12th IEEFE International Conference on Distributed Computing Systems "92, pp.614-621

Distributed Constraint Satisfaction for
Formalizing Distributed Problem Solving

Makoto Yokoo i
Toru IshidaT

T NTT Communication Science
Laboratories
Sanpeidani Inuidani, Seika-cho
Soraku-gun, Kyoto 619-02 Japan

yokoo/ishida/kuwabara@cslab.kecl.ntt.jp

Abstract

Viewing cooperative distributed problem solving
(CDPS) as distributed constraint satisfaction provides
a useful formalism for characterizing CDPS tech-
niques. In this paper, we describe this formalism
and compare algorithms for solving distributed con-
straint satisfaction problems (DCSPs). In particular,
we present our newly developed technique called asyn-
chronous backtracking that allows agents to act asyn-
chronously and concurrently, in contrast to the tradi-
tional sequential backtracking techniques employed in
constraint satisfaction problems. Qur experimental re-
sults show that solving DCSPs in a distributed fashion
1s worthwhile when the problems solved by individual
agents are loosely-coupled.

1 Introduction

Cooperative distributed problem solving (CDPS)
is a subfield of Al that is concerned with how a set
of artificially intelligent agents can work together to
solve problems. Recently, [9] has presented the idea
of viewing CDPS as a distributed state space search
in order to develop a general framework for CDPS.
This concept 1s important because, without such gen-
eral frameworks, it is very difficult to compare alter-
native approaches or to reproduce results obtained by
one approach on slightly different problems. Our goal
is to develop a framework for formalizing a subset of
CDPS problems and methods by extending constraint
satisfaction problems (CSPs) [10] to distributed multi-
agent environments. In this paper, we define a dis-

Edmund H. Durfee i

Kazuhiro KuwabaraJ[

i Dept. of Electrical Engineering
and Computer Science
University of Michigan

Ann Arbor, MI 48109 U.S.A.

durfee@caen.engin.umich.edu

tributed constraint satisfaction problem (DCSP) as a
CSP in which multiple agents are involved. DCSPs
are important for the following reasons:

e Various CDPS problems can be formalized
as DCSPs.
Multi-agent resource allocation problems de-
scribed in [4], [8], in which tasks or resources must
be allocated to agents so that inter-agent con-
straints are satisfied, can be formalized as DCSPs
by viewing each task or resource as a variable and
the possible assignments as values. Also, an in-
terpretation problem by multiple agents such as
[11] can be mapped into a DCSP framework by
viewing possible interpretations as possible vari-
able values. Distributed truth maintenance tasks
described in [1] are essentially solving a DCSP
where each variable can be either IN or OUT.
By formalizing these problems as DCSPs, these
problems can be solved by the general algorithms
described in this paper.

e DCSPs provide a formal framework for
studying various CDPS methods.
There are various options in the methods for solv-
ing DCSPs, which influence the efficiency (e.g.,
the selection order of the values). Agents have
to make decisions about these options and these
decisions are interrelated. DCSPs serve as a basis
for studies such as [6], in which agents exchange
their local plans in order to make agents’ decisions
coherent.

In this paper, we define DCSPs and discuss alter-
native methods for solving them. In particular, we
introduce our newly developed technique, called asyn-

chronous backtracking. Backtracking, which is a stan-
dard approach to solve CSPs, 1s essentially a sequen-
tial procedure. Our new algorithm allows agents to
act concurrently and asynchronously. We experimen-
tally show how our algorithm outperforms standard
backtracking techniques. In addition, our experiments
highlight issues of granularity in loosely-coupled dis-
tributed systems.

2 Distributed Constraint Satisfaction
Problem (DCSP)

2.1 CSP

A CSP is formally defined as m variables
Z1,&9,..., Ly, taking their values from a domains
Dy, D, ..., Dy, respectively, and a set of constraints
on their values. A constraint is defined by a pred-
icate. That is, the constraint Pp(zg1,...,25;) is a
predicate which is defined on the Cartesian product
Dy1 x ... x Dyj. This predicate is true iff the in-
stantiations of these variables satisfy this constraint.
Solving a CSP is equivalent to finding an assignment
of values to all the variables such that all constraints
are satisfied.

