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Declarative approach

� Knowledge-based agents follow a 
declarative approach to system building

� In contrast a procedural approach encodes 
desired behaviors directly as program code.

� Knowledge and Inference are separte

� Inference is domain independent

� pit[2,2] or pit[3,1]

� If wumpus[1,1] then not wumpus[2,2]
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Representation, reasoning, and 

logic

�Logics are formal languages for representing 

information such that conclusions can be 

 drawn

�A knowledge representation language is 

defined by: 

� its syntax, which specifies all valid 

sentences in the language 

� its semantics, which defines the “meaning”

or truth of each sentence



Propositional logic

� The simplest logic 

� Syntax - the proposition symbols P1, P2 are sentences
� ¬S (negation), S1 ∧ S2 (conjunction), S1 ∨ S2 (disjunction), S1⇒ S2

(implication), S1 ⇔ S2 (biconditional  )

� Semantics
¬S is true iff S is false  

S1 ∧ S2 is true iff S1 is true and S2 is true

S1 ∨ S2 is true iff S1is true or S2 is true

S1⇒ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1⇒S2 is true andS2⇒S1  is true



First-order logic

� First-order logic (FOL) models the world in terms of 

� Objects, which are things with individual identities

� Properties of objects that distinguish them from other objects

� Relations that hold among sets of objects

� Functions, which are a subset of relations where there is only one 

“value” for any given “input”

� Examples: 

� Objects: Students, lectures, companies, cars ... 

� Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-

after, owns, visits, precedes, ... 

� Properties: blue, oval, even, large, ... 

� Functions: father-of, best-friend, second-half, one-more-than ... 



First-order logic (2)

� Uses Terms for referring to Objects

� a constant symbol, a variable symbol, or an n-place function 

of n terms

� e.g. John, x, LeftLeg(John)

� Uses Predicate Symbols for referring to Relations

� e.g. Brother

� Atomic Sentences state facts. e.g. Brother(John, Sam)

� Complex Sentences are formed from atomic sentences 

connected by the logical connectives: ¬P, P∨Q, P∧Q, 

P→Q, P↔Q

� Quantified sentences add quantifiers ∀ and ∃



First-order logic (3)

� A well-formed formula (wff) is a sentence containing 

no “free” variables. That is, all variables are “bound”

by universal or existential quantifiers. 

– (∀x)P(x,y) has x bound as a universally quantified variable, 

but y is free. 
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Entailment and derivation

�Entailment: KB |= Q
� The needle (Q) being in the haystack

� Q is entailed by KB if and only if the conclusion is 
true in every logically possible world in which all 
the premises in KB  are true. 

�Derivation: KB |- Q
� Finding the needle (Q) in the haystack (KB)

� We can derive Q from KB if there is a proof 
consisting of a sequence of valid inference steps 
starting from the premises in KB and resulting in Q



Inference

� KB ├i α = sentence α can be derived from 

KB by procedure i 

� Soundness: derivations produce only 

 entailed sentences 

� Completeness: derivations can produce all 

 entailed sentences 



11

Inference rules

�Logical inference is used to create new sentences 
that logically follow from a given set of predicate 
calculus sentences (KB).

�An inference rule is sound if every sentence X 
produced by an inference rule operating on a KB 
logically follows from the KB. (That is, the 
inference rule does not create any contradictions)

�An inference rule is complete if it is able to 
produce every expression that logically follows 
from (is entailed by) the KB. (Note the analogy to 
complete search algorithms.)
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LogicalLogical

InferenceInference
Chapter 9



Entailment for FOL is 

semidecidable

� Algorithms exist that say yes to every 

entailed sentence, but no algorithm exists 

that also says no to every nonentailed

sentence.



