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PP Bayesian Networks

* Independence and conditional independence
among variables can greatly reduce the full
joint distribution

= Bayesian Networks

o A structure used to represent the dependencies
among variables




Bayesian Belief Networks (BNs)

SACAS

e Definition: BN = (DAG, CPD)
— DAG: directed acyclic graph (BN’s structure)
e Nodes: random variables (typically binary or discrete, but
methods also exist to handle continuous variables)
e Arcs: indicate probabilistic dependencies between nodes

(lack of link signifies conditional independence)

— CPD: conditional probability distribution (BN’s parameters)
» Conditional probabilities at each node, usually stored as a table
(conditional probability table, or CPT)

P(x;|x,) wherex, is the set of all parent nodes of x;

— Root nodes are a special case — no parents, so just use priors

in CPD:
7w, =D,s0 P(x,|x,)=P(x,)
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Toothache: boolean variable indicating whether the patient

@ has a toothache
Cavity: boolean variable indicating whether the patient has a
cavity
Toothache @

Catch: whether the dentist’s probe catches in the cavity
Weather 1s independent of all the other variables

Catch 1s conditionally independent of Toothache given Cavity
— P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Likewise, Toothache is conditionally independent of Catch given Cavity
— P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

Equivalent statement:
— P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Cavity is a direct cause of Toothache and Catch

No direct causal relationship exists between Toothache and Catch

CA A~




Example BN with CPTs

P(A) = 0.001

P(CIA)=0.2
E(BIA) =0.3 / \‘ P(Cl=A) = 0.005
(BI—=A) = 0.001 \\ / \

P(DIB,C) =0.1 P(EIC) = 0.4
P(DIB,=C) = 0.01 P(EI-C) = 0.002
P(DI-B,C) = 0.01

P(DI=B,—C) = 0.00001

Note that we only specify P(A) etc., not P(=A), since they have to add to one
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SACAS

Example 2: BN with CPTs (1)

PE)
001

Earthquake

@H Calls

P

L

01

Your neighbors Mary and John have promised to call you to work

whenever they hear the alarm

John sometimes confuses the phone ringing with the alarm

Mary likes to hear loud music and sometimes fails to hear the alarm

Given the evidence of who has or has not called, we want to

estimate P(burglary)
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Example 2: BN with CPTs (2)

SACAS

Earthquake

PE)
001

@H Calls

e The probabilities actually summarize a potentially infinite set of
circumstances in which the alarm might fail to go off or John or Mary
might fail to call and report it.

e In this way we can deal with a very large world, at least approximately.
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Tenuous dependencies

@ Earthquake

v

@H Calls

e If there 1s an earthquake, John and Mary may not call even
if they heard the alarm ...

e May not be worth adding the complexity in the network for
the small gain in accuracy

— As we come closer to a fully connected network, the conditional
probability tables are the same as the joint distribution

CA A~




Ordering Matters

i Clrcinsy
\ET1 Cfe_! \E{ﬂifﬁi\s
\\ﬂoﬁmﬂaﬁs:\) | \ { Jm‘mCﬂHs)
_# A )N ,T T
7 (7 'l.CEar #?qrmﬁe /J; ."I
—1 N\ 6 / /
\'1 \
e \'\ /,..-——--.\_\ |
(Emm 3 N (G F w.\
Qfarﬁrguake ) _-l."m'iir/.

(a) (b)

e Given an ordering, the parents of a variable 1s the subset of its
predecessors that make it independent of all its other predecessors

* The ordering makes a big difference to the structure of the network
* (a) Order: Mary Calls, John Calls, Alarm, Burglary, Earthquake
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Conditional independence and

hain;

e Conditional independence assumption

- P(x;|7,,q)=P(x;|x,) @
where ¢ 1s any set of variables \ / q
(nodes) other than X; and its successors

— 7; blocks influence of other nodes on Xi
and 1ts successors (g influences X; only l / \
through variables in ;)

— With this assumption, the complete joint probability distribution of all
variables in the network can be represented by (recovered from) local
CPDs by chaining these CPDs:

P(xl,...,xn) — H;’:1P(xi lﬂ'i)




Chaining: Example

O\
NN

Computing the joint probab111ty for all Varlables 1S easy:

