
International Conference on Principles and Practice of Constraint Programming
1995, pp.88–102

Asynchronous Weak-commitment Search for
Solving Distributed Constraint Satisfaction

Problems

Makoto Yokoo

NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

e-mail: yokoo@cslab.kecl.ntt.jp

Abstract. A distributed constraint satisfaction problem (Distributed
CSP) is a CSP in which variables and constraints are distributed among
multiple automated agents, and various application problems in Dis-
tributed Artificial Intelligence can be formalized as Distributed CSPs.
We develop a new algorithm for solving Distributed CSPs called asyn-
chronous weak-commitment search, which is inspired by the weak-commit-
ment search algorithm for solving CSPs. This algorithm can revise a bad
decision without an exhaustive search by changing the priority order
of agents dynamically. Furthermore, agents can act asynchronously and
concurrently based on their local knowledge without any global control,
while guaranteeing the completeness of the algorithm.
The experimental results on various example problems show that this
algorithm is by far more efficient than the asynchronous backtracking
algorithm for solving Distributed CSPs, in which the priority order is
static. The priority order represents a hierarchy of agent authority, i.e.,
the priority of decision making. Therefore, these results imply that a
flexible agent organization, in which the hierarchical order is changed
dynamically, actually performs better than an organization in which the
hierarchical order is static and rigid.

1 Introduction

Distributed Artificial Intelligence (DAI) is a subfield of AI that is concerned with
the interaction, especially the coordination among artificial automated agents.
Since distributed computing environments are spreading very rapidly due to the
advances in hardware and networking technologies, there are pressing needs for
DAI techniques, thus DAI is becoming a very vital area in AI.

In [13], a distributed constraint satisfaction problem (Distributed CSP) is
formalized as a CSP in which variables and constraints are distributed among
multiple automated agents. It is well known that surprisingly a wide variety of
AI problems can be formalized as CSPs. Similarly, various application problems
in DAI which are concerned with finding a consistent combination of agent ac-
tions (e.g., distributed resource allocation problems [3], distributed scheduling
problems [9], and multi-agent truth maintenance tasks [5]) can be formalized as
Distributed CSPs. Therefore, we can consider a Distributed CSP as a general



framework for DAI, and distributed algorithms for solving Distributed CSPs as
an important infrastructure in DAI.

It must be noted that although algorithms for solving Distributed CSPs seem
to be similar to parallel/distributed processing methods for solving CSPs [2, 14],
research motivations are fundamentally different. The primary concern in par-
allel/distributed processing is the efficiency, and we can choose any type of par-
allel/distributed computer architecture for solving the given problem efficiently.
In contrast, in a Distributed CSP, there already exists a situation where knowl-
edge about the problem (i.e., variables and constraints) is distributed among
automated agents. Therefore, the main research issue is how to reach a solution
from this given situation. If all knowledge about the problem can be gathered
into one agent, this agent can solve the problem alone using normal centralized
constraint satisfaction algorithms. However, collecting all information about a
problem requires certain communication costs, which could be prohibitively high.
Furthermore, in some application problems, gathering all information to one
agent is not desirable or impossible for security/privacy reasons. In such cases,
multiple agents have to solve the problem without centralizing all information.
The author has developed a basic algorithm for solving Distributed CSPs called
asynchronous backtracking [13]. In this algorithm, agents act asynchronously and
concurrently based on their local knowledge without any global control.

In this paper, we develop a new algorithm called asynchronous weak-commit-
ment search, which is inspired by the weak-commitment search algorithm for
solving CSPs [12]. The main characteristic of this algorithm is as follows.

– Agents can revise a bad decision without an exhaustive search by changing
the priority order of agents dynamically.

