information Storage Capacity

in optimally compressed bytes

1986
ANALOG
2.6 exabytes

DIGITAL
DIGITAL STORAGE

0.02 exabytes

2002:
“beginning
of the digital age”
50%
% digital:
1% 3% 25% 94 %

Source: Hilbert, M., & Lépez, P. (2011). The World’s Technological Capacity to Store, Communicate, and
Compute Information. Science, 332(6025), 60 —65. http://www.martinhilbert.net/WorldinfoCapacity.html

2007 ANALOG

19 exabytes

- Paper, film, audiotape and vinyl: 6%

- Analogvideotapes (VHS, etc): 94 % ANALOG
- Portable media, flash drives: 2%

- Portable hard disks: 2.4 % DIGITAL @
- CDs and minidisks:6.8%

- Computer servers and mainframes:8.9 %

- Digital tape: 11.8 %

/ - DVD/Blu-ray: 22.8% @

-PC hard disks: 44.5% A
123 billion gigabytes

- Others: < 1 % (incl. chip cards, memory cards, floppy disks,
mobile phones, PDAs, cameras/camcorders, videogames)

DIGITAL
280 exabytes

(e.g., MapReduce, Hadoop, Spark)
e Data sharing via the Web

18

New problems are surfaced

e 2010s was a decade of domain applications

e These came with new problems, e.g.,
- Images are too high dimensional!
- Variable-length problems cause gradient problems
- Training data is rarely labeled
- Neural nets are uninterpretable
- Training complex models required days or weeks

e This led to many new “deep learning” neural
network models

19

Deep Learning

e Deep learning refers to models going beyond
simple feed-forward multi-level perceptron

—Though it was used in a ML context as early as 1986

e “deep” refers to the models having many
layers (e.g., 10-20) that do different things

224x224x3 224x224%x64

112x112x128

56x56x256
28x28x512

2 2 2

V.
|

14x14x512 7x7x512 1x1x4096 1x1x1000

@ convolutional + RelLU

"1/ max pooling

() fully connected + ReLU

The VGG16 CNN model for image processing softmax

20

https://en.wikipedia.org/wiki/Deep_learning
https://neurohive.io/en/popular-networks/vgg16/

Neural Network Architectures

Current focus on large networks with
different “architectures” suited for different
kinds of tasks

e Feedforward Neural Network

e CNN: Convolutional Neural Network

e RNN: Recurrent Neural Network

¢ | STM: Long Short Term Memory

e GAN: Generative Adversarial Network

e Transformers

Feedforward Neural Network

e Connections allowed from a node in layer i
only to nodes in layer j+1

i.e., no cycles or loops
eSimple, widely used architecture.

. ‘\ | . (. downstream nodes
.‘ .‘\ tend to successively
N () .". abstract features from
| preceding layers
LAYER 0 LAYER LAYER 2 LAYER 3

(Input Layer) ANy e (Output Laver)

Hidden Layers

HTTP://PLAYGROUND.TENSORFLOW.ORG/

https://en.wikipedia.org/wiki/Feedforward_neural_network

L ® A Neural Network Playgrounc

< > C 88 @ | playground.tensorflow.org/#activation=relu&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0 O

oo

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

O Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
OOO ; OOO 0.03 v RelLU v None v 0 g Classification -

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.435
ou want to use? do you want to ini
Y y ‘ 1LY — I & Training loss 0.432
feed in?
4 neurons 2 neurons
X1
X,
Ratio of training to ‘
test data: 50% L o
—e X \ The outputs are
mixed with varying
weights, shown
Noise: 0 . by the thickness
o Ao of the lines.
o«
Batch size: 10 XX \ This is the output
—o from one neuron. i
Hover to see it 0
larger.
REGENERATE 2
Colors shows
, data, neuronand ! !
sin(X,) . 1 0 1
weight values.

