
CMSC 671CMSC 671

Fall 2010Fall 2010

Thu 10/7/10Thu 10/7/10

FOL / Inference in FOL

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Some material adopted from Hwee Tou Ng's course slides

Knowledge based Knowledge based

agents and Logic agents and Logic
(review/summary)(review/summary)

Declarative approach

� Knowledge-based agents follow a
declarative approach to system building

� In contrast a procedural approach encodes
desired behaviors directly as program code.

� Knowledge and Inference are separte

� Inference is domain independent

� pit[2,2] or pit[3,1]

� If wumpus[1,1] then not wumpus[2,2]

4

Representation, reasoning, and

logic

�Logics are formal languages for representing

information such that conclusions can be

 drawn

�A knowledge representation language is

defined by:

� its syntax, which specifies all valid

sentences in the language

� its semantics, which defines the “meaning”

or truth of each sentence

Propositional logic

� The simplest logic

� Syntax - the proposition symbols P1, P2 are sentences
� ¬S (negation), S1 ∧ S2 (conjunction), S1 ∨ S2 (disjunction), S1⇒ S2

(implication), S1 ⇔ S2 (biconditional)

� Semantics
¬S is true iff S is false

S1 ∧ S2 is true iff S1 is true and S2 is true

S1 ∨ S2 is true iff S1is true or S2 is true

S1⇒ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1⇒S2 is true andS2⇒S1 is true

First-order logic

� First-order logic (FOL) models the world in terms of

� Objects, which are things with individual identities

� Properties of objects that distinguish them from other objects

� Relations that hold among sets of objects

� Functions, which are a subset of relations where there is only one

“value” for any given “input”

� Examples:

� Objects: Students, lectures, companies, cars ...

� Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-

after, owns, visits, precedes, ...

� Properties: blue, oval, even, large, ...

� Functions: father-of, best-friend, second-half, one-more-than ...

First-order logic (2)

� Uses Terms for referring to Objects

� a constant symbol, a variable symbol, or an n-place function

of n terms

� e.g. John, x, LeftLeg(John)

� Uses Predicate Symbols for referring to Relations

� e.g. Brother

� Atomic Sentences state facts. e.g. Brother(John, Sam)

� Complex Sentences are formed from atomic sentences

connected by the logical connectives: ¬P, P∨Q, P∧Q,

P→Q, P↔Q

� Quantified sentences add quantifiers ∀ and ∃

First-order logic (3)

� A well-formed formula (wff) is a sentence containing

no “free” variables. That is, all variables are “bound”

by universal or existential quantifiers.

– (∀x)P(x,y) has x bound as a universally quantified variable,

but y is free.

9

Entailment and derivation

�Entailment: KB |= Q
� The needle (Q) being in the haystack

� Q is entailed by KB if and only if the conclusion is
true in every logically possible world in which all
the premises in KB are true.

�Derivation: KB |- Q
� Finding the needle (Q) in the haystack (KB)

� We can derive Q from KB if there is a proof
consisting of a sequence of valid inference steps
starting from the premises in KB and resulting in Q

Inference

� KB ├i α = sentence α can be derived from

KB by procedure i

� Soundness: derivations produce only

 entailed sentences

� Completeness: derivations can produce all

 entailed sentences

11

Inference rules

�Logical inference is used to create new sentences
that logically follow from a given set of predicate
calculus sentences (KB).

�An inference rule is sound if every sentence X
produced by an inference rule operating on a KB
logically follows from the KB. (That is, the
inference rule does not create any contradictions)

�An inference rule is complete if it is able to
produce every expression that logically follows
from (is entailed by) the KB. (Note the analogy to
complete search algorithms.)

12

LogicalLogical

InferenceInference
Chapter 9

Entailment for FOL is

semidecidable

� Algorithms exist that say yes to every

entailed sentence, but no algorithm exists

that also says no to every nonentailed

sentence.

