

CMSC 671 Fall 2010

Tue 10/12/10

Knowledge Representation and Reasoning

Chapters 12.1-12.6

Prof. Laura Zavala, <u>laura.zavala@umbc.edu</u>, ITE 373, 410-455-8775

Introduction

- Real knowledge representation and reasoning systems come in several major varieties.
- These differ in their intended use, expressivity, features,...
- Some major families are
 - Logic programming languages
 - Theorem provers
 - Rule-based or production systems
 - Semantic networks
 - Frame-based representation languages
 - Databases (deductive, relational, object-oriented, etc.)
 - Constraint reasoning systems
 - Description logics
 - Bayesian networks
 - Evidential reasoning

Ontologies

- Specification of a conceptualization
- Representations of concepts
- Explicit formal specifications of the terms in the domain and relations among them
- Usually represented as a type hierarchy

Different levels

Upper Ontologies

- Highest-level categories: typically these might include:
 - Measurements
 - Objects and their properties (including fluent, or changing, properties)
 - Events and temporal relationships
 - Continuous processes
 - Mental events, processes; "beliefs, desires, and intentions"
- Also useful:
 - Subtype relationships
 - PartOf relationships
 - Composite objects

Upper ontology

- Applicable in any special-purpose domain
 - Extended with more specific concepts
- Bridge independent domains
- Attempts have been made to define a universal general-purpose ontology
- Several incompatible upper ontologies that attempt to represent all knowledge exist
 - CYC

An upper ontology: CYC

Why do we need an ontology

- To share common understanding of the structure of information among people or software agents
- To enable reuse of domain knowledge
- To make domain assumptions explicit
- To separate domain knowledge from the operational knowledge
 - We can merge, extend, and change
- To analyze domain knowledge

Ontological engineering

- How do you create an ontology for a particular application?
- How do you maintain an ontology for changing needs?
- How do you merge ontologies from different fields?
- How do you map across ontologies from different fields?

Reasoning systems for categories

- Categories are the primary building blocks of large-scale knowledge representation schemes.
- Semantic networks
 - Graphical aids
 - Infer properties of objects based on category membership
- Description Logics
 - Constructing and combining categories
 - Subset and superset relationships

Semantic Networks

- Simple representation scheme that uses a graph of labeled nodes and labeled, directed arcs to encode knowledge.
 - Usually used to represent static, taxonomic, concept dictionaries
- Typically used with a special set of accessing procedures that perform "reasoning"
 - e.g., inheritance of values and relationships
- Semantic networks were very popular in the '60s and '70s but are less frequently used today.
 - Often much less expressive than other KR formalisms
- The **graphical depiction** associated with a semantic network is a significant reason for their popularity.

Semantic Networks: example (1)

 SN allow representation of individual objects, categories of objects, and relations among objects.

A semantic network with four objects (John, Mary, 1, and 2) and four categories. Relations are denoted by labeled links.

Nodes and Arcs

• Arcs define binary relationships that hold between objects denoted by the nodes.

Semantic Networks

- The ISA (is-a) or AKO (a-kind-of) relation is often used to link instances to classes, classes to superclasses
- Some links (e.g. hasPart) are inherited along ISA paths.
- The semantics of a semantic net can be relatively informal or very formal
 - often defined at the implementation level

- In FOL we can assert
 - Fly(Shankar, NewYork, NewDelhi, Yesterday)

 In semantic networks the links between nodes represent only binary relations

Semantic Networks: example (2)

• A fragment of a semantic network showing the representation of the logical assertion Fly(Shankar, NewYork, NewDelhi, Yesterday).

Reification

- Non-binary relationships can be represented by "turning the relationship into an object"
- This is an example of what logicians call "reification"
 reify v : consider an abstract concept to be real
- We might want to represent the generic give event as a relation involving three things: a giver, a recipient and an object, give(john,mary,book32)

Individuals and Classes

- Many semantic networks distinguish
 - nodes representing individuals and those representing classes
 - the "subclass" relation from the "instance-of" relation

Link Types

Link Type	Semantics	Example
A Subset B	$A \subset B$	Cats \subset Mammals
A Member B	$A \in B$	$Bill \in Cats$
$A \xrightarrow{R} B$	R(A,B)	Bill <u>AB</u> 12
A <u>□</u> B	$\forall x \ x \in A \Rightarrow R(x, B)$	Burds iegs 2
$A \stackrel{\square}{\Longrightarrow} B$	$\forall x \exists y \ x \in A \Rightarrow y \in B \land R(x,y)$	Birds Parent Eirds