P(a, b, c, d, e)
= P(ela,b,c,d)P(a,b,c,d) by the product rule
= P(elc)P(a, b,c,d) by cond. indep. assumption

= P(elc)P(dla,b,c)P(a,b,c)
= P(elc)P(dIb,c)P(cla, b) P(a,b)
= P(elc)P(dIb,c)P(cla)P(bla)P(a)
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Topological semantics

e A node is conditionally independent of its non-descendants
given its parents

e A node is conditionally independent of all other nodes in the
network given its parents, children, and children’s parents
(also known as i1its Markov blanket)
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Representational extensions
o0 P

e Even though they are more compact than the full joint distribution,
CPTs for large networks can require a large number of parameters
(O(2%) where k is the branching factor of the network)
e Compactly representing CPT's
— Deterministic relationships
— Noisy-OR
— Noisy-MAX

e Adding continuous variables
— Discretization

— Use density functions (usually mixtures of Gaussians) to build hybrid
Bayesian networks (with discrete and continuous variables)




Inference in Bayesian
Networks




Inference tasks

SACAS

e Simple queries: Compute posterior distribution P(X. | E=e)
— E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
— P(Burglary | JohnCalls=true, MaryCalls=true) = <0.284, 0.716>

e Conjunctive queries:
- P(X, X; | E=e) = P(X; | e=e) P(X; | X, E=e)

e Optimal decisions: Decision networks include utility

information; probabilistic inference 1s required to find
P(outcome | action, evidence)

* Value of information: Which evidence should we seek next?

 Sensitivity analysis: Which probability values are most
critical?
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Approaches to inference

SACAS

e Exact inference
— Enumeration
— Variable elimination

— Clustering / join tree algorithms

e Approximate inference
— Stochastic simulation / sampling methods
— Markov chain Monte Carlo methods
— Genetic algorithms
— Neural networks
— Simulated annealing
— Mean field theory




Direct inference with BNs

SACAS

 Instead of computing the joint, suppose we just want the
probability for one variable

e Exact methods of computation:
— Enumeration
— Variable elimination

— Join trees: get the probabilities associated with every query variable




Inference by enumeration

SACAS

e Add all of the terms (atomic event probabilities) from the
full joint distribution

e If E are the evidence (observed) variables and Y are the
other (unobserved or hidden) variables, then:

PXle)= o PX,r)=a 2 P(X,e,y)
e Each P(X, E, Y) term can be computed using the chain rule

e Computationally expensive!




Inference by enumeration

SACAS

e P(Burglary | JohnCalls=true, MaryCalls=true)

e Hidden variables
— Earthquake and Alarm

. P(Blj,m)=a P(B, jm)= & =_ _P(B, j, m,e,a)
= 2,2, P(b)P(e)P(alb,e)P(jla)P(mla)
= P(b)2_P(e) 2 ,P(alb,e)P(jla)P(mla)

* We loop through the variables in order, multiplying CPT
entries as we go

=<0.284, 0.716>




Inference by enumeration

SACAS

e P(Burglary | JohnCalls=true, MaryCalls=true)

P(—alb,e) P(alb,—e) P(—alb,—e)
05 94

P(jla) P(jl=a) P(jla) P(j|=a)
.90 05 90 05

O O O O
P(m|a) P(m|—a) P(m|a) P(m|—a)
.70 01 .70 .01

O O O O




Example: Enumeration

RN
NN

* P(x)=2 ., Px,| ) P(7Ti)
e Suppose we want P(D=true), and only the value of E is
given as true

* P(dle)=a 2 ,z-P(a, b, c, d, e)
=a 2 ,gcP(a) P(bla) P(cla) P(dIb,c) P(elc)
e With simple iteration to compute this expression, there’s

going to be a lot of repetition (e.g., P(elc) has to be
recomputed every time we iterate over C=true)
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B o r

p(smart)=.8 p(study)=.6

\ / p(fair)=.9
(fuir

-p(prep|... | smar | =smart
)5tudy Y9 7

—study 5 A

p(pass| .. smart —smart |

) prep | —prep | prep |—prep Query: What is the

fair 9 |7 e > probablllty that a student
studied, given that th(—@g@&

—fair 1 1 N N




Variable elimination

SACAS

e Basically just enumeration, but with caching of local
calculations

e Linear for polytrees (singly connected BNs)
e Potentially exponential for multiply connected BN's
—Exact inference in Bayesian networks is NP-hard!