Inference rules for quantifiers

� Applied to sentences with quantifiers to

obtain sentences without quantifiers

� Universal instantiation

� ∀x P(x) ∴ P(A)

� Existential instantiation

� ∃x P(x) ∴P(F) ← skolem constant F

Universal instantiation

(a.k.a. universal elimination)

� We can infer any sentence obtained by

substituting a ground term

Universal instantiation

(a.k.a. universal elimination)

� If (∀x) P(x) is true, then P(C) is true, where

C is any constant in the domain of x

� Example:

– (∀x) eats(Ziggy, x) ⇒ eats(Ziggy,

IceCream)

� The variable symbol can be replaced by any

ground term, i.e., any constant symbol or

function symbol applied to ground terms

only

Existential instantiation

(a.k.a. existential elimination)

� The variable is replaced by a single new

constant symbol that does not appear

elsewhere in the knowledge base.

Existential instantiation

(a.k.a. existential elimination)

� From (∃x) P(x) infer P(c)

� Example:

� (∃x) eats(Ziggy, x) → eats(Ziggy, Stuff)

� Note that the variable is replaced by a brand-new

constant not occurring in this or any other sentence in the

KB

� Also known as skolemization; constant is a skolem

constant

� We don’t want to accidentally draw other inferences about

it by introducing the constant

� Convenient to use this to reason about the unknown object,

rather than constantly manipulating the existential

quantifier

Inference in FOL

� Propositionalization

� Use inference rules for quantifiers to convert the

knowledge base from first order logic to

propositional logic

� Use propositional inference

� Approach is slow, unless the domain is

small

20

Inference in FOL (2)

� Forward Chaining Algorithm

� derive the goal from the axioms

�Backward chaining Algorithm

� start with the goal and attempt to resolve them working

backwards

�Notice is the same idea as for propositional logic.

�We only need to take care of the quantifiers:

� Generalized Modus Ponens (GMP)

21

Automating FOL inference
with Generalized Modus

Ponens

22

Generalized Modus Ponens

(GMP)
� Apply modus ponens reasoning to generalized rules

� Combines And-Introduction, Universal-Elimination, and Modus Ponens

� From P(c) and Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c)

� General case: Given

� atomic sentences P1, P2, ..., PN

� implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R� Q1, ..., QN and R are atomic sentences

� substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N

� Derive new sentence: subst(θ, R)

� Substitutions

� subst(θ, α) denotes the result of applying a set of substitutions defined by θ
to the sentence α

� A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all occurrences
of variable symbol vi by term ti

� Substitutions are made in left-to-right order in the list

� subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream)

23

Generalized Modus Ponens

�∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

�∀y Greedy(y)

�King(John)

�? Evil(John)

�Applying the substitution {x/John, y/John}
we can infer Evil(John)

24

Generalized Modus Ponens

�If there is some substitution θ that

makes each of the conjuncts of the

premise of the implication identical to

the sentences already in the knowledge

base, then we can assert the conclusion

of the implication, after applying θ.

25

Unification

�Unification is a “pattern-matching” procedure

� Takes two atomic sentences, called literals, as input

� Returns “Failure” if they do not match and a substitution
list, θ, if they do

�That is, unify(p,q) = θ means subst(θ, p) = subst(θ,
q) for two atomic sentences, p and q

� θ is called the most general unifier (mgu)

�All variables in the given two literals are implicitly
universally quantified

�To make literals match, replace (universally
quantified) variables by terms

26

Unification algorithm

procedure unify(p, q, θ)

Scan p and q left-to-right and find the first corresponding

terms where p and q “disagree” (i.e., p and q not equal)

If there is no disagreement, return θ (success!)

Let r and s be the terms in p and q, respectively,

where disagreement first occurs

If variable(r) then {

Let θ = union(θ, {r/s})

Return unify(subst(θ, p), subst(θ, q), θ)

} else if variable(s) then {

Let θ = union(θ, {s/r})

Return unify(subst(θ, p), subst(θ, q), θ)

} else return “Failure”

end

27

Unification: Remarks

� Unify is a linear-time algorithm that returns the most

general unifier (mgu), i.e., the shortest-length substitution

list that makes the two literals match.

� In general, there is not a unique minimum-length

substitution list, but unify returns one of minimum length

� A variable can never be replaced by a term containing that

variable

Example: x/f(x) is illegal.