Inference rules for quantifiers

� Applied to sentences with quantifiers to 

obtain sentences without quantifiers

� Universal instantiation

� ∀x P(x) ∴ P(A)

� Existential instantiation

� ∃x P(x) ∴P(F)     ← skolem constant F



Universal instantiation

(a.k.a. universal elimination)

� We can infer any sentence obtained by 

substituting a ground term



Universal instantiation

(a.k.a. universal elimination)

� If (∀x) P(x) is true, then P(C) is true, where 

C is any constant in the domain of x

� Example: 

– (∀x) eats(Ziggy, x) ⇒ eats(Ziggy, 

IceCream)

� The variable symbol can be replaced by any 

ground term, i.e., any constant symbol or 

function symbol applied to ground terms 

only



Existential instantiation

(a.k.a. existential elimination)

� The variable is replaced by a single new 

constant symbol that does not appear 

elsewhere in the knowledge base.



Existential instantiation

(a.k.a. existential elimination)

� From (∃x) P(x) infer P(c)

� Example:

� (∃x) eats(Ziggy, x) → eats(Ziggy, Stuff)

� Note that the variable is replaced by a brand-new 

constant not occurring in this or any other sentence in the 

KB

� Also known as skolemization; constant is a skolem

constant

� We don’t want to accidentally draw other inferences about 

it by introducing the constant 

� Convenient to use this to reason about the unknown object, 

rather than constantly manipulating the existential 

quantifier



Inference in FOL

� Propositionalization

� Use inference rules for quantifiers to convert the 

knowledge base from first order logic to 

propositional logic

� Use propositional inference

� Approach is slow, unless the domain is 

small
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Inference in FOL (2)

� Forward Chaining Algorithm

� derive the goal from the axioms

�Backward chaining Algorithm

� start with the goal and attempt to resolve them working 

backwards

�Notice is the same idea as for propositional logic. 

�We only need to take care of the quantifiers:

� Generalized Modus Ponens (GMP)
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Automating FOL inference 
with Generalized Modus 

Ponens
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Generalized Modus Ponens 

(GMP)
� Apply modus ponens reasoning to generalized rules

� Combines And-Introduction, Universal-Elimination, and Modus Ponens 

� From P(c) and  Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c)

� General case: Given

� atomic sentences P1, P2, ..., PN

� implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R� Q1, ..., QN and R are atomic sentences 

� substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N

� Derive new sentence: subst(θ, R)  

� Substitutions

� subst(θ, α) denotes the result of applying a set of substitutions defined by θ
to the sentence α

� A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all occurrences 
of variable symbol vi by term ti

� Substitutions are made in left-to-right order in the list

� subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream) 
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Generalized Modus Ponens

�∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

�∀y Greedy(y)

�King(John)

�? Evil(John)

�Applying the substitution {x/John, y/John} 
we can infer Evil(John)
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Generalized Modus Ponens

�If there is some substitution θ that 

makes each of the conjuncts of the 

premise of the implication identical to 

the sentences already in the knowledge 

base, then we can assert the conclusion 

of the implication, after applying θ.
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Unification

�Unification is a “pattern-matching” procedure 

� Takes two atomic sentences, called literals, as input

� Returns “Failure” if they do not match and a substitution 
list, θ, if they do

�That is, unify(p,q) = θ means subst(θ, p) = subst(θ, 
q) for two atomic sentences, p and q

� θ is called the most general unifier (mgu) 

�All variables in the given two literals are implicitly 
universally quantified 

�To make literals match, replace (universally 
quantified) variables by terms
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Unification algorithm

procedure unify(p, q, θ)

Scan p and q left-to-right and find the first corresponding

terms where p and q “disagree” (i.e., p and q not equal)

If there is no disagreement, return θ (success!)

Let r and s be the terms in p and q, respectively,

where disagreement first occurs

If variable(r) then {

Let θ = union(θ, {r/s})

Return unify(subst(θ, p), subst(θ, q), θ)

} else if variable(s) then {

Let θ = union(θ, {s/r})

Return unify(subst(θ, p), subst(θ, q), θ)

} else return “Failure”

end
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Unification: Remarks

� Unify is a linear-time algorithm that returns the most 

general unifier (mgu), i.e., the shortest-length substitution 

list that makes the two literals match. 