In the asynchronous backtracking algorithm, the priority order of agents is de-
termined, and an agent tries to find a value satisfying the constraints with the
variables of higher priority agents. When an agent sets a variable value, the
agent commits to the selected value strongly, i.e., the selected value will not be
changed unless an exhaustive search is performed by lower priority agents. There-
fore, in large-scale problems, a single mistake of value selection becomes fatal
since doing such an exhaustive search is virtually impossible. This drawback is
common to all backtracking algorithms. On the other hand, in the asynchronous
weak-commitment search, when an agent can not find a value consistent with
the higher priority agents, the priority order is changed so that the agent has
the highest priority. As a result, when an agent makes a mistake in value se-
lection, the priority of another agent becomes higher; thus the agent that made
the mistake will not commit to the bad decision, and the selected value will be
changed.

We will show that the asynchronous weak-commitment search algorithm can
solve problems such as the distributed 1000-queens problem, the distributed
graph-coloring problem, and the network resource allocation problem [8] that the
asynchronous backtracking algorithm fails to solve within a reasonable amount
of time. We can assume that the priority order represents a hierarchy of agent



authority, i.e., the priority order of decision making. Therefore, these results im-
ply that a flexible agent organization, in which the hierarchical order is changed
dynamically, actually performs better than an organization in which the hierar-
chical order is static and rigid.

In the following, we briefly describe the definition of a Distributed CSP and
the asynchronous backtracking algorithm (Section 2). Then, we show the basic
ideas and details of the asynchronous weak-commitment search algorithm (Sec-
tion 3), and empirical results which show the efficiency of the algorithm (Section
4). Finally, we examine the complexity of the algorithm (Section 5).

2 Distributed Constraint Satisfaction Problem and
Asynchronous Backtracking

2.1 Formalization

A CSP consists of n variables x1, x2, ..., xn, whose values are taken from fi-
nite, discrete domains D1, D2, ..., Dn respectively, and a set of constraints on
their values. A constraint is defined by a predicate. That is, the constraint
pk(xk1, . . . , xkj) is a predicate which is defined on the Cartesian product Dk1 ×
. . . × Dkj . This predicate is true iff the value assignment of these variables sat-
isfies this constraint. Solving a CSP is equivalent to finding an assignment of
values to all variables such that all constraints are satisfied.

A Distributed CSP is a CSP in which variables and constraints are distributed
among automated agents. We assume the following communication model.

– Agents communicate by sending messages. An agent can send messages to
other agents iff the agent knows the addresses of the agents1.

– The delay in delivering a message is finite, though random. For the trans-
mission between any pair of agents, messages are received in the order in
which they were sent.

Each agent has some variables and tries to determine their values. However,
there exist inter-agent constraints, and the value assignment must satisfy these
inter-agent constraints. Formally, there exist m agents 1, 2, . . . , m. Each variable
xj belongs to one agent i (this relation is represented as belongs(xj , i)). Con-
straints are also distributed among agents. The fact that an agent k knows a
constraint predicate pl is represented as known(pl, k).

We say that a Distributed CSP is solved iff the following conditions are
satisfied.
1 This model does not necessarily mean that the physical communication network

must be fully connected (i.e., a complete graph). Unlike most parallel/distributed
algorithm studies, in which the topology of the physical communication network
plays an important role, we assume the existence of a reliable underlying commu-
nication structure among agents and do not care about the implementation of the
physical communication network. This is because our primary concern is the coop-
eration of intelligent agents, rather than solving CSPs by certain multi-processor
architectures.



– ∀ i, ∀xj where belongs(xj , i), the value of xj is assigned to dj ,
and ∀ k, ∀pl where known(pl, k), pl is true under the assignment xj = dj .

2.2 Asynchronous Backtracking

A basic algorithm for solving Distributed CSPs called asynchronous backtrack-
ing is developed in [13]. In this algorithm, agents act asynchronously and con-
currently, in contrast to traditional sequential backtracking techniques, while
guaranteeing the completeness of the algorithm.

Without loss of generality, we make the following assumptions while describ-
ing our algorithms for simplicity. Relaxing these assumptions to general cases is
relatively straightforward2.

– Each agent has exactly one variable.
– All constraints are binary.
– There exists a constraint between any pair of agents.
– Each agent knows all constraint predicates relevant to its variable.

