Knowledge Representation and Reasoning

Chapter 12

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Overview

- Approaches to knowledge representation
- Deductive/logical methods
 - Forward-chaining production rule systems
 - Semantic networks
 - Frame-based systems
 - Description logics
- Abductive/uncertain methods
 - What's abduction?
 - Why do we need uncertainty?
 - Bayesian reasoning
 - Other methods: Default reasoning, rule-based methods, Dempster-Shafer theory, fuzzy reasoning

Introduction

- Real knowledge representation and reasoning systems come in several major varieties
- These differ in their intended use, expressivity, features,...
- Some major families are
 - Logic programming languages
 - Theorem provers
 - Rule-based or production systems
 - Semantic networks
 - Frame-based representation languages
 - Databases (deductive, relational, object-oriented, etc.)
 - Constraint reasoning systems
 - Description logics
 - Bayesian networks
 - Evidential reasoning

Semantic Networks

• Simple representation scheme: a graph of labeled nodes and labeled, directed arcs to encode knowledge

- often used for static, taxonomic, concept dictionaries

• Typically used with a special set of accessing procedures that perform "reasoning"

- e.g., inheritance of values and relationships

Semantic networks popular in 60s & 70s, less used in '80s &'90s, back since '00s as RDF

– less expressive than other formalisms: both a feature & bug!

• The **graphical depiction** associated with a semantic network is a significant reason for their popularity

Nodes and Arcs

Arcs define binary relationships that hold between objects denoted by the nodes

Semantic Networks

- The ISA (is-a) or AKO (akind-of) relation is often used to link instances to classes, classes to superclasses
- Some links (e.g. hasPart) are inherited along ISA paths.
- The *semantics* of a semantic net can be relatively informal or very formal
 - often defined at the implementation level

Reification

- Non-binary relationships can be represented by "turning the relationship into an object"
- Logicians and philosophers call this "reification" -reify v : consider an abstract concept to be real
- We might want to represent the generic give event as a relation involving three things: a giver, a recipient and an object, give(john,mary,book32)

Individuals and Classes

- Many semantic networks distinguish
 - nodes representing individuals & those representing classes
 - subclass from instance_of relation
- Formalization must deal with nodes like *Bird*
 - -OWL uses punning

Link types

Link Type	Semantics	Example
A Subset B	$A \subset B$	$Cats \subset Mammals$
A Member B	$A \in B$	$Bill \in Cats$
$A \xrightarrow{R} B$	R(A, B)	Bill Ase 12
A 🖳 B	$\forall x \ x \in A \implies R(x, B)$	Birds Legs 2
A 🖳 B	$\forall x \exists y \ x \in A \Rightarrow y \in B \land R(x, y)$	Birds Birds

Inference by Inheritance

- An important kind of reasoning done in semantic nets is inheritance along subclass and instance links
- Semantic networks differ in details of
 - -Inheriting along subclass or instance links, e.g
 - Only inherit values on instance links
 - -inheriting multiple different values, e.g.
 - All possible values are inherited, *or*
 - Only the "closest" value or values are inherited

Conflicting inherited values

Multiple inheritance

- A node can have any number of super-classes that contain it, enabling a node to inherit properties from multiple parent nodes and their ancestors in the network
- These rules are often used to determine inheritance in such "tangled" networks where multiple inheritance is allowed:
 - If X<A<B and both A and B have property P, then X inherits A's property.
 - If X<A and X<B but neither A<B nor B<A, and A and B have property P with different and inconsistent values, then X does not inherit property P at all.

Nixon Diamond

• This was a classic example circa 1980

From Semantic Nets to Frames

- Semantic networks morphed into Frame Representation Languages in the 70s and 80s
- A frame is a lot like the notion of an object in OOP, but has more meta-data
- A frame has a set of slots
- Slots represents relations to other frame or literal values (e.g., number or string)
- A slot has one or more **facets**
- A facet represents some aspect of the relation

Facets

- A slot in a frame can hold more than a value
- Other facets might include:
 - Value: current fillers
 - Default: default fillers
 - Cardinality: minimum and maximum number of fillers
 - **Type:** type restriction on fillers, e.g another frame
 - Procedures: if-needed, if-added, if-removed
 - Salience: measure on the slot's importance
 - Constraints: attached constraints or axioms
- In some systems, the slots themselves are instances of frames.