2.2 DCSP

In a DCSP, the variables of a CSP are distributed
among agents. We assume the following communica-
tion model.

e Communication between agents is done by send-
ing messages. An agent can send messages to
other agents iff the agent knows the addresses of
the agents'.

e The delay in delivering a message 1s finite, though
random. For the transmission between any pair
of agents, messages are received in the order in
which they were sent.

Each agent has some variables and tries to instantiate
their values. Constraints may exist between variables
of different agents, and the instantiations of the vari-
ables must satisfy these inter-agent constraints. For-
mally, there exist n agents 1,2, ..., n. Each variable z;

1This model does not necessarily mean that the physical
communication network must be fully connected (i.e., a com-
plete graph). Unlike most parallel/distributed algorithm stud-
ies, in which the topology of the physical communication net-
work plays an important role, we assume the existence of a
reliable underlying communication structure among agents and
do not care about the implementation of the physical commu-
nication network.

belongs to one agent ¢ (this relation is represented as
belongs(x;,1)). Constraints are also distributed among
agents. The fact that the agent k knows the constraint
predicate P is represented as known(Py, k).

We say that a DCSP is solved iff the following con-
ditions are satisfied.

o Vi Vx; belongs(z;,i) = «; is instantiated to d;,
and ¥ k, VB known(P, k) = P is true under

the assignment 1 = dy, 23 = ds, ..., ¢y = dn.

Without loss of generality, we make the following as-
sumptions while describing our algorithms for simplic-

ity.
e Each agent has exactly one variable.

e Each agent knows all constraint predicates rele-
vant to its variable.

3 Methods for DCSP

Methods for solving CSPs can be divided into two
groups, namely backtracking algorithms and consis-
tency algorithms [10]. Consistency algorithms are pre-
processing procedures that are invoked before back-
tracking. Consistency algorithms in the ATMS frame-
work [5] are essentially monotonic and can be applied
straightforwardly to DCSP [13]. Therefore, in this pa-
per, we focus on backtracking algorithms for DCSPs.

3.1 Centralized Backtracking

The most trivial algorithm for solving a DCSP is
to select a leader agent among all agents, and gather
all information about variables, their domains, and
their constraints, into the leader agent. The leader
then solves the CSP alone using standard backtracking
algorithms. This approach is wasteful, both in terms
of communication overhead (for selecting a leader and
collecting the information at the leader) and in loss
of parallelism (as the other agents sit idle while the
leader solves the CSP).

3.2 Synchronous Backtracking

The standard backtracking algorithm for CSP can
be simply modified to yield the synchronous back-
tracking algorithm for DCSP. Assume the agents agree
on an instantiation order for their variables (such as
agent 1 goes first, then agent 2, and so on). Each
agent, receiving a partial solution (the instantiations
of the preceding variables) from the previous agent,
instantiates its variable based on the constraints that

it knows about. If it finds such a value, 1t appends
this to the partial solution and passes it on the next
agent. If no instantiation of its variable can satisfy
the constraints, then it sends a backtracking message
to the previous agent.

While this algorithm does not suffer from the same
communication overhead as the centralized method, it
does suffer from inefficiencies by not taking advantage
of parallelism. Because, at any given time, only one
agent is receiving the partial solution and acting on it,
the DCSP is still solved sequentially 2.

3.3 Asynchronous Backtracking

Our asynchronous backtracking algorithm removes
the drawbacks of synchronous backtracking by allow-
ing agents to run concurrently and asynchronously.
Each agent instantiates its variable and communicates
the variable value to relevant agents. To simplify this
discussion, let us assume that constraints are binary.

We represent a DCSP in which all constraints are
binary as a network, where variables are nodes and
constraints are links between nodes®. Since each agent
has exactly one variable, a node also represents an
agent. We use the same identifier (id) for represent-
ing an agent and its variable. We also assume that
every link (constraint) is directed. In other words, one
of the two agents involved in a constraint is assigned
that constraint, and receives the other agent’s value.
A link 1s directed from the value sending agent to the
constraint evaluating agent. For example, in Figure
1 (a), there are three agents, x1, 2, 3, with variable
domains {1,2},{2},{1,2} respectively, and the con-
straints z1 # #3 and zy # z3.

