) Searchin
Python

Chapter 3

Today’s topics

Norvig’s Python code
What it does
How to use it

A worked example: water jug
program

What about Java?

Overview

To use the AIMA python code for solving the
two water jug problem (WIJP) using search we
need one problem-specific file:

— Wj.py: need to write this to define the problem,
states, goal, successor function, etc.

And three general files:

— search.py: Norvig’s generic search framework,
imported by wj.py

— util.py and agents.py: more generic Norvig code
imported by search.py

Two Water Jugs Problem

* Given two water jugs, J1 and J2, with
capacities C1 and C2 and initial amounts W1
and W2, find actions to end up with amounts
W1 and W2’ in the jugs

* Example problem:
—We have a 5 gallon and a 2 gallon jug
—Initially both are full

—We want to end up with exactly one gallon
in J2 and don’t care how much isin J1

search.py

e Defines a Problem class for a search problem

* Provides functions to perform various kinds of
search given an instance of a Problem, e.g.,
breadth first, depth first, hill climbing, A*, ...

* Has Problem subclass InstrumentedProblem, and
function, compare_searchers, for evaluation

* To use for WJP: (1) decide how to represent the
WIJP, (2) define WIJP as a subclass of Problem and
(3) provide methods to (a) create a WIJP instance,
(b) compute successors and (c) test for a goal

Two Water Jugs Problem

Given J1 and J2 with Operator table
capacities C1 and C2
and initial amounts Actions | Cond. Transition Effect
W1 and W2, find
actions to end up with | Empty J1 1 - (x,y)—(0.y) | Empty J1
W1 and W2’ in jugs _

Empty J2 (X,y)—(x,0) | Empty J2

State Representation
State = (x,y), where x & y 2to1 X <3 | (x,2)—(x+2,0) .

are waterinJ1 & J2 :

* Initial state = (5,0) 1to2 x 22 | (x,0)—(x-2,2) ?20 ur 1 mto

e Goal state = (*,1) P '
71 our J1 into
where * is any amount ItoZpart | y<2 | (LY)=(0y+1) | 15 o ful

Pour J2 into

Our WIJ problem class

class WJ(Problem):
def _init_ (self, capacities=(5,2), initial=(5,0), goal=(0,1)):
self.capacities = capacities
self.initial = initial
self.goal = goal

def goal test(self, state): # returns True iff state is a goal state
g = self.goal
return (state[0] == g[0] or g[0] =="*') and \
(state[1] ==g[1] or g[1] == "*')

def _repr_ (self): # returns string representing the object
return "WJ(%s,%s,%s)" % (self.capacities, self.initial, self.goal)

Our WIJ problem class

def successor(self, (J1, J2)): # returns list of successors to state
successors = []
(C1, C2) = self.capacities
if J1 > 0: successors.append((‘Dump J1', (O, J2)))
if J2 > 0: successors.append((‘Dump J2', (J1, 0)))
if J2<C2and J1>0:
delta = min(J1, C2 —J2)
successors.append((‘Pour J1 into J2', (J1 - delta, J2 + delta)))
ifJ1<ClandJ2>0:
delta = min(J2, C1 —J1)
successors.append(('pour J2 into J1', (J1 + delta, J2 - delta)))

return successors

Solving a WJP

code> python

>>> from wj import *; from search import * # Import wj.py and search.py
>>>pl =WIJ((5,2), (5,2), ("*', 1)) # Create a problem instance
>>>pl

WI((5, 2),(5, 2),("*', 1))
>>> answer = breadth_first_graph_search(pl) # Used the breadth 1°' search function

>>> answer # Will be None if the search failed or a

<Node (0, 1)> # agoal node in the search graph if successful
>>> answer.path_cost # The cost to get to every node in the search graph
6 # is maintained by the search procedure

>>> path = answer.path() # A node’s path is the best way to get to it from
>>> path # the start node, i.e., a solution

[<Node (0, 1)>, <Node (1, 0)>, <Node (1, 2)>, <Node (3, 0)>, <Node (3, 2)>, <Node (5, 0)>, <Node (5, 2)>]
>>> path.reverse()

>>> path
[<Node (5, 2)>, <Node (5, 0)>, <Node (3, 2)>, <Node (3, 0)>, <Node (1, 2)>, <Node (1, 0)>, <Node (0, 1)>]

Comparing Search Algorithms Results

Uninformed searches: breadth_first_tree_search,
breadth_first_graph_search, depth_first _graph_
search, iterative_deepening_search, depth_limited
search

All but depth_limited_search are sound (solutions
found are correct)

Not all are complete (always find a solution if one
exists)

Not all are optimal (find best possible solution)
Not all are efficient
AIMA code has a comparison function

Comparing Search Algorithms Results

def main():
searchers = [breadth_first_tree_search, breadth_first_graph_search, depth_first_graph_search, ...]
problems = [WJ((5,2), (5,0), (0,1)), WJ((5,2), (5,0), (2,0))]
for p in problems:
for s in searchers:
print ‘Solution to’, p, ‘found by’, s.__name___
path = s(p).path() # call search function with problem
path.reverse()
print path, ‘\n’ # print solution path
print ‘SUMMARY: successors/goal tests/states generated/solution’
Now call the comparison function to show data about the performance of the dearches
compare_searchers(problems=problems,
header=['SEARCHER', 'GOAL:(0,1)', 'GOAL:(2,0)'],
searchers=[breadth_first_tree_search, breadth_first_graph_search, depth_first_graph_search,...])

if called from the command line, call main()

n n”

if _name__ =="_main__": main()

The Output

code> python wj.py
Solution to WJ((5, 2), (5, 0), (0, 1)) found by breadth_first_tree search
[<Node (5, 0)>, <Node (3, 2)>, <Node (3, 0)>, <Node (1, 2)>, ..., <Node (0, 1)>]

Solution to WJ((5, 2), (5, 0), (2, 0)) found by depth_limited_search
[<Node (5, 0)>, <Node (3, 2)>, <Node (0, 2)>, <Node (2, 0)>]

SUMMARY: successors/goal tests/states generated/solution
SEARCHER GOAL:(0,1) GOAL:(2,0)
breadth_first_tree search < 25/ 26/ 37/(0,> < 7/ 8/ 11/(2, >
breadth_first_graph_search < 8/ 17/ 16/(0,> < 5/ 8/ 9/(2,>
depth_first_graph_search < 5/ 8/ 12/(0,> < 8/ 13/ 16/(2, >
iterative_deepening_search < 35/ 61/ 57/(0,> < 8/ 16/ 14/(2, >
depth_limited_search <194/ 199/ 200/(0,> < 5/ 6/ 7/(2,>
code>