� This “occurs check” should be done in the above pseudo-

code before making the recursive calls

28

Unification examples

� Example:

� parents(x, father(x), mother(Bill))

� parents(Bill, father(Bill), y)

� {x/Bill, y/mother(Bill)}

� Example:

� parents(x, father(x), mother(Bill))

� parents(Bill, father(y), z)

� {x/Bill, y/Bill, z/mother(Bill)}

� Example:

� parents(x, father(x), mother(Jane))

� parents(Bill, father(y), mother(y))

� Failure

29

Automated inference for FOL

�Automated inference using FOL is harder than PL

� Variables can potentially take on an infinite number of
possible values from their domains

� Hence there are potentially an infinite number of ways to
apply the universal instantiation rule of inference

�Godel's Completeness Theorem says that FOL
entailment is only semidecidable

� If a sentence is true given a set of axioms, there is a
procedure that will determine this

� If the sentence is false, then there is no guarantee that a
procedure will ever determine this—i.e., it may never
halt

30

Horn clauses

� A Horn clause is a sentence of the form:

(∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x)

where

� there are 0 or more Pis and 0 or 1 Q

� the Pis and Q are positive (i.e., non-negated) literals

� Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the Pi are

all atomic and at most one of them is positive

� Prolog is based on Horn clauses

� Horn clauses represent a subset of the set of sentences

representable in FOL

31

Horn clauses II

�Special cases

� P1 ∧ P2 ∧ … Pn → Q

� P1 ∧ P2 ∧ … Pn → false

� true → Q

�These are not Horn clauses:

� p(a) ∨ q(a)

� (P ∧ Q) → (R ∨ S)

32

Forward chaining

�Proofs start with the given axioms/premises

in KB, deriving new sentences using GMP

until the goal/query sentence is derived

�This defines a forward-chaining inference

procedure because it moves “forward” from

the KB to the goal [eventually]

� Inference using GMP is complete for KBs

containing only Horn clauses

33

Forward chaining example

� KB:

� allergies(X) → sneeze(X)

� cat(Y) ∧ allergic-to-cats(X) → allergies(X)

� cat(Felix)

� allergic-to-cats(Lise)

� Goal:

� sneeze(Lise)

34

Forward chaining algorithm

35

Backward chaining

�Backward-chaining deduction using GMP is also
complete for KBs containing only Horn clauses

� Proofs start with the goal query, find rules with that
conclusion, and then prove each of the antecedents
in the implication

�Keep going until you reach premises

�Avoid loops: check if new subgoal is already on the
goal stack

�Avoid repeated work: check if new subgoal

� Has already been proved true

� Has already failed

36

Backward chaining example

� KB:

� allergies(X) → sneeze(X)

� cat(Y) ∧ allergic-to-cats(X) → allergies(X)

� cat(Felix)

� allergic-to-cats(Lise)

� Goal:

� sneeze(Lise)

37

Backward chaining algorithm

38

Forward vs. backward chaining

� FC is data-driven

� Automatic, unconscious processing

� E.g., object recognition, routine decisions

� May do lots of work that is irrelevant to the goal

� BC is goal-driven, appropriate for problem-solving

� Where are my keys? How do I get to my next class?

� Complexity of BC can be much less than linear in the
size of the KB

39

Completeness of GMP

� GMP (using forward or backward chaining) is complete for
KBs that contain only Horn clauses

� It is not complete for simple KBs that contain non-Horn
clauses

� The following entail that S(A) is true:

(∀x) P(x) → Q(x)

(∀x) ¬P(x) → R(x)

(∀x) Q(x) → S(x)

(∀x) R(x) → S(x)

� If we want to conclude S(A), with GMP we cannot, since
the second one is not a Horn clause

� It is equivalent to P(x) ∨ R(x)

40

Automating FOL inference

with resolution

41

Resolution

� Resolution is a sound and complete inference procedure
for FOL

� Main idea: Two clauses can be resolved if they contain
complementary literals

� Reminder: Resolution rule for propositional logic:

� P1 ∨ P2 ∨ ... ∨ Pn

� ¬P1 ∨ Q2 ∨ ... ∨ Qm

� Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm

� Examples

� P and ¬ P ∨ Q : derive Q (Modus Ponens)

� (¬ P ∨ Q) and (¬ Q ∨ R) : derive ¬ P ∨ R

� P and ¬ P : derive False [contradiction!]