Each agent instantiates its variable concurrently
and sends the value to the agents which are connected
by outgoing links. After that, agents wait for and re-
spond to messages. Figure 2 describes procedures for
receiving two kinds of messages. One kind is an ok?
message, that a constraint evaluating agent receives
from a value sending agent, asking whether the value
chosen is acceptable (Figure 2 (i)). The second kind
is a nogood message that a value sending agent re-
ceives, indicating that the constraint evaluating agent
has found a constraint violation (Figure 2 (ii)).

?Recently, [3] presented a variation of synchronous back-
tracking called Network Consistency Protocol, in which agents
construct a depth-first search tree. Agents act synchronously
by passing privilege, but the agents which have the same parent
in the search tree can act concurrently.

3It must be emphasized that this constraint network has
nothing to do with the physical communication network. The
link in the constraint network is not a physical communication
link, but a logical relation between agents.

An agent has a set of values from the agents which
is connected to by incoming links. These values con-
stitute the agent’s ageni_view. The fact that z1’s value
is 1 1s represented by a pair of the agent id and the
value, (#1,1). Therefore, an agent_view is a set of
these pairs, e.g., {(x1,1),(x2,2)}. If an 0k? message
is sent on an incoming link, the evaluating agent adds
the pair to its agent_view and checks whether its own
value assignment (represented as (my_id, my_value))
i1s consistent with 1ts agent_view. Its own assignment
is consistent with the agent_view if all constraints the
agent evaluates are true under the value assignments
described in the agent_view and (my-id, my_value),
and all communicated nogoods are not compatible *
with the agent_view and (my_id, my_value). If its own
assignment is not consistent with the agent_view, the
agent tries to change my_value so that it will be con-
sistent with the agent_view.

A subset of an agent_view is called a nogood if the
agent is not able to find my_value which is consis-
tent with the subset. If an agent finds a subset of
its agent_view is a nogood, the assignments of other
agents must be changed. Therefore, the agent causes
a backtrack (Figure 2 (iil)) and sends a nogood message
to one of the other agents.

3.3.1 Avoiding Infinite Processing Loops

If agents change their values again and again and never
reach a stable state, they are in an infinite processing
loop. An infinite processing loop can occur if there
exists a value changing loop of agents, such as if a
change in x; causes zs to change, then this change
in xp causes xs to change, which then causes z; to
change, and so on. In the network representation, such
a loop is represented by a cycle of directed links.

One way to avoid cycles in a network is to use a to-
tal order relationship among nodes. If each node has
an unique id, and a link is directed from the smaller
node to the larger node, there will be no cycle in the
network. This means that each agent has an unique
id, and for each constraint, the larger agent will be
an evaluator, and the smaller agent will send an ok?
message to the evaluator. Furthermore, if a nogood is
found, a nogood message is sent to the largest agent
in the nogood (Figure 2 (iii-a)). Similar techniques to
this unique 1d method are used for avoiding deadlock
in distributed database systems [12]. The knowledge
each agent requires for this unique id method is much

4 A nogood is compatible with the agent_view and (my-id,
my_value) if all variables in the nogood have the same values in
the agent_view and (my_id, my_value).

i\\ / (ok?, (Xl}\ /DK" (X2,2)

(@)

add link request

new link
agent_view

£ (X1 1}

(©)

(nogood,
{(X1,1),(X2, 2)})

agent_view
{(X1, 1),(X2, 2)}
isanogood.

(b)
(nogood,{(X1, 1)})

h
------ -©®

Figure 1: Example of constraint network

more local than that needed for synchronous back-
tracking. In synchronous backtracking, agents must
act in a predefined sequential order. Such a sequen-
tial order can not be obtained easily just by giving an
unique id to each agent.

3.3.2 Handling Asynchronous Changes

In the following, we show the methods for handling
the difficulties which are caused by the asynchronous
activities of agents.

Tolerating Inconsistent Agent_Views. Because
agents change their instantiations asynchronously, an
agent_view is subject to incessant changes. This can
lead to potential inconsistencies, because a constraint
evaluating agent might send a nogood message to an
agent that has already changed the value of an of-
fending variable as a result of other constraints. In
essence, the nogood message may be based on obso-
lete information, and the value sending agent should
not necessarily change its value again.