In the following, we use the same identifier xi to represent an agent and its
variable. We assume that each agent (and its variable) has a unique identifier.

In the asynchronous backtracking algorithm, each agent concurrently assigns
a value to its variable, and sends the value to other agents. After that, agents
wait for and respond to incoming messages. There are two kinds of messages:
ok? messages to communicate the current value, and nogood messages to com-
municate information about constraint violations. The procedures executed at
agent xi by receiving an ok? message and a nogood message are described in
Fig. 1. An overview of these procedures is given as follows.

– After receiving an ok? message, an agent records the values of other agents
in its agent view. The agent view represents the state of the world recognized
by this agent (Fig. 1 (i)).

– The priority order of variables/agents is determined by the alphabetical or-
der of the identifiers, i.e., preceding variables/agents in the alphabetical or-
der have higher priority. If the current value satisfies the constraints with
higher priority agents in the agent view, we say that the current value is
consistent with the agent view3. If the current value is not consistent with
the agent view, the agent selects a new value which is consistent with the
agent view (Fig. 1 (ii)).

2 In [11], an algorithm in which each agent has multiple variables is described. If there
exists no explicit constraint between two agents, there is a chance that an implicit
constraint exists between them. In such a case, a new relation between these agents
must be generated dynamically. The procedure for adding a new relation is described
in [13]. The idea of making originally implicit constraints explicit can be found in the
consistency algorithms for CSPs. For example, the adaptive consistency procedure
[4] adds links to a constraint network while transforming the constraint network to
a backtrack-free constraint network.

3 More precisely, the agent must satisfy not only initially given constraint predicates,
but also the new constraints communicated by nogood messages.



– If the agent can not find a value consistent with the agent view, the agent
sends nogood messages to higher priority agents (Fig. 1 (iii)). A nogood mes-
sage contains a set of variable values that can not be a part of any final
solution.

By using this algorithm, if a solution exists, agents will reach a stable state
where all constraints are satisfied. If there exists no solution, an empty nogood
will be found and the algorithm will terminate4.

when received (ok?, (xj , dj)) do — (i)
add (xj , dj) to agent view;
check agent view;

end do;

when received (nogood, xj , nogood) do
add nogood to nogood list;
check agent view;

end do;

procedure check agent view
when agent view and current value are not consistent do — (ii)

if no value in Di is consistent with agent view then backtrack; — (iii)
else select d ∈ Di where agent view and d are consistent;

current value ← d;
send (ok?, (xi, d)) to other agents; end if; end do;

procedure backtrack
nogoods ← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods do

broadcast to other agents that there is no solution,
terminate this algorithm; end do;

for each V ∈ nogoods do;
select (xj , dj) where xj has the lowest priority in V ;
send (nogood, xi, V ) to xj ;

end do;

Fig. 1. Procedures for receiving messages (asynchronous backtracking)

4 A set of variable values that is a superset of a nogood can not be a final solution. If
an empty set becomes a nogood, it means that there is no solution, since any set is
a superset of an empty set.



3 Asynchronous Weak-commitment Search

In this section, we briefly describe the weak-commitment search algorithm for
solving CSPs [12], and describe how the asynchronous backtracking algorithm
can be modified into the asynchronous weak-commitment search algorithm.

3.1 Weak-commitment Search Algorithm

In the weak-commitment search algorithm (Fig. 2), all variables have tentative
initial values. We can execute this algorithm by calling weak-commitment
({(x1, d1), (x2, d2), . . . , (xn, dn)}, {}), where di is the tentative initial value of
xi. In this algorithm, a consistent partial solution is constructed for a subset of
variables, and this partial solution is extended by adding variables one by one un-
til a complete solution is found. When a variable is added to the partial solution,
its tentative initial value is revised so that the new value satisfies all constraints
between the partial solution, and satisfies as many constraints between variables
that are not included in the partial solution as possible. This value ordering
heuristic is called the min-conflict heuristic [6]. The essential difference between
this algorithm and the min-conflict backtracking [6] is the underlined part in
Fig. 2. When there exists no value for one variable that satisfies all constraints
between the partial solution, this algorithm abandons the whole partial solution,
and starts constructing a new partial solution from scratch, using the current
value assignment as new tentative initial values.