� In general, there is not a unique minimum-length 

substitution list, but unify returns one of minimum length

� A variable can never be replaced by a term containing that 

variable

Example: x/f(x) is illegal. 

� This “occurs check” should be done in the above pseudo-

code before making the recursive calls
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Unification examples

� Example:

� parents(x, father(x), mother(Bill)) 

� parents(Bill, father(Bill), y)

� {x/Bill, y/mother(Bill)}

� Example:

� parents(x, father(x), mother(Bill))

� parents(Bill, father(y), z)

� {x/Bill, y/Bill, z/mother(Bill)}

� Example:

� parents(x, father(x), mother(Jane))

� parents(Bill, father(y), mother(y))

� Failure
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Automated inference for FOL

�Automated inference using FOL is harder than PL

� Variables can potentially take on an infinite number of 
possible values from their domains

� Hence there are potentially an infinite number of ways to 
apply the universal instantiation rule of inference 

�Godel's Completeness Theorem says that FOL 
entailment is only semidecidable

� If a sentence is true given a set of axioms, there is a 
procedure that will determine this

� If the sentence is false, then there is no guarantee that a 
procedure will ever determine this—i.e., it may never 
halt
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Horn clauses

� A Horn clause is a sentence of the form:

(∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x) 

where 

� there are 0 or more Pis and 0 or 1 Q

� the Pis and Q are positive (i.e., non-negated) literals

� Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the Pi are 

all atomic and at most one of them is positive

� Prolog is based on Horn clauses

� Horn clauses represent a subset of the set of sentences 

representable in FOL
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Horn clauses II

�Special cases

� P1 ∧ P2 ∧ … Pn → Q

� P1 ∧ P2 ∧ … Pn → false

� true → Q

�These are not Horn clauses:

� p(a) ∨ q(a)

� (P ∧ Q) → (R ∨ S)
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Forward chaining

�Proofs start with the given axioms/premises 

in KB, deriving new sentences using GMP 

until the goal/query sentence is derived

�This defines a forward-chaining inference 

procedure because it moves “forward” from 

the KB to the goal [eventually]

� Inference using GMP is complete for KBs

containing only Horn clauses
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Forward chaining example

� KB:  

� allergies(X) → sneeze(X)

� cat(Y) ∧ allergic-to-cats(X) → allergies(X)

� cat(Felix)

� allergic-to-cats(Lise)

� Goal:

� sneeze(Lise)



34

Forward chaining algorithm
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Backward chaining

�Backward-chaining deduction using GMP is also 
complete for KBs containing only Horn clauses

� Proofs start with the goal query, find rules with that 
conclusion, and then prove each of the antecedents 
in the implication

�Keep going until you reach premises

�Avoid loops: check if new subgoal is already on the 
goal stack

�Avoid repeated work: check if new subgoal

� Has already been proved true

� Has already failed
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Backward chaining example

� KB:  

� allergies(X) → sneeze(X)

� cat(Y) ∧ allergic-to-cats(X) → allergies(X)

� cat(Felix)

� allergic-to-cats(Lise)

� Goal:

� sneeze(Lise)
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Backward chaining algorithm
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Forward vs. backward chaining

� FC is data-driven

� Automatic, unconscious processing

� E.g., object recognition, routine decisions

� May do lots of work that is irrelevant to the goal

� BC is goal-driven, appropriate for problem-solving

� Where are my keys?  How do I get to my next class?