We introduce the use of context attachment to deal
with these potential inconsistencies. In context at-
tachment, an agent couples its message with the no-

good that triggered it. This nogood is the context of
backtracking. After receiving this message, the recip-
ient only changes its value if the nogood is compat-
tble with its current agent_view and its own assign-
ment (Figure 2 (ii-a)). Since the nogood attached
to a nogood message indicates the cause of the fail-
ure, asynchronous backtracking includes the function
of dependency-directed backtracking in CSPs [10].

A nogood can be viewed as a new constraint derived
from the original constraints. By incorporating such
a new constraint, agents can avoid repeating the same
failure again. For example, in Figure 1 (¢), the no-
good {(x1,1), (x2,2)} represents a constraint between
21 and x5. Since there is no link between x1 and x»
originally, a new link must be added between them °
Therefore, after receiving the nogood message, agent
zo asks z; to add a link between them. In general,
even if all original constraints are binary, newly de-
rived constraints can be among more than 2 variables.
In such a case, one of the agents in the constraint will
be an evaluator and links will be added between each
of non-evaluator agents and the evaluator.

5Since a link in the constraint network represents a logical
relation between agents, adding a link does not mean adding a
new physical communication path between agents.

when received (ok?, (sender_id,value)) do — (i)
add (sender_id,value) to agent_view,
when my_value and agent_view are
inconsistent do
change my_value to a new consistent value; — (i-a)
when can not find such a value do backtrack;
change my_value to a new consistent value;
end do;
send (ok?, (my_id,my_value)) to its outgoing links;
end do;
end do;

when received (nogood, sender_id, nogood) do — (ii)
record nogood;
when (id,value) where id is not connected
is contained in nogood do
request id to add a link from id to my_id
and add (id,value) to ageni_view,
end do;
if agent_view and my_value are incompatible
with nogood — (ii-a)
then send (ok?, (my-id, my_value)) to sender_id;
else change my_value
to a new consistent value; — (ii-b)
when can not find such a value do backtrack;
change my_value to a new consistent value;
end do;
send (ok?, (my_id,my_value)) to its outgoing links;
end if;

procedure backtrack — (iii)
begin
nogoods — {V; | Vy=inconsistent subset of agent_view};
when {}€ nogoods do
broadcast to other agents that there is
no solution, terminate this algorithm;
end do;
for each V; = {(idy,v1),...} € nogoods do;
select (id;, v;) where
id; is the largest in V; — (iii-a)
send (nogood, my_id, V;) to id;;
remove (id;, v;) from agent_view,
end do;
end backtrack;

Figure 2: Procedure for receiving messages

Interrupting Constraint Checking. In asyn-
chronous backtracking, an agent_view may change
while an agent is checking all applicable constraints
to instantiate its variable. When this happens, con-
tinuing the local computation is useless since the value
it chooses must be checked against the new agent_view
anyway. Our asynchronous backtracking algorithm
handles this problem by interrupting the consistency
checks (performed at Figure 2 (i-a) and (ii-b)) when-
ever the agent_view changes. Furthermore, we have
incorporated the technique of backmarking [7] to let
an agent take advantage of as much of the interrupted
computation’s results as possible. Here is the basic
idea of backmarking: Assume an agent does consis-
tency checks between its variable z; and the variables
of other agents @1, ..., z;_1. If a consistency check for
value d fails with the variable z;, the agent marks the
value d with ;. Now, assume that the agent receives
a message that changes the variable z, and value d is
marked as x; before the message is received. If j < &,
the agent knows that assigning its variable with the
value d will still lead to an inconsistency (since the
value of z; has not changed). Also, if k& < j, then any
checks the agent did with the value d and =y, ..., 251
are still satisfied and need not be rechecked. The agent
thus avoids unnecessary constraint checking by having
saved information from the interrupted computation.