This algorithm records the abandoned partial solutions as new constraints,
and avoids creating the same partial solution that has been created and aban-
doned before. Therefore, the completeness of the algorithm (always finds a so-
lution if one exists, and terminates if no solution exists) is guaranteed. The
experimental results on various example problems in [12] show that this algo-
rithm is 3 to 10 times more efficient than the min-conflict backtracking [6] or
the breakout algorithm [7].

3.2 Basic Ideas

The main characteristics of the weak-commitment search algorithm are as fol-
lows.

1. The algorithm uses the min-conflict heuristic as a value ordering heuristic.
2. It abandons the partial solution and restarts the search process if there exists

no consistent value with the partial solution.

Introducing the first characteristic into the asynchronous backtracking algo-
rithm is relatively straightforward. When selecting a variable value, if there exist
multiple values consistent with the agent view (those that satisfy all constraints
with variables of higher priority agents), the agent prefers the value that mini-
mizes the number of constraint violations with variables of lower priority agents.

In contrast, introducing the second characteristic into the asynchronous back-
tracking is not straightforward, since agents act concurrently and asynchronously,



procedure weak-commitment(left, partial-solution)
when all variables in left satisfy all constraints do

terminate the algorithm, current value assignment is a solution; end do
(xi, d)← a variable and value pair in left that does not satisfy some constraint;
values← the list of xi’s values that are consistent with partial-solution;
if values is an empty list;

if partial-solution is an empty list
then terminate the algorithm since there exists no solution;
else record partial-solution as a new constraint (nogood);

remove each element of partial-solution and add to left;

call weak-commitment(left, partial-solution); end if;
else value← the value within values that minimizes

the number of constraint violations with left;
remove (xi, d) from left;
add (xi, value) to partial-solution;
call weak-commitment(left, partial-solution); end if;

Fig. 2. Weak-commitment search algorithm

and no agent has exact information about the partial solution. Furthermore,
multiple agents may try to restart the search process simultaneously.

In the following, we show that the agents can commit to their decisions weakly
by changing the priority order dynamically. We define the way of establishing
the priority order by introducing priority values, and change the priority values
by the following rules.

– For each variable/agent, a non-negative integer value representing the pri-
ority order of the variable/agent is defined. We call this value the priority
value.

– The order is defined such that any variable/agent with a larger priority value
has higher priority.

– If the priority values of multiple agents are the same, the order is determined
by the alphabetical order of the identifiers.

– For each variable/agent, the initial priority value is 0.
– If there exists no consistent value for xl, the priority value of xl is changed

to k + 1, where k is the largest priority value of other agents.

Furthermore, in the asynchronous backtracking algorithm, agents try to avoid
situations previously found to be nogoods. However, due to the delay of mes-
sages, an agent view of an agent can occasionally be a superset of a previously
found nogood. In order to avoid reacting to unstable situations, and perform-
ing unnecessary changes of priority values, each agent performs the following
procedure.

– Each agent records the nogoods that it has sent. When the agent view is a
superset of a nogood that it has already sent, the agent will not change the
priority value and waits for the next message.



3.3 Details of Algorithm

In the asynchronous weak-commitment search, each agent concurrently assigns a
value to its variable, and sends the value to other agents. After that, agents wait
for and respond to incoming messages5. In Fig. 3, the procedures executed at
agent xi by receiving an ok? message and a nogood message are described6. The
differences between these procedures and the procedures for the asynchronous
backtracking algorithm are as follows.

– The priority value, as well as the current value, is communicated through
the ok? message (Fig. 3 (i)).

– The priority order is determined by the communicated priority values. If
the current value is not consistent with the agent view, i.e., some constraint
with variables of higher priority agents is not satisfied, the agent changes
its value so that the value is consistent with the agent view, and also the
value minimizes the number of constraint violations with variables of lower
priority agents (Fig. 3 (ii)).