� (P ∨ Q) and (¬ P ∨ ¬ Q) : derive True

42

Resolution (2)

�Propositional literals are complementary if one

if the negation of the other

�FOL literals are complementary if one unifies

with the negation of the other

43

Resolution in first-order logic

� Given sentences

P1 ∨ ... ∨ Pn

Q1 ∨ ... ∨ Qm

� in conjunctive normal form:

� each Pi and Qi is a literal, i.e., a positive or negated predicate symbol

with its terms,

� if Pj and ¬Qk unify with substitution list θ, then derive the

resolvent sentence:

subst(θ, P1 ∨... ∨ Pj-1 ∨ Pj+1 ... Pn ∨ Q1 ∨ …Qk-1 ∨ Qk+1 ∨... ∨ Qm)

� Example

� from clause P(x, f(a)) ∨∨∨∨ P(x, f(y)) ∨∨∨∨ Q(y)

� and clause ¬¬¬¬P(z, f(a)) ∨∨∨∨ ¬¬¬¬Q(z)

� derive resolvent P(z, f(y)) ∨∨∨∨ Q(y) ∨∨∨∨ ¬¬¬¬Q(z)

� using θ = {x/z}

44

A resolution proof tree

45

Resolution refutation

� Given a consistent set of axioms KB and goal sentence Q,
show that KB |= Q

� Proof by contradiction: Add ¬Q to KB and try to prove
false.

i.e., (KB |- Q) ↔ (KB ∧ ¬Q |- False)

� Resolution is refutation complete: it can establish that a
given sentence Q is entailed by KB, but can’t (in general) be
used to generate all logical consequences of a set of sentences

� Also, it cannot be used to prove that Q is not entailed by KB.

� Resolution won’t always give an answer since entailment is
only semidecidable
� And you can’t just run two proofs in parallel, one trying to prove Q and

the other trying to prove ¬Q, since KB might not entail either one

46

Refutation resolution proof

tree
¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergic-to-cats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergic-to-cats(z) cat(Felix)

sneeze(z) v ¬allergic-to-cats(z) allergic-to-cats(Lise)

false

¬sneeze(Lise)sneeze(Lise)

w/z

y/Felix

z/Lise

negated query

47

�How to convert FOL sentences to conjunctive

normal form (a.k.a. CNF, clause form):

normalization and skolemization

�How to unify two argument lists, i.e., how to

find their most general unifier (mgu) θ:

unification

�How to determine which two clauses in KB

should be resolved next (among all resolvable

pairs of clauses) : resolution (search) strategy

Required intermediate tasks

48

Converting to CNF

49

Converting sentences to CNF

1. Eliminate all ↔ connectives

(P ↔ Q) ⇒ ((P → Q) ^ (Q → P))

2. Eliminate all → connectives

(P → Q) ⇒ (¬P ∨ Q)

3. Reduce the scope of each negation symbol to a single predicate

¬¬P ⇒ P

¬(P ∨ Q) ⇒ ¬P ∧ ¬Q

¬(P ∧ Q) ⇒ ¬P ∨ ¬Q

¬(∀x)P⇒ (∃x)¬P

¬(∃x)P⇒ (∀x)¬P

4. Standardize variables: rename all variables so that each

quantifier has its own unique variable name

50

Converting sentences to clausal

form Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem

constants/functions

(∃x)P(x) ⇒ P(C)

C is a Skolem constant (a brand-new constant symbol that is not

used in any other sentence)

(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x))

since ∃ is within the scope of a universally quantified variable, use a

Skolem function f to construct a new value that depends on the

universally quantified variable

f must be a brand-new function name not occurring in any other

sentence in the KB.

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x))

In this case, f(x) specifies the person that x loves

51

Converting sentences to clausal

form

6. Remove universal quantifiers by (1) moving them

all to the left end; (2) making the scope of each the

entire sentence; and (3) dropping the “prefix” part

Ex: (∀x)P(x) ⇒ P(x)

7. Put into conjunctive normal form (conjunction of

disjunctions) using distributive and associative laws

(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R)

(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R)

8. Split conjuncts into separate clauses

9. Standardize variables so each clause contains only

variable names that do not occur in any other clause

52

An example

(∀∀∀∀x)(P(x) →→→→ ((∀∀∀∀y)(P(y) →→→→ P(f(x,y))) ∧∧∧∧ ¬¬¬¬(∀∀∀∀y)(Q(x,y) →→→→ P(y))))

2. Eliminate →

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y))))

3. Reduce scope of negation

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y))))

4. Standardize variables

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z))))