3.3.3 Example

In Figure 1 (b), by receiving ok? messages from
and xs, the agent_view of zz will be {(#1,1), (z2,2)}.
Since there is no possible value for z3 consistent with
this agent_view, this agent_view is a nogood. Agent
z3 chooses the largest agent in the agent_view, agent
zo, and sends a nogood message with the nogood, and
removes (22, 2) from the agent_view. By receiving this
nogood message, agent x records this nogood. This
nogood, {(z1,1),(x2,2)} contains agent x1, which is
not connected with x5 by a link. Therefore, a new link
must be added between x; and z;. Agent zs requests
z1 to send z;’s value to g, and adds (z1,1) to its
agent_view (Figure 1 (c)). Agent x5 checks whether
its value is consistent with the agent_view. Since the
nogood received from agent xs is compatible with its
assignment (z3,2) and its agent_view {(z1,1)}, the
assignment (2, 2) is inconsistent with the agent_view.
The agent_view {(x1,1)} is a nogood because 5 has
no other possible values. There is only one agent in
this nogood, 1.e., agent x1, so agent xzo sends a nogood
message to agent z; (Figure 1 (d)).

3.3.4 Algorithm Soundness and Complete-
ness

If there exists a solution, this algorithm reaches a
stable state where all variable values satisfy all con-
straints, and all agents are waiting for an incoming
message®. If no solution exists, this algorithm discov-
ers this fact and terminates. For the agents to reach
a stable state, all their variable values must perforce
satisfy all constraints. Thus, the soundness of the al-
gorithm is clear. Furthermore, the algorithm is com-
plete, in that it finds a solution if one exists and ter-
minates with failure when there is no solution.

A solution does not exist when the problem is over-
constrained. In an overconstrained situation, our algo-
rithm eventually generates a nogood corresponding to
the empty set. Because a nogood logically represents
a set of assignments which leads to a contradiction,
an empty nogood means that any set of assignments
leads to a contradiction. Thus, no solution is possible.
Our algorithm thus terminates with failure if and only
if an empty nogood is formed.

So far, we have shown that when the algorithm
leads to a stable state the problem is solved, and when
it generates an empty nogood, the algorithm termi-
nates with failure. What remains is that we need
to show that the algorithm must reach one of these
conclusions in finite time. The only way that our al-
gorithm might not reach a conclusion is at least one
agent is cycling among its possible values in an infinite
processing loop. Given our algorithm, we can prove by
induction that this cannot happen as follows.

In the base case, assume that the agent with the
lowest id, x1, is in an infinite loop. Because it has the
lowest 1d, x1 only receives nogood messages. When
it proposes a possible value, x; either receives a no-
good message back, or else gets no message back. If it
receives nogood messages for all possible values of its
variable, then it will generate an empty nogood (any
choice leads to a constraint violation) and the algo-
rithm will terminate. If it does not receive a nogood
message for a proposed value, then it will not change
that value. Either way, it cannot be in an infinite loop.

Now, assume that agents z; to zp_1 (k > 2) are
in a stable state, and agent z; is in an infinite pro-
cessing loop. In this case, the only messages agent
xp, receives are nogood messages from agents whose
ids are larger than k, and these nogood messages con-
tain only the agent ids z; to zp. Since agents z; to

8We should mention that the way to determine that agents
as a whole have reached a stable state is not contained in this
algorithm. To detect the stable state, distributed termination
detection algorithms such as [2] are needed.

zr_1 are in a stable state, the nogoods agent x re-
celves must be compatible with its agent_view, and so
zp, will change instantiation of its variable with a dif-
ferent value. Because its variable’s domain is finite,
zp, will either eventually generate a value that does
not cause it to receive a nogood (which contradicts the
assumption that z, is in an infinite loop), or else it ex-
hausts the possible values and sends a nogood to one
of ©1 ...x;_1. However, this nogood would cause an
agent we assumed as being in a stable state to not be
in a stable state. Thus, by contradiction, x; cannot
be in an infinite processing loop.

4 Evaluation

In this section, we compare the efficiency of the
asynchronous, synchronous, and centralized back-
tracking algorithms. We simulate concurrent activity
among the agents using a discrete event simulation,
where each agent maintains its own simulated clock.
An agent’s time is incremented by one simulated time
unit whenever it performs a constraint check. Because
the asynchronous algorithm permits constraint checks
in parallel, we expected this algorithm to outperform
the centralized approach. However, to make the com-
parison more fair, we have to recognize that the mul-
tiagent algorithms depend on communication between
agents. For this reason we introduced a communica-
tion delay ¢4, such that a message issued at time ¢ is
available to the recipient at time ¢ + 4.

