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Bayesian Learning 

Chapter 20.1-20.4 

Some material adapted 
from lecture notes by  
Lise Getoor and Ron Parr 

Naïve Bayes 

Naïve Bayes 

• Use Bayesian modeling 
• Make the simplest possible independence 

assumption: 
– Each attribute is independent of the values of the other 

attributes, given the class variable 
–  In our restaurant domain:  Cuisine is independent of 

Patrons, given a decision to stay (or not) 

Bayesian Formulation 

•  p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn) 
       = α p(C) p(F1, ..., Fn | C)  

•  Assume each feature Fi is conditionally independent of the 
other given the class C.  Then: 
p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C)  

•  Estimate each of these conditional probabilities from the 
observed counts in the training data: 
p(Fi | C)  = N(Fi ∧ C) / N(C) 
– One subtlety of using the algorithm in practice:  When 

your estimated probabilities are zero, ugly things happen 
– The fix: Add one to every count (aka “Laplacian 

smoothing”—they have a different name for everything!) 
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Naive Bayes: Example 

p(Wait | Cuisine, Patrons, Rainy?)  =  

 = α  p(Wait)  p(Cuisine|Wait)  p(Patrons|Wait)  p(Rainy?|Wait) 

 = p(Wait)  p(Cuisine|Wait)  p(Patrons|Wait)  p(Rainy?|Wait) 
                             p(Cuisine)  p(Patrons)  p(Rainy?) 

We can estimate all of the parameters (p(F) and p(C) just by counting 
from the training examples 

Naive Bayes: Analysis 

• Naive Bayes is amazingly easy to implement (once 
you understand the bit of math behind it) 

• Remarkably, naive Bayes can outperform many 
much more complex algorithms—it’s a baseline 
that should pretty much always be used for 
comparison 

• Naive Bayes can’t capture interdependencies 
between variables (obviously)—for that, we need 
Bayes nets! 

Learning Bayesian Networks 

Bayesian learning: Bayes’ rule 

•  Given some model space (set of hypotheses hi) and 
evidence (data D): 
–  P(hi|D) = α P(D|hi) P(hi) 

•  We assume that observations are independent of each other, 
given a model (hypothesis), so: 
–  P(hi|D) = α ∏j P(dj|hi) P(hi) 

•  To predict the value of some unknown quantity, X 
 (e.g., the class label for a future observation): 
–  P(X|D) =  ∑i P(X|D, hi) P(hi|D) = ∑i P(X|hi) P(hi|D) 

These are equal by our 
independence assumption 
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Bayesian learning 
•  We can apply Bayesian learning in three basic ways: 

–  BMA (Bayesian Model Averaging): Don’t just choose one 
hypothesis; instead, make predictions based on the weighted average 
of all hypotheses (or some set of best hypotheses) 

–  MAP (Maximum A Posteriori) hypothesis:  Choose the hypothesis 
with the highest a posteriori probability, given the data 

–  MLE (Maximum Likelihood Estimate): Assume that all 
hypotheses are equally likely a priori; then the best hypothesis is 
just the one that maximizes the likelihood (i.e., the probability of the 
data given the hypothesis) 

•  MDL (Minimum Description Length) principle:  Use 
some encoding to model the complexity of the hypothesis, 
and the fit of the data to the hypothesis, then minimize the 
overall description of hi + D 

Learning Bayesian networks  

•  Given training set 
•  Find B that best matches D 

–  model selection  
–  parameter estimation 

Data D 
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Learning Bayesian Networks 
• Describe a BN by specifying its (1) structure and 
(2) CPD tables 

• Both can be learned from data, but 
– learning structure is much harder than learning parameters 
– learning when some nodes are hidden, or with missing 
data harder still 

• We have four cases: 
Structure  Observability  Method 
Known  Full              Maximum Likelihood Estimation 
Known  Partial           EM (or gradient ascent) 
Unknown  Full              Search through model space  
Unknown  Partial           EM + search through model space  

Parameter estimation 
•  Assume known structure 
•  Goal: estimate BN parameters θ 

–  entries in local probability models, P(X | Parents(X)) 

•  A parameterization θ  is good if it is likely to generate the 
observed data: 

•  Maximum Likelihood Estimation (MLE) Principle:  
Choose θ*  so as to maximize L 

i.i.d. samples 
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Parameter estimation II 
•  The likelihood decomposes according to the structure of 

the network 
→ we get a separate estimation task for each parameter 

•  The MLE (maximum likelihood estimate) solution: 
–  for each value x of a node X 
–  and each instantiation u of Parents(X) 

–  Just need to collect the counts for every combination of parents 
and children observed in the data 

–  MLE is equivalent to an assumption of a uniform prior over 
parameter values 

sufficient statistics 

Sufficient statistics: Example 

•  Why are the counts sufficient? 

Earthquake Burglary 

Alarm 

Moon-phase 

Light-level 

θ*
A | E, B = N(A, E, B) / N(E, B) 

Model selection 

Goal: Select the best network structure, given the data 
Input: 

– Training data 
– Scoring function 

Output: 
– A network that maximizes the score 

Structure selection: Scoring 

•  Bayesian: prior over parameters and structure 
–  get balance between model complexity and fit to data as a byproduct 

•  Score (G:D) = log P(G|D) α log [P(D|G) P(G)] 
•  Marginal likelihood just comes from our parameter estimates 
•  Prior on structure can be any measure we want; typically a 

function of the network complexity 

Same key property: Decomposability 

Score(structure) = Σi Score(family of Xi) 

Marginal likelihood Prior 
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Heuristic search 
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Exploiting decomposability 
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To recompute scores,  
only need to re-score families 
that changed in the last move 

Variations on a theme 

•  Known structure, fully observable: only need to do 
parameter estimation 

•  Unknown structure, fully observable: do heuristic search 
through structure space, then parameter estimation 

•  Known structure, missing values: use expectation 
maximization (EM) to estimate parameters 

•  Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques 

•  Unknown structure, hidden variables: too hard to solve! 

Handling missing data 

•  Suppose that in some cases, we observe  
earthquake, alarm, light-level, and  
moon-phase, but not burglary 

•  Should we throw that data away?? 
•  Idea: Guess the missing values 

based on the other data 

Earthquake Burglary 

Alarm 

Moon-phase 

Light-level 
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EM (expectation maximization) 

•  Guess probabilities for nodes with missing values (e.g., 
based on other observations) 

•  Compute the probability distribution over the missing 
values, given our guess 

•  Update the probabilities based on the guessed values 
•  Repeat until convergence 

EM example 

•  Suppose we have observed Earthquake and Alarm but not 
Burglary for an observation on November 27 

•  We estimate the CPTs based on the rest of the data 
•  We then estimate P(Burglary) for November 27 from those 

CPTs 
•  Now we recompute the CPTs as if that estimated value had 

been observed 
•  Repeat until convergence! 

Earthquake Burglary 

Alarm 