Inference by Inheritance

- One of the main kinds of reasoning done in a semantic net is the inheritance of values along the subclass and instance links.
- Semantic networks differ in how they handle the case of inheriting multiple different values.
 - All possible values are inherited, or
 - Only the "lowest" value or values are inherited

Conflicting Inherited Values

Multiple Inheritance

- A node can have any number of superclasses that contain it, enabling a node to inherit properties from multiple "parent" nodes and their ancestors in the network.
- These rules are often used to determine inheritance in such "tangled" networks where multiple inheritance is allowed:
 - If X<A<B and both A and B have property P, then X inherits A's property.</p>
 - If X<A and X<B but neither A<B nor B<Z, and A and B have property P with different and inconsistent values, then X does not inherit property P at all.

- Reification makes it possible to represent every ground, function-free atomic sentence of FOL in semantic networks.
- Some kinds of universally quantified sentences
- We still do not have:
 - Negation, disjunction, nested function symbols, and existential quantification.
- Semantic networks main advantages
 - Simplicity, transparency, and decidability of the inference procedure

Defaults and Overriding

- A person is assumed to have to legs unless that default is overriden
- In a strictly logical KB this would be a contradiction.
- Or we could have an exception:
 - □ $\forall x \ x \in Persons \land x \neq John => Legs(x,2)$

Nixon Diamond

■ This was the classic example circa 1980.

From Semantic Nets to Frames

- Semantic networks morphed into Frame
 Representation Languages in the '70s and '80s.
- A frame is a lot like the notion of an object in OOP, but has more meta-data.
- A frame has a set of slots.
- A **slot** represents a relation to another frame (or value).
- A slot has one or more facets.
- A **facet** represents some aspect of the relation.

Facets

- A slot in a frame holds more than a value.
- Other facets might include:
 - current fillers (e.g., values)
 - default fillers
 - minimum and maximum number of fillers
 - type restriction on fillers (usually expressed as another frame object)
 - attached procedures (if-needed, if-added, if-removed)
 - salience measure
 - attached constraints or axioms
- In some systems, the slots themselves are instances of frames.

Description Logics

- Describe definitions and properties of categories
- Two main inference tasks
 - subsumption (whether categories belong within other categories)
 - classification (checking wether an object belongs to a category)
 - finding the right place in a hierarchy of objects for a new description
- Current systems take care to keep the languages simple, so that all inference can be done in polynomial time (in the number of objects)
 - ensuring tractability of inference
- CLASSIC language is a typical description logic

- More expressive than propositional logic
- More efficient decision problems than first order predicate logic

 DL are of particular importance in providing a logical formalism for Ontologies and the Semantic Web

- A group of methods and technologies to allow machines to understand the meaning - or "semantics"
 - of information on the World Wide Web
 - Resource Description Framework (RDF)
 - Ontologies
 - Web Ontology Language (OWL)
 - Rule Engines or Systems (Forward Chaining and Backward Chaining)
 - SPARQL is a protocol and query language for semantic web data sources

Non-monotonic Reasoning

- In normal monotonic logic, adding more sentences to a KB only entails more conclusions.
 - if KB |- P then KB U {S} |- P
- Inheritance with exceptions is not monotonic (it is nonmonotonic)
 - Bird(Opus)
 - Fly(Opus)? Yes
 - Penguin(Opus)
 - Fly(Opus)? no

- Nonmonotonic logics attempt to formalize such reasoning by allow **default rules** of the form:
 - If P and concluding Q is consistent, then conclude Q
 - If Bird(X) then if consistent Fly(x)

Abduction

- Abduction is a reasoning process that tries to form plausible explanations for abnormal observations
 - Abduction is distinctly different from deduction and induction
 - Abduction is inherently uncertain
- Uncertainty is an important issue in abductive reasoning
- Some major formalisms for representing and reasoning about uncertainty
 - Mycin's certainty factors (an early representative)
 - Probability theory (esp. Bayesian belief networks)
 - Dempster-Shafer theory
 - Fuzzy logic
 - Truth maintenance systems
 - Nonmonotonic reasoning

Abduction

- **Definition** (Encyclopedia Britannica): reasoning that derives an explanatory hypothesis from a given set of facts
 - The inference result is a hypothesis that, if true, could explain the occurrence of the given facts

Examples

- Dendral, an expert system to construct 3D structure of chemical compounds
 - Fact: mass spectrometer data of the compound and its chemical formula
 - KB: chemistry, esp. strength of different types of bounds
 - Reasoning: form a hypothetical 3D structure that satisfies the chemical formula, and that would most likely produce the given mass spectrum

Abduction examples (cont.)

