
Nim,
nim.py and
games.py

Rules of Nim
•Impartial two-player game of mathematical

strategy
•Alternate turns removing some items from

ONE heap until no pieces remain
•Must remove at least one item per turn
•Last player to be able to remove a wins
•Variations:

– Initial number of heaps and items in each
– Misere play: last player who can move loses
– Limit on number of items that can be removed

History of Nim Games
•Believed to have been created in China;

unknown date of origin
•First actual recorded date- 15th century

Europe
•Originally known as Tsyanshidzi meaning
�picking stones game�

•Presently comes from German word
�nimm�meaning �take�

Adapted from a presentation by Tim Larson and Danny Livarchik

Demonstration

Player 1 wins!

Theoretical Approach
•Theorem developed by Charles Bouton in 1901
•To win, the goal is to reach a nim-sum of 0

after each turn until all turns are finished
•Nim Sum: exclusive-or of corresponding

numbers when represented in binary
Exclusive-or is used for adding two or more numbers
in binary and ignores all carries

•This is a strong method; we can also use the
weak method of traditional game playing:
Evaluation function + lookahead + minimax

Tree for (2,2)

games.py
• Peter Norvig’s python framework for multiple-

player, turn taking games
• Implements minimax and alphabeta
• For a new game, subclass the Game class and

– Decide how to represent the “board”
– Decide how to represent a move
– A state is (minimally) a board and whose turn to move
– Write methods to (1) initialize game instance, (2)

generate legal moves from state, (3) make move in
state, (4) recognize terminal states (win, lose or draw),
(5) compute state’s utility for player, (5) display a state

Assumptions about states
•games.py assumes you represent a state as

a namedtuple with at least two fields:
to_move and board

NimState = namedtuple('Nim', 'to_move board’)

namedtuples>>> from collections import namedtuple

>>> Person = namedtuple('PER', 'name age sex')

>>> p1 = Person(name='john', sex='male', age='20')

>>> p1

PER(name='john', age='20', sex='male')

>>> p1.sex

'male'

>>> p1[1]

'20'

>>> p2 = Person()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: __new__() missing 3 required positional arguments: 'name', 'age',
and 'sex'

>>> p2 = Person('mary', 'female', '21')

>>> p2

PER(name='mary', age='female', sex='21')

•Like lightweight objects
•Also like tuples
• Immutable, so can serve
as dictionary keys

Caution

•Python lists are mutable objects
•If you use a list to represent a board and

want to generate a new board from it, you
probably want to copy it fist
new_board = board[:]
new_board[3] = new_board[3] - 1

Players
The games.py framework defines several
players
• random_player: choses a random move

from among legal moves
• alphabeta_player: uses alpha_beta to

choose best move, optional args specify
cutoff depth (default is 8) and some other
variations

• human_player: asks user to enter move

Variations
def make_alphabeta_player(N):

""" returns a player function using alpha_beta search to depth N """
return lambda game, state: alphabeta_search(state, game, d=N)

add to the PLAYER dictionary player function named ab1,ab2,...ab20
that use alpha_beta search with depth cutoffs between 1 and 20

for i in range(20):
PLAYER['ab'+str(i)] = make_alphabeta_player(i)