Variable elimination

SACAS

General 1dea:
e Write query in the form

P(Xn,e):z---ZZHP(xi | pa.)
e Iteratively h A

— Move all irrelevant terms outside of innermost sum
— Perform innermost sum, getting a new term
— Insert the new term into the product




Variable elimination: Example

P(w)= ) P(wlr,s)P(r|c)P(s|c)P(c)
— fP(w T, s@r |c)P(s @
= ZP(W |r,9)f, (1,8) f,(r, Sé%




Computing factors

:

20
/)]
(@)

P(R|C) | P(SIC) | P(C) P(R|C) P(S|C) P(C)

n|lm| | A4 4]
n|m| Al 4| || =]
n|lA| | A | 4| |4

R S f,(R,S) = 2, P(R|C) P(S|C) P(C)




e e Variable elimination: Example 2

e P(Burglary | JohnCalls=true, MaryCalls=true)

- PBlj,m) =& P(b) 2., P(e) 2 ,P(alb,e)P(jla)P(mla)
fiB)  f2(E) f3(A,B.E) f4(A) f5(A)




A more complex example

SACAS

e “Asia” network:
Visit to
Asia
>
Abnormalr
/in Chest
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e We want to compute P(d)

4-/,.
. VoA, T,74,

Initial factors

PWP(s)P(H V)P | s)P(b | s)P(alt,NP(x | a)P(d | a,b)




« We want to compute P(d)

4-I,.
. V,O,AX,7T,7T,U,

Initial factors

PWP()P(t |V)P(/| s)P(b | s)P(alt,NP(x | a)P(d | a,b)

Eliminate: v

Compute: 7,(F) = Z'D W)P(t | v)

= £(1)P(s)P(/ | s)P(b | 5)P(alt./)P(x | a)P(d | a,b)

Note: £(1) = A(t)

In general, result of elimination 1s not necessarily a probability

term Sy




e We want to compute P(d, )

- Need-toctiminatersx g,

e Initial factors

PWP(s)P(t |V)P(/ | s)P(b | s)P(al|t,NP(x | a)P(d | a,b)
= F(HP(s)P(/ | s)P(b| s)P(alt,NP(x | a)P(d | a,b)

Eliminate: s

Compute: fs(b:/):ZP(S)'D(b|5)P(/|5)
= rF(NOL(b,)P(alt,NP(x|a)P(d | a,b)

Summing on Sresults in a factor with two arguments £(b,/)
In general, result of elimination may be a function of severgg
ariables




e We want to compute A(d)

. + |/ A A
AT 7,A0

e Initial factors

PWP(s)P(t |V)P(/ | s)P(b | s)P(al|t,NP(x | a)P(d | a,b)
= £(1)P(s)P(/ | s)P(b | s)P(alt.NP(x | a)P(d | a,b)

= (1) (b,NP(a|t,)P(x|a)P(d | a,b)

Eliminate: x

Compute: 7.(a) = ZP(X | a)
= L6, (a)P(alt./)P(d | a,b)

Note: £, (a) = 1for all values of a / o
e




want to compute A(d)

e Initial factors

PWP(s)P(r | v)P(/| s)P(b| s)P(alt,NP(x | a)P(d | a,b)
= F(HP(s)P(/ | s)P(b| s)P(alt,NP(x | a)P(d | a,b)

= rF(NOL(b,)P(alt,NP(x|a)P(d | a,b)

= 1,1 (b, (a)P(alt./)P(d | a,b)

Eliminate: 7

Compute: f(a,/)= Zf/(f)P(a |#./)
= (b)) (a)f(a./)P(d | a,b)
CACAC
Y




want to compute A(d)

e Initial factors

PWP(s)P(t | V)P(/ | s)P(b| s)P(alt,NP(x | a)P(d | a,b)
= £ (NP(s)P(/ | s)P(b| s)P(alt./)P(x | a)P(d | a,b)

= £(NE(b,)P(alt.)P(x | a)P(d | a,b)

= £(O(6.)) (a)P(alt./)P(d | a,b)