Rel(Alive,Animals,T) Rel(Flies,Animals,F)

Birds ⊂ Animals Mammals ⊂ Animals

Rel(Flies,Birds,T) Rel(Legs,Birds,2) Rel(Legs,Mammals,4)

Penguins ⊂ Birds Cats ⊂ Mammals Bats ⊂ Mammals Rel(Flies,Penguins,F) Rel(Legs,Bats,2) Rel(Flies,Bats,T)

Opus ∈ Penguins Bill ∈Cats Pat ∈ Bats

Name(Opus,"Opus") Name(Bill,"Bill") Friend(Opus,Bill) Friend(Bill,Opus) Name(Pat,"Pat")

(a) A frame-based knowledge base (b) T

(b) Translation into first-order logic

Description Logics

• <u>Description logics</u> are a family of frame-like KR systems with a formal semantics.

– E.g., KL-ONE, OWL

- An additional kind of inference done by these systems is automatic **classification**
 - finding the right place in a hierarchy of objects for a new description
- Current systems keep the languages simple, so that all inference can be done in polynomial time (in the number of objects), ensuring tractability of inference
- The Semantic Web language OWL is based on description logic

Abduction

- <u>Abduction</u> is a reasoning process that tries to form plausible explanations for observations
 - Distinctly different from deduction and induction
 - Inherently unsound and uncertain
- Uncertainty is an important issue in abductive reasoning
- Some major formalisms for representing and reasoning about uncertainty
 - Mycin's certainty factors (an early representative)
 - Probability theory (esp. Bayesian belief networks)
 - Dempster-Shafer theory
 - Fuzzy logic
 - Truth maintenance systems
 - Nonmonotonic reasoning

Abductive reasoning

- **Definition**: reasoning that derives an explanatory hypothesis from a given set of facts
 - The inference result is a hypothesis that, if true, could explain the occurrence of the given facts
- Example: <u>Dendral</u>, an expert system to construct 3D structure of chemical compounds
 - Fact: mass spectrometer data of the compound and its chemical formula
 - KB: chemistry, esp. strength of different types of bounds
 - Reasoning: form a hypothetical 3D structure that satisfies the chemical formula, and that would most likely produce the given mass spectrum

Abduction examples (cont.)

- Example: Medical diagnosis
 - Facts: symptoms, lab test results, and other observed findings (called manifestations)
 - KB: causal associations between diseases and manifestations
 - Reasoning: one or more diseases whose presence would causally explain the occurrence of the given manifestations
- Many other reasoning processes (e.g., word sense disambiguation in natural language process, image understanding, criminal investigation) can also been seen as abductive reasoning

abduction, deduction & induction

Deduction: major premise: minor premise: conclusion: All balls in the box are black These balls are from the box These balls are black

Abduction: rule:

observation: explanation:

All balls in the box are black These balls are black These balls are from the box

$A \Longrightarrow B$
Possibly A

Whenever

A then B

Possibly

 $A \Rightarrow B$

Induction:case:These balls are from the boxobservation:These balls are blackhypothesized rule:All ball in the box are black

Deduction: from causes to effects **Abduction**: from effects to causes **Induction**: from specific cases to general rules

Abductive reasoning characteristics

- *Conclusions* are hypotheses, not theorems (may be false *even if* rules and facts are true)
 – E.g., misdiagnosis in medicine
- There may be multiple plausible hypotheses
 Given rules A => B and C => B, and fact B,
 - both A and C are plausible hypotheses
 - Abduction is inherently uncertain
 - Hypotheses can be ranked by their plausibility (if it can be determined)

Reasoning as a hypothesize-and-test cycle

- **Hypothesize**: generate hypotheses, any of which would explain the given facts
- Test: plausibility of all or some of these hypotheses
- One way to test a hypothesis H is to ask whether something that is currently unknown-but can be predicted from H-is actually true
 - –If we also know A => D and C => E, then ask if D and E are true
 - If D is true and E is false, then hypothesis A becomes more plausible (support for A is increased; support for C is decreased)

Non-monotonic reasoning

- Abduction is *non-monotonic* reasoning
- Monotonic: your knowledge can only increase
 - Propositions don't change their truth value
 - You never unknow things
- In abduction: plausibility of hypotheses can increase/ decrease as new facts are collected
- In contrast, deductive inference is **monotonic:** it never change a sentences truth value, once known
- In abductive (and inductive) reasoning, some hypotheses may be discarded, and new ones formed, when new observations are made