[Show testdata [] Discretize output

HTTP://PLAYGROUND.TENSORFLOW.ORG/

http://playground.tensorflow.org/

CNN: Convolutional Neural Network

Convolution FC*
Layer Pooling
> Convolution . Layer FC
YV Layer -
ot L Pooling 1
2 ayer L ™ Layer
ayer Q -
=) >
- S | RE s
Q i < Q \
c N 2 O
=) 20 .
/ d 100 Log Softmax
Convolution AAAAAAAAA Max Pool Flatt
X ax Pooling atten
(5x5kernel) <« 10 filters > Max Pooling Convolution (2x2)
(2x2) (5x5 kernel) *FC=Fully Connected

e Good for image processing: classification, object
recognition, automobile lane tracking, etc.

e Classic demo: learn to recognize hand-written digits from
MNIST data with 70K examples

SO/

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/MNIST_database

RNN: Recurrent Neural Networks

* Good for learning over sequences of data,

e.g., a sentence orf words

* LSTM (Long Short Term Memory) a popular

architecture

Input:
a Word

—>

Stateful Model

Output:
Most likely next word

Recurrent
Neural Network

—>

a4

Memory of previous words
influence next predicition

Output so far:
Machine

gif from Adam Geitgey

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

GAN: Generative Adversarial Network

e System of two neural networks competing
against each other in a zero-sum
game framework.

e Provides a kind of unsupervised learning that
improves the network

e Introduced by lan Goodfellow et al. in 2014

e Can learn to draw samples from a model that
is similar to data that we give them

26

https://en.wikipedia.org/wiki/Generative_adversarial_network

Transformer

Output
Probabilities
.
e Introduced in 2017 -
e Used primarily for natural language (EEen)-
processing tasks F°'W‘a"’ :
: M V4 ” (N Ar\:jl::;:
* NLP applications "transform” an oo ||| L] |
input text into an output text . E (53 o)
— E.g., translation, text summarization, ET_‘; &“ﬁ_"}
question answering B e
. encodng QO & Encoding
e Uses encoder-decoder architecture o
e Popular pretrainted models available, e -

e.g. BERT and GPT

(shifted right)

27

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/GPT-3

Deep Learning Frameworks

e Popular open source deep learning frame-
works use Python at top-level; C++ in backend

—TensorFlow (via Google)

—PyTorch (via Facebook)
—MxNet (Apache)

—Caffe (Berkeley)

e Keras: popular APl works with the first two and
provides good support at architecture level

https://www.tensorflow.org/
https://pytorch.org/
https://en.wikipedia.org/wiki/Apache_MXNet
https://en.wikipedia.org/wiki/Caffe_(software)
https://keras.io/

Good at Transfer Learning

e Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial
model to train on a different task

e Particularly effective for image recognition
TRAINING FROM SCRATCH

CAR v

CONYOLUTION L NEURAL NETWORK [ONN|
L4 .
a z! AL
e — o EXXL]
S
= A A2 '

95% TRUCK X
! 3%:|

BICYCLE X

TRANSFER LEARNING

TRAINED ON CATS ANI FINE-TUNE NETWORK WEIGHTS
' N e— CAR v
PRE-TRAINED CNN NEW TASK
| TRUCK X

29

https://en.wikipedia.org/wiki/Transfer_learning

Good at Transfer Learning

e For images, the initial stages of a model learn high-
evel visual features (lines, edges) from pixels

e Final stages predict task-specific labels

()1 ()I

s>I] |

E> |:> E> o QE(]!\\]J)(]!/
.
()1 0Ly == label pre edictor (J, /)”]

SaIllt);

% g domain (ll\\]il(l Ga(-:0,)
f/)// \ ()()f ,' 3 d d
" Y Yy, %; ‘
feature extractor G¢(-:6y) /,',,.(‘/,-,r., YU
A E> E> B domain label d
0L
oL, :
D 20, OL @
forwardprop backprop (and produced derivatives) ()()(1

source:http://ruder.io/transfer-learning/ =

http://ruder.io/transfer-learning/

Fine Tuning a NN Model

e Special kind of transfer learning

— Start with a pre-trained model
— Replace last output layer with a new one
— Fix all but last layer by marking as trainable:false

e Retraining on new task and data very fast
— Only the weights for the last layer are adjusted

e Example

— Start: NN to classify animal pix with 100s of categories

— Finetune on new task to classify pix of 15 common
pets

31

Conclusions

e Quick introduction to neural networks and
deep learning

e Learn more by

—Take UMBC’s CMSC 478 machine learning class
—Try scikit-learn’s neural network models

—Explore Google’s Machine Learning Crash Course

—Try Miner/Kasch tutorial on applied deep learning

—Work through examples

eand then try your own project idea

https://catalog.umbc.edu/preview_course_nopop.php?catoid=15&coid=44919
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://developers.google.com/machine-learning/crash-course/
https://github.com/MinerKasch/applied_deep_learning