5. Eliminate existential quantification

(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))

6. Drop universal quantification symbols

(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))

53

Example

7. Convert to conjunction of disjunctions

(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧

(¬P(x) ∨ ¬P(g(x)))

8. Create separate clauses

¬P(x) ∨ ¬P(y) ∨ P(f(x,y))

¬P(x) ∨ Q(x,g(x))

¬P(x) ∨ ¬P(g(x))

9. Standardize variables

¬P(x) ∨ ¬P(y) ∨ P(f(x,y))

¬P(z) ∨ Q(z,g(z))

¬P(w) ∨ ¬P(g(w))

54

Unification

(see slides 25-28)

55

Resolution example

56

Practice example
Did Curiosity kill the cat?

� Jack owns a dog. Every dog owner is an animal lover. No

animal lover kills an animal. Either Jack or Curiosity killed

the cat, who is named Tuna. Did Curiosity kill the cat?

� These can be represented as follows:

A. (∃x) Dog(x) ∧ Owns(Jack,x)

B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x)

C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y))

D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. (∀x) Cat(x) → Animal(x)

G. Kills(Curiosity, Tuna) GOAL

57

�Convert to clause form

A1. (Dog(D))

A2. (Owns(Jack,D))

B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))

C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

E. Cat(Tuna)

F. (¬Cat(z), Animal(z))

�Add the negation of query:

¬G: (¬Kills(Curiosity, Tuna))

D is a skolem constant

58

� The resolution refutation proof

R1: ¬G, D, {} (Kills(Jack, Tuna))

R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack),

~Animal(Tuna))

R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y),

~Animal(Tuna))

R4: R3, A1, {y/D} (~Owns(Jack, D),

~Animal(Tuna))

R5: R4, A2, {} (~Animal(Tuna))

R6: R5, F, {z/Tuna} (~Cat(Tuna))

R7: R6, E, {} FALSE

59

� The proof tree
¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) ∨ ¬A(T)

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}

60

Resolution search strategies

�Repeated applications of the resolution

inference rule will eventually find a proof if

one exists.

�Some strategies help to find proofs

efficiently

61

Resolution TP as search

� Resolution can be thought of as the bottom-up

construction of a search tree, where the leaves are the

clauses produced by KB and the negation of the goal

� When a pair of clauses generates a new resolvent clause, add

a new node to the tree with arcs directed from the resolvent

to the two parent clauses

� Resolution succeeds when a node containing the False

clause is produced, becoming the root node of the tree

� A strategy is complete if its use guarantees that the empty

clause (i.e., false) can be derived whenever it is entailed

62

Strategies

�There are a number of general (domain-independent)

strategies that are useful in controlling a resolution

theorem prover:

� Unit preference

� Set of support

� Input resolution

� Subsumption

� Ordered resolution

63

ExampleExample

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire negated goal

64

Breadth-first search

�Level 0 clauses are the original axioms and

the negation of the goal

�Level k clauses are the resolvents computed

from two clauses, one of which must be from

level k-1 and the other from any earlier level

�Compute all possible level 1 clauses, then all

possible level 2 clauses, etc.

�Complete, but very inefficient

65

BFS exampleBFS example

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Battery-OK ∨ ¬Bulbs-OK
11. ¬Bulbs-OK ∨ Headlights-Work
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
15. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
16. … [and we’re still only at Level 1!]

1,4
1,5
2,3
2,5
2,6
2,7

66

Unit preference (unit resolution)

�Shortest-clause heuristic:

Generate a clause with the fewest literals first

�Unit resolution:

Prefer resolution steps in which at least one

parent clause is a “unit clause,” i.e., a clause

containing a single literal

� Not complete in general, but complete for Horn

clause KBs

67

Unit resolution exampleUnit resolution example

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Bulbs-OK ∨ Headlights-Work
11. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
12. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
13. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
14. ¬Engine-Starts ∨ Flat-Tire
15. ¬Engine-Starts ¬ Car-OK
16. … [this doesn’t seem to be headed anywhere either!]