= 1,(6,/)f.(a)f.(a,/)P(d | a,b)

Eliminate: /

Compute: 7,(a,b) = Zé(b'/)ﬁ(a,/)
/

= f,(a,b)f.(a)P(d | a,b) CAC A~
e




e We want to compute A(d)

"I\ r\]-‘m nnnnnn A
o ciminatC. o

e Initial factors

PWP(s)P(t | V)P(/ | s)P(b| s)P(alt,NP(x | a)P(d | a,b)
= £ (NP(s)P(/ | s)P(b| s)P(alt./)P(x | a)P(d | a,b)

= £(NE(b,)P(alt.)P(x | a)P(d | a,b)

= £(O(6.)) (a)P(alt./)P(d | a,b)

= 1,(b,/)f,(a)f,(a,/)P(d | a,b)

= f,(a,b)f.(a)P(d | a,b) = £, (b,d) = £,(d)

Eliminate: a,b
Compute:

£.(b,d)=

f(a b).(a)p(d | a,b




SACAS

e How do we deal with evidence?

e Suppose we are give evidence V=t S=F D=1
« Wewanttocompute AL, V=1t 5= D=1




SACAS

e We start by writing the factors:

PWP()P(H V)P | s)P(b | s)P(alt,NP(x | a)P(d | a,b)

e Since we know that I/ = #, we don’t need to eliminate V
« Instead, we can replace the factors A(V)and P(T/V)with

oy =PV =1) Fy(T)=P(T |V =1)

e These “select” the appropriate parts of the original factors given the evidence
* Note that fpﬂ/)is a constant, and thus does not appear in elimination of other variables

CAC A~
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SACAS)

e Givenevidence V=t S=Ff D=t
e Compute AL, V=t 5=F£D=t)

e Initial factors, after setting evidence:

oot ooy Vo o (DIP(a | 1.1)P(x | @)F, 4, (a, )




Dealing with evide; n

SACAS)

e Givenevidence V=t S=Ff D=t
e Compute AL, V=t 5=F£D=t)

e Initial factors, after setting evidence:

Toir o oy F s (Do s (BIP(al 1.1)P(x | @)1, 4, ,,(a.b)

 FEliminating X, we get

Tt ot o Vo) ( oy (BIP(@ | 1.1 (@) 1, (. 6)




SACAS

e Givenevidence V=t S=f D=t
e Compute PL, V=t S=F£D=t)

e Initial factors, after setting evidence:

Toir o oy F s (Do s (BIP(al 1.1)P(x | @)1, 4, ,,(a.b)

* FEliminating X, we get

Towr o) e iy o1y Vo 10 (D)P(a |#./)f(a AN ()
* FEliminating 7, we get

ot ocsoun Moss) (OI6(. ) (@ g1 4)(,0)




SACAS

e Givenevidence V=t S=f D=t
e Compute PL, V=t S=F£D=t)

e Initial factors, after setting evidence:

Toir o oy F s (Do s (BIP(al 1.1)P(x | @)1, 4, ,,(a.b)

* Eliminating x; we get

Tt ot o Vo) ( oy (BIP@ | 1.1 (@) 1, (. )

* Eliminating 7, we get

TowyToisyTounsy U o0 (DY (. 1) ()1 1, 1y (@, D)
* FEliminating a, we get

ﬁ(v)ﬁ’w)ﬁ’(/ls)(/ )ﬁ’(bIS)(b)ﬁ? (b'/)
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Dealing with evidencep &

o

SAC S

e Givenevidence V=t S=Ff£ D=+
e Compute AL, V=t S=FfD=1t)

e Initial factors, after setting evidence:

Loy o Toisy D)ooy (Do ey (O)P(a | 1.1)P(x | @)Y, , (@, D)

e Eliminating X, we get

oot Toin P Vo Vs (DIP(a | 7.1 (0 41 4. B)

* Eliminating 7, we get

L~ INE(N\L { ~ K\
fD(v)fD(s)fD(/ls)(/ )ﬂ(ms)(b AGRYS \&I p(d|a,p)\ ")

e Eliminating a, we get

T oo/ o) (DY (D.7)

» Eliminating b, we get

Tt eis)Tounsy 1 (/) S A A i
.