– When xi can not find a consistent value with its agent view, xi sends nogood
messages to other agents, and increments its priority value. If xi has already
sent an identical nogood, xi will not change the priority value and will wait
for the next message (Fig. 3 (iii)).

3.4 Example of Algorithm Execution

We illustrate the execution of the algorithm using a distributed version of the
well-known n-queens problem (where n=4). There exist four agents, each of
which corresponds to a queen of each row. The goal of the agents is to find
positions on a 4×4 chess board so that they do not threaten one another.

The initial values are shown in Fig. 4 (a). Agents communicate these values
to one another. The values within parentheses represent the priority values. The
initial priority values are 0. Since the priority values are equal, the priority order
is determined by the alphabetical order of identifiers. Therefore, only the value of
x4 is not consistent with its agent view, i.e., only x4 is violating constraints with
higher priority agents. Since there is no consistent value, agent x4 sends nogood
messages and increments its priority value. In this case, the value minimizing the
number of constraint violations is 3, since it conflicts only with x3. Therefore,
x4 selects 3 and sends ok? messages to other agents (Fig. 4 (b)). Then, x3 tries
to change its value. Since there is no consistent value, agent x3 sends nogood
messages, and increments its priority value. In this case, the value that minimizes
5 Although the following algorithm is described in a way that an agent reacts to

messages sequentially, an agent can handle multiple messages concurrently, i.e., the
agent first revises agent view and nogood list according to the messages, and performs
check agent view only once.

6 It must be mentioned that the way to determine that agents as a whole have reached
a stable state is not contained in this algorithm. To detect the stable state, agents
must use distributed termination detection algorithms such as [1].



when received (ok?, (xj , dj , priority)) do — (i)
add (xj , dj , priority) to agent view;
check agent view;

end do;

when received (nogood, xj , nogood) do
add nogood to nogood list;
check agent view;

end do;

procedure check agent view
when agent view and current value are not consistent do

if no value in Di is consistent with agent view then backtrack;
else select d ∈ Di where agent view and d are consistent

and d minimizes the number of constraint violations; — (ii)
current value ← d;
send (ok?, (xi, d, current priority)) to other agents; end if; end do;

procedure backtrack — (iii)
nogoods ← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods do

broadcast to other agents that there is no solution,
terminate this algorithm; end do;

when no element of nogoods is included in nogood sent do
for each V ∈ nogoods do;

add V to nogood sent
for each (xj, dj) in V do;

send (nogood, xi, V ) to xj ; end do; end do;
pmax ← max(xj,dj ,pj)∈agent view (pj);

current priority ← 1 + pmax;
select d ∈ Di where d minimizes the number of constraint violations;
current value ← d;
send (ok?, (xi, d, current priority)) to other agents; end do;

Fig. 3. Procedures for receiving messages (asynchronous weak-commitment search)

the number of constraint violations is 1 or 2. In this example, x3 selects 1 and
sends ok? messages to other agents (Fig. 4 (c)). After that, x1 changes its value
to 2, and a solution is obtained (Fig. 4 (d)).

In the distributed 4-queens problem, there exists no solution when x1’s value
is 1. We can see that a bad decision can be revised without an exhaustive search
in the asynchronous weak-commitment search.



x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Fig. 4. Example of algorithm execution

3.5 Algorithm Completeness

The priority values are changed if and only if a new nogood is found7. Since
the number of possible nogoods is finite, the priority values can not be changed
infinitely. Therefore, after a certain time point, the priority values will be stable.
Then, we show that the situations described below will not occur when the
priority values are stable.

(i) There exist agents that do not satisfy some constraints, and all agents are
waiting for incoming messages.

(ii) Messages are repeatedly sent/received, and the algorithm will not reach a
stable state (infinite processing loop).