- Medical diagnosis
 - Facts: symptoms, lab test results, and other observed findings (called manifestations)
 - KB: causal associations between diseases and manifestations
 - Reasoning: one or more diseases whose presence would causally explain the occurrence of the given manifestations
- Many other reasoning processes (e.g., word sense disambiguation in natural language process, image understanding, criminal investigation) can also been seen as abductive reasoning

Comparing Abduction, Deduction, and Induction

minor premise: These balls are from the box

conclusion: These balls are black

observation: These balls are black

explanation: These balls are from the box

observation: These balls are black

hypothesized rule: All ball in the box are black

Whenever A then B -----Possibly A => B

Deduction reasons from causes to effects

Abduction reasons from effects to causes

Induction reasons from specific cases to general rules

Characteristics of Abductive Reasoning

- "Conclusions" are **hypotheses**, not theorems (may be false *even if* rules and facts are true)
 - E.g., misdiagnosis in medicine
- There may be multiple plausible hypotheses
 - Given rules A => B and C => B, and fact B, both A and C are plausible hypotheses
 - Abduction is inherently uncertain
 - Hypotheses can be ranked by their plausibility (if it can be determined)

Characteristics of Abductive Reasoning (cont.)

- Reasoning is often a hypothesize-and-test cycle
 - Hypothesize: Postulate possible hypotheses, any of which would explain the given facts (or at least most of the important facts)
 - Test: Test the plausibility of all or some of these hypotheses
 - One way to test a hypothesis H is to ask whether something that is currently unknown—but can be predicted from H—is actually true
 - If we also know A => D and C => E, then ask if D and E are true
 - If D is true and E is false, then hypothesis A becomes more plausible (support for A is increased; support for C is decreased)

- Reasoning is non-monotonic
 - That is, the plausibility of hypotheses can increase/decrease as new facts are collected
 - In contrast, deductive inference is monotonic: it never change a sentence's truth value, once known
 - In abductive (and inductive) reasoning, some hypotheses may be discarded, and new ones formed, when new observations are made

Sources of Uncertainty

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
- ▶ Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision Making with Uncertainty

- Rational behavior:
 - For each possible action, identify the possible outcomes
 - Compute the **probability** of each outcome
 - Compute the utility of each outcome
 - Compute the probability-weighted (expected)
 utility over possible outcomes for each action
 - Select the action with the highest expected utility (principle of Maximum Expected Utility)

Bayesian Reasoning

- Probability theory
- Bayesian inference
 - Use probability theory and information about independence
 - Reason diagnostically (from evidence (effects) to conclusions (causes)) or causally (from causes to effects)
- Bayesian networks
 - Compact representation of probability distribution over a set of propositional random variables
 - Take advantage of independence relationships

Other Uncertainty Representations

Default reasoning

 Nonmonotonic logic: Allow the retraction of default beliefs if they prove to be false

Rule-based methods

 Certainty factors (Mycin): propagate simple models of belief through causal or diagnostic rules

Evidential reasoning

Dempster-Shafer theory: Bel(P) is a measure of the evidence for P;
 Bel(¬P) is a measure of the evidence against P; together they define a belief interval (lower and upper bounds on confidence)

Fuzzy reasoning

- Fuzzy sets: How well does an object satisfy a vague property?
- Fuzzy logic: "How true" is a logical statement?

- Nonmonotonic logic: Represent commonsense reasoning, but can be computationally very expensive
- Certainty factors: Not semantically well founded
- **Dempster-Shafer theory:** Has nice formal properties, but can be computationally expensive, and intervals tend to grow towards [0,1] (not a very useful conclusion)
- Fuzzy reasoning: Semantics are unclear (fuzzy!), but has proved very useful for commercial applications