Variable elimination algorithm

SACAS

 LetX,,..., X be an ordering on the non-query variables

e Fori=m, .12, 2, 2, |] P(X,IParents (X))

X X

— Leave in the summation for X, only factors mentioning X,

— Multiply the factors, getting a factor that contains a number for each value of the
variables mentioned, including X

— Sum out X, getting a factor f that contains a number for each value of the variables
mentioned, not including X,

— Replace the multiplied factor in the summation




C lexity of variable eliminati
omplexity of variable elimination

Suppose in one elimination step we compute

LW yi) = Zf (X Vi Vi)
re (X Ve )’k) Hf(X Vit Vi)

This requires

multiplications (for each Value for x, y;, ..., ¥4 we do m multiplications) and

/
additions (for each value of y;, ..., ¥, we do /Val(X)/ additions)

»Complexity is exponential in the number of variables in the intermediate factors
»Finding an optimal ordering is NP-hard

CAC A~
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SACAS

p(smart)=.8

Exercise: Variable elimination

p(study)=.6

p(fair)=.9

-p(prep|...) | smart | -smart
study 9 7

—study 5 A

Query: What is the

............. smart —smart
p(pass|...)
prep | —prep |prep |-—prep
fair 9 v v 2

probability that a student 1s

1

1

smart, given that they%




Conditioning

O\
NN

e Conditioning: Find the network’s smallest cutset S (a set of nodes
whose removal renders the network singly connected)

— In this network, S = {A} or {B} or {C} or {D}
* For each instantiation of S, compute the belief update with the polytree
algorithm
e Combine the results from all instantiations of S

e Computationally expensive (finding the smallest cutset is in general NP-
hard, and the total number of possible instantiations of S is O(2"))

CAC A~
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Approximate Inference




Approaches to inference

SACAS

» Exact inference
— Enumeration
— Variable elimination
— Clustering / join tree algorithms
e Approximate inference
— Stochastic simulation / sampling methods
— Markov chain Monte Carlo methods




Approximate inference:

Direct I

* Generates events from a network that has no evidence
associated with it

e Randomly generate a very large number of instantiations
from the BN

— Generate instantiations for all variables — start at root variables and
work your way “forward” in topological order

— Probability distribution conditioned on values assigned to parents

e Use the frequency of values for Z to get estimated
probabilities

e Accuracy of the results depends on the size of the sample
(asymptotically approaches exact results)
—A-A- 2




Direct sampling algorithm

function PRIOR-SAMPLE(ln) returns an event sampled from the prior specified by bn
inputs: bn. a Bayvesian network specifying joint distnbution P(X, ..., Xn)

x +— an event with n elements
foreach vanable X; in Xy.,..., Ando

x[i] «+ a random sample from P(X; | parents(X;))
retfurn x




Direct sampling example

P(O)=5
(Clouay)
c [ Ps) —j x— C | PR
10 (Sp?'mh'e?;'f { Rﬂf?‘?_:) t| .80
o = S
\(ﬁf\
Grass /
S R

P(T)

t| 99

T
t | 90
7t %0

S 7| o0

e Sample from P(Cloudy) = <0.5, 0.5>, value 1s true

e Sample from P(Sprinklerlcloudy) = <0.1, 0.9>, value is false
e Sample from P(Rainlcloudy) = <0.8, 0.2>, value i1s true

e Sample from P(WetGrassl~sprinkler, rain) = <0.9, 0.1>, value
1S true

e [true, false, true, true]

CAC A~
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Approximate inference:

Reiect: I

e Suppose you are given values for some subset of the
variables, E, and want to infer values for unknown
variables, Z

e Used to compute conditional probabilities, 1.e. P(Xle)

e Randomly generate a very large number of instantiations
from the BN

— Generate instantiations for all variables

— Rejection sampling: Only keep those instantiations that are
consistent with the values for E

e Use the frequency of values for Z to get estimated
probabilities

e Accuracy of the results depends on the size of the sample
(asymptotically approaches exact results)
—A-A- 2




Rejection sampling example

(Cloudy)

c | Ps) j X—-- c PR
a)Gme (el
\( Wer ™5
S R|P(D
rr 00
t f| 90
7t %0
5 r| oo

e Query P(Rainlsprinkler), using 100 samples
— Out of the 100, 73 have Sprinkler=false