Given this model, we applied the algorithms to a
well-studied constraint satisfaction problem, the n-
queens problem. Fach agent is assigned a queen to
position in its column under the constraints that its
queen not be threatened by the queens of other agents.
By associating one queen per agent for 8- and 12-
queens problems, we thus experimented with networks
of 8 and 12 agents, respectively.

We analyzed performance in terms of the amount
of simulated time required to solve the problems, and
varied the communication delay. Qur results are sum-
marized in the graph shown in Figure 3. To make the
comparisons fair, we included dependency-directed
backtracking and backmarking in the synchronous and
centralized systems as well as in our asynchronous
mechanisms. When comparing asynchronous with
synchronous backtracking, the additional parallelism
of asynchronous backtracking makes our new algo-
rithms 1.5 to 2 times as fast as synchronous back-
tracking. As communication delay increases, the time
needs of both algorithms increase linearly.

—— asynchronous backtracking (8queens)
—— synchronous backtracking (8queens)
—— centralized backtracking (8queens)
—— asynchronous backtracking (12queens)
—— synchronous backtracking (12queens)
centralized backtracking (12queens)
8000
¢ 7000
£ 6000
£ 5000
£ 4000
3 3000+
£ 2000
2 1000-
0

0 2 4 6 8 10 12 14 16
message delay (time steps)

Figure 3: Comparison between asynchronous, syn-
chronous and centralized backtracking (8, 12 queens
problems)

An initially surprising result, however, was that our
asynchronous algorithm only outperformed a central-
ized approach when message delays are very small.
Given that the constraints being checked require very
little computation, a message delay equivalent to b or
more constraint checks would not be unreasonable to
expect in a loosely-coupled distributed network. Our
results indicated that our algorithm would be suitable
for a tightly-coupled multiprocessor, but not a loosely-
coupled system.

However, on reflection we realized that this result
was not due to our algorithm, but instead to our prob-
lem decomposition. In essence, we were giving our
agents tasks that were too small. Traditional coop-
erative distributed problem solving applications in-
volve having agents work on large, nearly-independent
subproblems. As a result, agents spend considerable
time for local computation between sending messages.
By having agents work on large-grained problems, the
communication delays in a loosely-coupled network no
longer dominate performance. For example, a typical
problem involves having agents track vehicles moving
through their different areas[6]. These agents each
perform substantial processing independently as they
interpret their own data, but they constrain each other
at their borders since their pieces of tracks must fit to-

X1| X2 X3 X4

Q

Q

\ oo

X2 X8 X9 X10

el

X1 X5 X6 X7

Q Q

Q Q

\ Agentl _

Figure 4: Example of loosely-coupled DCSP (hierar-
chical n-queens)

Agent 2

gether.

We have modified the n-queens problem to capture
this “large-grained, nearly-independent” character by
developing the hierarchical n-queens problem shown
in Figure 4. As the figure shows, the problem in-
volves n + 1 n-queens problems, in which the n of
the problems are essentially independent, except that
the positioning of the queen in the first column carries
over the n 4+ 1th problem. If each agent i1s given one
of these nearly independent problems, then an agent
can spend considerable time solving its own problem
and needs to interact less frequently with other agents
to check whether its local solution is compatible with
the agents’ shared problem. This is like having agents
build major subassemblies on their own, but these sub-
assemblies must “hook together” in a compatible way.

Figure 5 compares 3 experiments using the hierar-
chical 8-queens problem. One experiment uses central-
ized backtracking. The second experiment uses asyn-
chronous backtracking where, as before, each queen
has 1ts own agent. This means that, in this exper-
iment, 64 agents are in action. The third experi-
ment uses asynchronous backtracking involving only 8
agents, where each is responsible for 8 queens, includ-
ing one of the queens of the “shared” board. When
message delay 1s small, the greater parallelism afforded
by using 64 agents dominates. However, as delay in-
creases, performance of the 64 agents experiment de-
grades rapidly due to the amount of communication

—— asynchronous backtracking (8agents)

—— asynchronous backtracking (64agents)

—— centralized backtracking
v 5000
& 4000
0]
£ 3000
S 2000-
3]
£ 1000-|
=}
=]
0 LU
0 5 10 15 20 25
message delay (time steps)

er

Figure 5: Comparison between asynchronous and cen-
tralized backtracking (loosely-coupled problem)

that the agents require. While using 8 agents was
less effective with short message delays, increases in
message delays impact the 8 agents experiment much
less severely because the agents are working on larger
individual problems and communicating less. As a re-
sult, using 8 agents outperforms the centralized case
for delays up to 20 time units. These results confirm
that, if the local problems are loosely-coupled, asyn-
chronous backtracking outperforms centralized back-
tracking even if communications are relatively slow.