If situation (i) occurs, there exist at least two agents that do not satisfy
the constraint between them. Let us assume that the agent ranking k-th in the
priority order does not satisfy the constraint between the agent ranking j-th
(where j < k), and all agents ranking higher than k-th satisfy all constraints
within them. The only case that the k-th agent waits for incoming messages
even though the agent does not satisfy the constraint between the j-th agent is
that the k-th agent has sent nogood messages to higher priority agents. This fact
contradicts the assumption that higher priority agents satisfy constraints within
them. Therefore, situation (i) will not occur.

Also, if the priority values are stable, the asynchronous weak-commitment
search algorithm is basically identical to the asynchronous backtracking algo-
rithm. Since the asynchronous backtracking is guaranteed not to fall into an
infinite processing loop [13], situation (ii) will not occur.

From the fact that situation (i) or (ii) will not occur, we can guarantee that
the asynchronous weak-commitment search algorithm will always find a solution,
or find the fact that there exists no solution.

4 Evaluations

In this section, we evaluate the efficiency of algorithms by discrete event sim-
ulation, where each agent maintains its own simulated clock. An agent’s time
7 To be exact, different agents may find an identical nogood simultaneously.



is incremented by one simulated time unit whenever it performs one cycle of
computation. One cycle consists of reading all incoming messages, performing
local computation, and sending messages. We assume that a message issued at
time t is available to the recipient at time t + 1. We analyze performance in
terms of the amount of cycles required to solve the problem. Given this model,
we compare the following three kinds of algorithms: (a) asynchronous backtrack-
ing, in which a variable value is selected randomly from consistent values, and
the priority order is determined by alphabetical order, (b) min-conflict only, in
which the min-conflict heuristic is introduced into the asynchronous backtrack-
ing, but the priority order is statically determined by alphabetical order, and (c)
asynchronous weak-commitment search8.

We first applied these three algorithms to the distributed n-queens problem
described in the previous section, varying n from 10 to 1000. The results are
summarized in Table 1. For each n, we generated 100 problems, each of which
had different randomly generated initial values, and averaged the results for
these problems. For each problem, in order to conduct the experiments in a
reasonable amount of time, we set the bound for the number of cycles to 1000,
and terminated the algorithm if this limit was exceeded; we counted the result
as 1000. The ratio of problems completed successfully to the total number of
problems is also described in Table 1.

Table 1. Required cycles for distributed n-queens problem

asynchronous min-conflict only asynchronous
backtracking weak-commitment

n ratio cycles ratio cycles ratio cycles

10 100% 105.4 100% 102.6 100% 41.5

50 50% 662.7 56% 623.0 100% 59.1

100 14% 931.4 30% 851.3 100% 50.8

1000 0% — 16% 891.8 100% 29.6

The second example problem is the distributed graph-coloring problem. The
distributed graph-coloring problem is a graph-coloring problem, in which each
node corresponds to an agent. The graph-coloring problem involves painting
nodes in a graph by k different colors so that any two nodes connected by
an arc do not have the same color. We randomly generate a problem with n
nodes/agents and m arcs by the method described in [6], so that the graph is
connected and the problem has a solution. We evaluate the problem n = 60, 90,

8 The amounts of local computation performed in each cycle for (b) and (c) are equiv-
alent. The amounts of local computation for (a) can be smaller since it does not
use the min-conflict heuristic, but for the lowest priority agent, the amounts of local
computation of these algorithms are equivalent.



and 120, where m = n × 2 and k=3. This parameter setting corresponds to
the “sparse” problems for which poor performance of the min-conflict heuristic
is reported in [6]. We generate 10 different problems, and for each problem, 10
trials with different initial values are performed (100 trials in all). As in the
distributed n-queens problem, the initial values are set randomly. The results
are summarized in Table 2.