Default logic

- Default logic is another kind of nonmonotonic reasoning
- We know many facts which are mostly true, typically true, or true by default
 - -E.g., birds can fly, dogs have four legs, etc.
- Sometimes these facts are wrong however
 - -Ostriches are birds, but can not fly
 - -A dead bird can not fly
 - -Uruguay President José Mujica has a three-legged dog

Negation as Failure

- Prolog introduced the notion of *negation as failure*, which is widely used in logic programming languages and many KR systems
- Proving P in classical logic can have three outcomes: true, false, unknown
- Sometimes being unable to prove something can be used as evidence that it is not true
- This is typically the case in a database context
 Is John registered for CMSC 671?
- If we don't find a record for John in the registrar's database, he is not registered

%% this is a simple example of default reasoning in Prolog :- dynamic can_fly/1, neg/1, bird/1, penguin/1, eagle/1, dead/1, injured/1.

%% We'll use neg(P) to represent the logical negation of P. %% The \+ operator in prolog can be read as 'unprovable'

% Assume birds can fly unless we know otherwise. can_fly(X) :- bird(X), \+ neg(can_fly(X))

```
bird(X) :- eagle(X).
bird(X) :- owl(X).
bird(X) :- penguin(X).
```

neg(can_fly(X)) :- penguin(X).
neg(can_fly(X)) :- dead(X).
neg(can_fly(X)) :- injured(X).

% here are some individuals penguin(chilly). penguin(tux). eagle(sam). owl(hedwig).

Default reasoning in Prolog

Circumscription

- Another useful concept is being able to declare a predicate as 'complete' or circumscribed
 - -If a predicate is complete, then the KB has all instances of it
 - -This can be explicit (i.e., materialized as facts) or implicit (provable via a query)
- If a predicate, say link(From,To) is circumscribed then not being able to prove that link(nyc,tampa) means that neg(link(nyc,tampa)) is true

Default Logic

- We have a standard model for first order logic
- There are several models for defualt reasoning
 - -All have advantages and disadvantages, supporters and detractors
- None is completely accepted
- Default reasoning also shows up in object oriented systems
- And in epistemic reasoning (reasoning about what you know)
 - -Does President Obama have a wooden leg?

Sources of Uncertainty

- Uncertain **inputs** -- missing and/or noisy data
- Uncertain knowledge
 - -Multiple causes lead to multiple effects
 - -Incomplete enumeration of conditions or effects
 - -Incomplete knowledge of causality in the domain
 - -Probabilistic/stochastic effects
- Uncertain outputs
 - -Abduction and induction are inherently uncertain
 - -Default reasoning, even deductive, is uncertain
 - -Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision making with uncertainty

Rational behavior:

- For each possible action, identify the possible outcomes
- Compute the **probability** of each outcome
- Compute the **utility** of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Bayesian reasoning

- We will look at using probability theory and Bayesian reasoning next time in some detail
- Bayesian inference
 - -Use probability theory & information about independence
 - Reason diagnostically (evidence (effects) to conclusions (causes)) or causally (causes to effects)
- Bayesian networks
 - -Compact representation of probability distribution over a set of propositional random variables
 - -Take advantage of independence relationships

Other uncertainty representations

- Rule-based methods
 - Certainty factors (Mycin): propagate simple models of belief through causal or diagnostic rules
- Evidential reasoning
 - Dempster-Shafer theory: Bel(P) is a measure of the evidence for P; Bel(¬P) is a measure of the evidence against P; together they define a belief interval (lower and upper bounds on confidence)
- Fuzzy reasoning
 - Fuzzy sets: How well does an object satisfy a vague property?
 - Fuzzy logic: "How true" is a logical statement?

Uncertainty tradeoffs

- **Bayesian networks:** Nice theoretical properties combined with efficient reasoning make BNs very popular; limited expressiveness, knowledge engineering challenges may limit uses
- Nonmonotonic logic: Represent commonsense reasoning, but can be computationally very expensive
- Certainty factors: Not semantically well founded
- **Dempster-Shafer theory:** Has nice formal properties, but can be computationally expensive, and intervals tend to grow towards [0,1] (not a very useful conclusion)
- **Fuzzy reasoning:** Semantics are unclear (fuzzy!), but has proved very useful for commercial applications