5 Conclusions

We presented the formalization of the distributed
constraint satisfaction problem and described alterna-
tive methods for solving it, including our own asyn-
chronous backtracking algorithm. Our experiments
with these methods illustrated that solving constraint
satisfaction problems in a loosely-coupled, distributed
network is worthwhile if the local constraint satisfac-
tion problems of each agent are large grained and
nearly independent. These results formalize intuitions
gained from past work in cooperative distributed prob-
lem solving.

Our ongoing research efforts involve introducing
various heuristics proposed in CSP into asynchronous
backtracking, and formalizing various CDPS methods

(methods for achieving coherent behaviors, etc.) using
the DCSP framework.

Acknowledgements
The authors wish to thank Drs. Kiyoshi Nishikawa
and Ryohei1 Nakano for their support of this work.

References

[1] Bridgeland, D.M. and Huhns, M.N.: Distributed
Truth Maintenance, Proc. of AAAI-90, pp. 7277,
1990.

[2] Chandy, K.M. and Lamport, L : Distributed
Snapshots: Determining Global States of Dis-
tributed Systems, ACM Trans. on Computer Sys-
tems, Vol. 3, No. 1, pp. 63-75, 1985

[3] Collin, Z., Dechter, R. and Kaiz, S.: On the Feasi-
bility of Distributed Constraint Satisfaction, Proc.
of IJCAI-91, pp. 318-324, 1991.

[4 Conry, S.E., Meyer, R.E. and Lesser, V.R. : Multi-
stage Negotiation in Distributed Planning, In Alan
H.Bond and Les Gasser, editors, Readings in Dis-
tributed Artificial Intelligence, Morgan Kaufmann,
pp. 367-384,1988.

[5] de Kleer, J : A Comparison of ATMS and CSP
Techniques, Proc. of IJCAI-89, pp. 290-296, 1989.

[6] Durfee, E.H. and Lesser, V.R. : Using Partial
Global Plans to Coordinate Distributed Problem
Solvers, Proc. of IJCAI-87, pp. 875-883, 1987.

[7] Gasching, J. : A General Backtrack Algorithm
That Eliminates Most Redundant Tests, Proc. of
1JCAI-77, pp. 457, 1977.

[8] Kuwabara, K. and Lesser, V.R. : Extended Proto-
col for Multistage Negotiation, In M. Benda editor,
Proc. of 9th Workshop on Distributed Artificial In-
telligence, pp. 129-161, 1989.

[9] Lesser, V.R. : An Overview of DAI: Viewing
Distributed Al as Distributed Search, Journal of
Japanese Society for Artificial Intelligence, Vol. 5,
No. 4, 1990.

[10] Mackworth, A.K. : Constraint Satisfaction, In
S.C.Shapiro, editor, Encyclopedia of Artificial In-
telligence, John Wiley & Sons, pp. 205211, 1987.

[11] Mason, C.L. and Johnson, R.R. : DATMS:
A Framework for Distributed Assumption Based
Reasoning, In Les Gasser and M.N. Huhns, editors,
Distributed Artificial Intelligence Vol II, pp. 293—
318, Morgan Kaufmann, 1989.

[12] Rosenkrantz, D.J., Stearns, R.E., and Lewis,
P.M. : System Level Concurrency Control for
Distributed Database Systems, ACM Trans. on
Database Systems, Vol. 3, No. 2, pp. 178-198, 1978.

[13] Yokoo, M., Ishida, T. and Kuwabara, K. : Dis-
tributed Constraint Satisfaction for DAI Problems,
In M. Huhns editor, Proc. of 10th Workshop on
Distributed Artificial Intelligence, 1990.