Table 2. Required cycles for distributed graph-coloring problem

asynchronous min-conflict only asynchronous
backtracking weak-commitment

n ratio cycles ratio cycles ratio cycles

60 13% 917.4 12% 937.8 100% 59.4

90 0% — 2% 994.5 100% 70.1

120 0% — 0% — 100% 106.4

Then, in order to examine the applicability of the asynchronous weak-commit-
ment search to real-life problems rather than artificial random problems, we ap-
plied these algorithms to the distributed resource allocation problem in a com-
munication network described in [8]. In this problem, there exist requests for
allocating circuits between switching nodes of NTT’s communication network in
Japan (Fig. 5). For each request, there exists an agent assigned to handle it, and
candidates for circuits are given. The goal is to find a set of circuits that satisfies
the resource constraints. We can formalize this problem as a Distributed CSP
by representing each request as a variable and each candidate as a possible value
for the variable. We generated problems based on data from the 400 Mbps back-
bone network extracted from the network configuration management database
developed in NTT Optical Network Systems Laboratories [10]. In each problem,
there exist 10 circuit allocation requests, and for each request, 50 candidates
are given. These candidates represent reasonably short circuits for satisfying the
request. The goal is to find the consistent combination of the candidates, i.e.,
different candidates do not require the same resources.

We generated 10 different sets of randomly generated initial values for 10
different problems (100 trials in all), and averaged the results. As in the previous
problems, the limit for the required number of cycles was set to 1000. The results
are summarized in Table 3.

We can see the following facts from these results.

– The asynchronous weak-commitment search algorithm can solve problems
that can not be solved within a reasonable amount of computation time
by other algorithms. By using only the min-conflict heuristic, although the
algorithm can obtain a certain amount of speed-up, it fails to solve many
problem instances.



Communication network

Switching node
Network element

R6 Request

R1

R2

R3
R4

R5R6

R7

R8
R9

R10

Fig. 5. Example of network resource allocation problem

– When the priority order is static, the efficiency of the algorithm is highly
dependent on the selection of initial values, and the distribution of required
cycles is quite large. For example, in the network resource allocation problem,
when only the min-conflict heuristic is used, the average number of required
cycles for 63 successfully completed trials is only 92.8. However, the number
of required cycles for 37 failed trials is more than 1000. When the initial
values of higher priority agents are good, the solution can easily be found.
If some of these values are bad, however, an exhaustive search is required
to revise these values; this tends to make the number of required cycles
exceed the limit. On the other hand, in the asynchronous weak-commitment
search, the initial values are less critical, and a solution can be found even
if the initial values are far from the final solution, since the variable values
gradually come close to the final solution.

– We can assume that the priority order represents a hierarchy of agent au-
thority, i.e., the priority order of decision making. If this hierarchy is static,
the misjudgments (bad value selections) of agents with higher priority are
fatal to all agents. On the other hand, when the priority order is changed dy-
namically and variable values are selected cooperatively, the misjudgments
of specific agents do not have fatal effects, since bad decisions will be weeded
out, and only good decisions can survive. These results are intuitively natu-
ral since they imply that a flexible agent organization performs better than
a static and rigid organization.



Table 3. Required cycles for network resource allocation problem

asynchronous min-conflict only asynchronous
backtracking weak-commitment

ratio cycles ratio cycles ratio cycles

32% 984.8 63% 428.4 100% 17.3

5 Discussions

Since constraint satisfaction is NP-complete in general, the worst-case time com-
plexity of the asynchronous weak-commitment search becomes exponential in the
number of variables n. The worst-case space complexity for each agent is deter-
mined by the number of recorded nogoods, which is also exponential in n. This
result seems inevitable since this algorithm changes the search order flexibly
while guaranteeing its completeness.

We can restrict the number of recorded nogoods, i.e., each agent records only
a fixed number of the most recently found nogoods. In this case, however, the
theoretical completeness can not be guaranteed (the algorithm may fall into an
infinite processing loop in which agents repeatedly find identical nogoods). Yet,
when the number of recorded nogoods is reasonably large, such an infinite pro-
cessing loop rarely occurs. Actually, the asynchronous weak-commitment search
algorithm can still find solutions for all example problems when the number of
recorded nogoods is restricted to 10.

