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PP Time and Uncertainty

= The world changes, we need to track and predict it
= Examples: diabetes management, traffic monitoring

= Basic idea: copy state and evidence variables for each time
step

o X, — set of unobservable state variables at time t
e.g., BloodSugar,, StomachContents,

o E, — set of evidence variables at time t
e.g., MeasuredBloodSugar,, PulseRate,, FoodEaten,

= Assumes discrete time steps




*0e States and Observations

=  Process of change 1s viewed as series of snapshots, each
describing the state of the world at a particular time

=  Each time slice involves a set or random variables indexed
by t:
1. the set of unobservable state variables X,
2. the set of observable evidence variable E,

B The observation at time t is E, = e, for some set of values e,
B The notation X, denotes the set of variables from X, to X




Example

Rt_1 P(RtIRt_l)
T 0.7
F 0.3
R, |P@UJR)
) . T 0.9
What is the transition model? |F 0.2

What 1s the sensor model?

X’s (state
variables)

E’s (evidence
variables or
sensors)




Stationary Process/Markov Assumption
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= Markov Assumption: X, depends on some previous X.s

o First-order Markov process:
P(XX,..1) = P(X{IX, )

o kth order: depends on previous k time steps

= Sensor Markov assumption:
P(E|Xy. Eg.1) = P(EIX)
= Assume stationary process: transition model P(XX ;) and sensor
model P(E|X,) are the same for all t

o In a stationary process, the changes in the world state are governed by
laws that do not themselves change over time

o The process of change doesn’t change
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First-order and second-order

Markov processes
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*0e Complete Joint Distribution

= (Given:
o Transition model: P(X /X )
o Sensor model: P(E|X,)
o Prior probability: P(X,)
* Then we can specity complete joint distribution:
o Full joint distribution for BN (slide 10 last class)
P(x,...x,)=11"_P(x;,\x,)

o Using that equation, for any t:

t
P(Xp, X;s X, Bpoees E) = PX )] [ P(X; 1X)P(E; 1 X))
=1
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Inference Tasks

Filtering or monitoring: P(X/le,....,e,)
computing current belief state, given all evidence to date

Prediction: P(X,,,le,,....e)
computing prob. of some future state

Smoothing: P(X,le,,....e)
computing prob. of past state (hindsight)

Most likely explanation:

arg max;  P(x,,....xle,....e)
given sequence of observation, find sequence of states that is most
likely to have generated those observations.




PP Examples

* Filtering: What is the probability that it is raining today,
given all the umbrella observations up through today?

" Prediction: What is the probability that it will rain the day
after tomorrow, given all the umbrella observations up
through today?

* Smoothing: What is the probability that it rained yesterday,
given all the umbrella observations through today?

= Most likely explanation: if the umbrella appeared the first
three days but not on the fourth, what 1s the most likely
weather sequence to produce these umbrella sightings?
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*0e Learning

= Besides the inference tasks, we can also
learn the transition and sensor models from
observations.

= EM algorithm (chapter 20)

o Models are updated with estimates from
Inference

What transitions occurred and what states generated
the sensors readings

o Updated model provides new estimates
o The process iterates to convergence
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*0e Filtering

= Filtering: P(Xle,,...,e) computing current belief state, given all evidence to date

= Example: What is the probability that it is raining today, given all the umbrella
observations up through today?

=  We use recursive estimation to compute P(X,, I e,..,,) as a function of
e.;and P(X le,.)
=  We can write this as follows:

P()<t+1 lel:t+1) — P(Xt+1 lel:t’et+1)
= OLP(G |Xt+1ae1;t)P(Xt+1 lel:t)
— (X‘P(et+1 |Xt+1)P(Xt+1 lel:t)

= aP(e,,, 1 X)) P(X,, 1x)P(x, ley)

Xt

t+1

= This leads to a recursive definition
o f,,,, = aFORWARD(f,. .e,.,)

1:t+1
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PP Prediction

= Prediction: P(X,,,le,,...,e) computing probability of some future state

= Example: What is the probability that it will rain the day after tomorrow, given
all the umbrella observations up through today?

= Filtering without the addition of new evidence (e, )

P(X,, le,) insteadof P(X, le.,)




PP Smoothing

= Smoothing: P(X,le,,...,e) computing probability of past state (hindsight)

= Example: What is the probability that it rained yesterday, given all the
umbrella observations through today?

= Compute P(X,le,.) forO<=k <t

= Using a backward message b, ., = P(E,, ., | X,), we obtain
° P(Xyley) = oy by,

" The backward message can be computed using

bk+1:t = Zp(ekﬂ ‘ Xk+1)P(ek+2:t ‘ Xk+1)P(Xk+1 ‘ Xk)

Xk+1

= This leads to a recursive definition
° By, = aBACKWARD(b,,5,-€,,)
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& & « Probabilistic Temporal Models

* Hidden Markov Models (HMMs)

o One single state variable (umbrella example 1s an
HMM)

o For problems with more than one variable, vars are
combined into a single “megavariable” with tuples of
values. E.g. The state var. for the vacuum world
(localization of a robot) 1s the set of empty squares

= Kalman Filters

o Handling continuous variables

* Dynamic Bayesian Networks (DBNs)

o Any number of state variables and evidence variables
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o Includes the previous two