— We reject them

— From the 27 left, 8 have Rain=true

— P(RainlSprinkler) =<0.296, 0.704>




Likelihood weighting

SACAS

e Idea: Don’t generate samples that need to be rejected in the
first place!

e Sample only from the unknown variables Z

* Weight each sample according to the likelihood that it
would occur, given the evidence E




Markov Chain Monte Carlo algorithm

e So called because

— Markov chain — each instance generated in the sample is dependent
on the previous instance

— Monte Carlo — statistical sampling method

 Works different from rejection sample and likelihood
weighting
— MCMC generates each sample by making a random change to the
preceding example
— Current state: a value for every variable

— Next state: Make random changes to the current state

CAC A~
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Markov chain Monte Carlo algorithm

e So called because

— Markov chain — each instance generated in the sample is dependent
on the previous instance

— Monte Carlo — statistical sampling method

e Perform a random walk through variable assignment space,
collecting statistics as you go
— Start with a random instantiation, consistent with evidence variables
— At each step, for some nonevidence variable, randomly sample its
value, consistent with the other current assignments
e Given enough samples, MCMC gives an accurate estimate
of the true distribution of values

CAC A~
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Gibbs sampling

SACAS

e A particular form of MCMC

— Start with a random instantiation, consistent with evidence variables

— Generate next state by randomly sample a value for some
nonevidence variable X

e The sampling for X is done conditioned on the current values of the
variables in the Markov blanket of X

 Wanders randomly around the space of possible complete
assignments, flipping one variable at a time, but keeping the
evidence variables fixed




romstide 13) 1 OpOlogical semantics

e A node is conditionally independent of its non-descendants
given its parents

e A node is conditionally independent of all other nodes in the
network given its parents, children, and children’s parents
(also known as i1its Markov blanket)

CA A~




MCMC Gibbs sampling example

SACAS

(Cloudy)

c | Ps) j X—-- c PR
]G /““’”3 Ak
\ Hcr“\

Grass /
S R|P(D
t t] 00
t f| 90
7t %0
5 r| oo

e Query P(Rainlsprinkler, wetgrass)
e Initial state [true, true, false, true]
— Cloudy is sampled P(Cloudylsprinkler, ~rain)
— Suppose result 1s Cloudy=false
— New state 1s [false, true, false, true]
— Rain 1s sampled P(Rainl~cloudy, sprinkler, wetgrass)

— Suppose result 1s Rain=true

* Continue sampling, and normalize frequencies-to-get rasylEs) 69—



SACAS

p(smart)=.8

p(study)=.6

p(fair)=.9

-p(prep|...) | smart | -smart
study 9 7

—study 5 1

Topological order =...?
Random number

""""""""""""" smart —smart
p(pass|...)
prep | —prep |prep |-—prep
fair 9 v v 2

generator: .35, .76, .51, .44,

1

1

08, 28, 039202 &




Summary

SACAS

* Bayes nets
— Structure
— Parameters
— Conditional independence
— Chaining
BN inference
— Enumeration
— Variable elimination

— Sampling methods




Summary

SACAS

e Bayesian Networks

e Independence and conditional independence among
variables can greatly reduce the full joint distribution

e Bayesian Networks

— A structure used to represent the dependencies among variables

HE)
001

Earthquake o

Al A) 1] PoD
JohnCalls e | 0 MaryCalls 70
E 03 J .

.y,




Summary

SACAS

e Conditional Independence and Chaining

— With this assumption, the complete joint probability distribution of
all variables in the network can be represented by (recovered from)
local CPDs by chaining these CPDs

HE)
001

Earthquake

Al A) 1] PoD
JohnCalls e | 0 MaryCalls 70
E 03 J .
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Summary

SACAS

 Inference tasks
— Simple queries: Compute posterior distribution P(X, | E=e)
— E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
— P(Burglary | JohnCalls=true, MaryCalls=true) = <0.284, 0.716>
— Conjunctive queries:
- P(X;, X; | E=e) = P(X; | e=e) P(X, | X;, E=e)
e Exact inference
— Enumeration
— Variable elimination

— Clustering / join tree algorithms

e Approximate inference

— Stochastic simulation / sampling methods

— Markov chain Monte Carlo methods @_@_&