6 Conclusions

In this paper, the asynchronous weak-commitment search algorithm for solving
Distributed CSPs is developed. In this algorithm, agents act asynchronously and
concurrently based on their local knowledge without any global control, while
guaranteeing the completeness of the algorithm. This algorithm can revise a bad
decision without an exhaustive search by changing the priority order of agents
dynamically. The experimental results indicate that this algorithm can solve
problems such as the distributed 1000-queens problem, the distributed graph-
coloring problem, and the network resource allocation problem, which can not
be solved by asynchronous backtracking algorithm within a reasonable amount
of time. These results imply that a flexible agent organization performs better
than a static and rigid organization.

Our future work includes showing the effectiveness of the asynchronous weak-
commitment search algorithm in more practical application problems, and ex-
amining ways of introducing other heuristics (e.g., forward-checking) into this
algorithm, and developing iterative improvement algorithms such as the break-
out algorithm [7] for solving Distributed CSPs.



Acknowledgments

The author wish to thank N. Fujii and I. Yoda for providing the network config-
uration management database, and Y. Nishibe for providing the example prob-
lems.

References

1. Chandy, K. and Lamport, L.: Distributed Snapshots: Determining Global States
of Distributed Systems, ACM Trans. on Computer Systems, Vol. 3, No. 1, (1985)
63–75

2. Collin, Z., Dechter, R., and Katz, S.: On the Feasibility of Distributed Constraint
Satisfaction, Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence (1991) 318–324

3. Conry, S. E., Kuwabara, K., Lesser, V. R., and Meyer, R. A.: Multistage Negotia-
tion for Distributed Constraint Satisfaction, IEEE Transactions on Systems, Man
and Cybernetics, Vol. 21, No. 6, (1991) 1462–1477

4. Dechter, R. and Pearl, J.: Network-based Heuristics for Constraint Satisfaction
Problems, Artificial Intelligence, Vol. 34, No. 1, (1988) 1–38

5. Huhns, M. N. and Bridgeland, D. M.: Multiagent Truth Maintenance, IEEE Trans-
actions on Systems, Man and Cybernetics, Vol. 21, No. 6, (1991) 1437–1445

6. Minton, S., Johnston, M. D., Philips, A. B., and Laird, P.: Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems, Arti-
ficial Intelligence, Vol. 58, No. 1–3, (1992) 161–205

7. Morris, P.: The Breakout Method for Escaping From Local Minima, Proceedings
of the Eleventh National Conference on Artificial Intelligence (1993) 40–45

8. Nishibe, Y., Kuwabara, K., Ishida, T., and Yokoo, M.: Speed-Up of Distributed
Constraint Satisfaction and Its Application to Communication Network Path As-
signments, Systems and Computers in Japan, Vol. 25, No. 12, (1994) 54 – 67

9. Sycara, K. P., Roth, S., Sadeh, N., and Fox, M.: Distributed Constrained Heuris-
tic Search, IEEE Transactions on Systems, Man and Cybernetics, Vol. 21, No. 6,
(1991) 1446–1461

10. Yamaguchi, H., Fujii, H., Yamanaka, Y., and Yoda, I.: Network Configuration
Management Database, NTT R & D, Vol. 38, No. 12, (1989) 1509–1518

11. Yokoo, M.: Dynamic Variable/Value Ordering Heuristics for Solving Large-Scale
Distributed Constraint Satisfaction Problems, 12th International Workshop on
Distributed Artificial Intelligence (1993) 407–422

12. Yokoo, M.: Weak-commitment Search for Solving Constraint Satisfaction Prob-
lems, Proceedings of the Twelfth National Conference on Artificial Intelligence
(1994) 313–318

13. Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K.: Distributed Constraint
Satisfaction for Formalizing Distributed Problem Solving, Proceedings of the
Twelfth IEEE International Conference on Distributed Computing Systems (1992)
614–621

14. Zhang, Y. and Mackworth, A.: Parallel and distributed algorithms for finite con-
straint satisfaction problems, Proceedings of the Third IEEE Symposium on Par-
allel and Distributed Processing (1991) 394–397