1,5
2,5
2,6
2,7
3,8
3,9

68

Set of support

�At least one parent clause must be the

negation of the goal or a “descendant” of

such a goal clause (i.e., derived from a goal

clause)

� (When there’s a choice, take the most recent

descendant)

�Complete (assuming all possible set-of-

support clauses are derived)

�Gives a goal-directed character to the search

69

Set of support exampleSet of support example

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
12. ¬Engine-Starts
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK
15. ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK
16. … [a bit more focused, but we still seem to be wandering]

9,3
10,2
10,8
11,5
11,6
11,7

70

Unit resolution + set of support Unit resolution + set of support

exampleexample
1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Engine-Starts
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank
13. ¬Starter-OK ∨ Empty-Gas-Tank
14. Empty-Gas-Tank
15. FALSE
[Hooray! Now that’s more like it!]

9,3
10,8
12,2
12,5
13,6
14,7

71

Simplification heuristics

� Subsumption:
Eliminate all sentences that are subsumed by (more specific
than) an existing sentence to keep the KB small

� If P(x) is already in the KB, adding P(A) makes no sense – P(x) is a
superset of P(A)

� Likewise adding P(A) ∨ Q(B) would add nothing to the KB

� Tautology:
Remove any clause containing two complementary literals
(tautology)

� Pure symbol:
If a symbol always appears with the same “sign,” remove
all the clauses that contain it

� Equivalent to assuming that symbol to be always-true or always-
false
(∴ can’t draw any inferences about other symbols in the clause)

72

Example (Pure Symbol)Example (Pure Symbol)

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire

73

Input resolution

�At least one parent must be one of the input

sentences (i.e., either a sentence in the

original KB or the negation of the goal)

�Not complete in general, but complete for

Horn clause KBs

�Linear resolution

� Extension of input resolution

� One of the parent sentences must be an input

sentence or an ancestor of the other sentence

� Complete

74

Ordered resolution

�Search for resolvable sentences in order (left

to right)

�This is how Prolog operates

�Resolve the first element in the sentence first

�This forces the user to define what is

important in generating the “code”

�The way the sentences are written controls

the resolution

Using FOL

Using FOL

� Domain M: the set of all objects in the world (of interest)

� Assertions: sentences added to KB by using TELL (as in

propositional logic)

� TELL (KB, Person(Richard))

� Queries/Goals: ask questions of the KB. Any query that is

logically entailed by the knowledge base should be answered

affirmatively.

� ASK (KB, Person(Richard))

Using FOL (2)

� Can be cumbersome and prone to mistakes

� Database systems approach

� Unique names assumption

� Closed-World assumption (not unknown truth)

� Domain closure

Using forward chaining

� Systems implementing forward chaining are

known as production systems.

� Perform efficient updates with very large rule

sets

� Example: Datalog

Using backward chaining

� Backward chaining is used in logic

programming systems.

� Employ sophisticated compiler technology to

provide fast inference.

� It is the mechanism underlying the execution of

Prolog programs

Forward vs. backward chaining

� FC is data-driven

� Automatic, unconscious processing

� E.g., object recognition, routine decisions

� May do lots of work that is irrelevant to the goal

� BC is goal-driven, appropriate for problem-solving

� Where are my keys? How do I get to my next class?

� Complexity of BC can be much less than linear in the
size of the KB

81

Prolog

� A logic programming language based on Horn clauses

� Resolution refutation

� Control strategy: goal-directed and depth-first

� always start from the goal clause

� always use the new resolvent as one of the parent clauses for resolution

� backtracking when the current thread fails

� complete for Horn clause KB

� Support answer extraction (can request single or all answers)

� Orders the clauses and literals within a clause to resolve non-determinism

� Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)

� A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

� Use “closed world” assumption (negation as failure)

� If it fails to derive P(a), then assume ~P(a)

Prolog (2)

� Proof method of Prolog is resolution

refutation

� Backward reasoning with sub-goaling: we

assert the negated goal and try to work

backwards, unifying and resolving clauses

until we get to the empty clause

83

Summary

� Logical agents apply inference to a knowledge base to
derive new information and make decisions

� Basic concepts of logic:
� Syntax: formal structure of sentences

� Semantics: truth of sentences wrt models

� Entailment: necessary truth of one sentence given another

� Inference: deriving sentences from other sentences

� Soundness: derivations produce only entailed sentences

� Completeness: derivations can produce all entailed sentences

� FC and BC are linear time, complete for Horn clauses

� Resolution is a sound and complete inference method for
propositional and first-order logic