� Complexity of BC can be much less than linear in the 
size of the KB
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Completeness of GMP

� GMP (using forward or backward chaining) is complete for 
KBs that contain only Horn clauses

� It is not complete for simple KBs that contain non-Horn 
clauses

� The following entail that S(A) is true:

(∀x) P(x) → Q(x)

(∀x) ¬P(x) → R(x)

(∀x) Q(x) → S(x)

(∀x) R(x) → S(x)

� If we want to conclude S(A), with GMP we cannot, since 
the second one is not a Horn clause

� It is equivalent to P(x) ∨ R(x)
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Automating FOL inference

with resolution
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Resolution

� Resolution is a sound and complete inference procedure 
for FOL

� Main idea: Two clauses can be resolved if they contain 
complementary literals

� Reminder: Resolution rule for propositional logic:

� P1 ∨ P2 ∨ ... ∨ Pn

� ¬P1 ∨ Q2 ∨ ... ∨ Qm

� Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm

� Examples

� P and ¬ P ∨ Q : derive Q (Modus Ponens)

� (¬ P ∨ Q) and (¬ Q ∨ R) : derive ¬ P ∨ R

� P and ¬ P : derive False [contradiction!]

� (P ∨ Q) and (¬ P ∨ ¬ Q) : derive True
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Resolution (2)

�Propositional literals are complementary if one 

if the negation of the other

�FOL literals are complementary if one unifies 

with the negation of the other
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Resolution in first-order logic

� Given sentences

P1 ∨ ... ∨ Pn

Q1 ∨ ... ∨ Qm

� in conjunctive normal form:

� each Pi and Qi is a literal, i.e., a positive or negated predicate symbol 

with its terms, 

� if Pj and ¬Qk unify with substitution list θ, then derive the 

resolvent sentence:

subst(θ, P1 ∨... ∨ Pj-1 ∨ Pj+1 ... Pn ∨ Q1 ∨ …Qk-1 ∨ Qk+1 ∨... ∨ Qm)

� Example

� from clause P(x, f(a)) ∨∨∨∨ P(x, f(y)) ∨∨∨∨ Q(y) 

� and clause ¬¬¬¬P(z, f(a)) ∨∨∨∨ ¬¬¬¬Q(z)

� derive resolvent P(z, f(y)) ∨∨∨∨ Q(y) ∨∨∨∨ ¬¬¬¬Q(z)

� using θ = {x/z} 
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A resolution proof tree
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Resolution refutation

� Given a consistent set of axioms KB and goal sentence Q, 
show that KB |= Q

� Proof by contradiction: Add ¬Q to KB and try to prove 
false.

i.e., (KB |- Q) ↔ (KB ∧ ¬Q |- False) 

� Resolution is refutation complete: it can establish that a 
given sentence Q is entailed by KB, but can’t (in general) be 
used to generate all logical consequences of a set of sentences

� Also, it cannot be used to prove that Q is not entailed by KB.

� Resolution won’t always give an answer since entailment is 
only semidecidable
� And you can’t just run two proofs in parallel, one trying to prove Q and 

the other trying to prove ¬Q, since KB might not entail either one
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Refutation resolution proof 

tree
¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergic-to-cats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergic-to-cats(z) cat(Felix)

sneeze(z) v ¬allergic-to-cats(z) allergic-to-cats(Lise)

false

¬sneeze(Lise)sneeze(Lise)

w/z

y/Felix

z/Lise

negated query
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�How to convert FOL sentences to conjunctive 

normal form (a.k.a. CNF, clause form): 

normalization and skolemization

�How to unify two argument lists, i.e., how to 

find their most general unifier (mgu) θ: 

unification

�How to determine which two clauses in KB 

should be resolved next (among all resolvable 

pairs of clauses) : resolution (search) strategy

Required intermediate tasks 



48

Converting to CNF
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Converting sentences to CNF

1. Eliminate all ↔ connectives 

(P ↔ Q) ⇒ ((P → Q) ^ (Q → P)) 

2. Eliminate all → connectives 

(P → Q) ⇒ (¬P ∨ Q) 

3. Reduce the scope of each negation symbol to a single predicate 

¬¬P ⇒ P

¬(P ∨ Q) ⇒ ¬P ∧ ¬Q

¬(P ∧ Q) ⇒ ¬P ∨ ¬Q

¬(∀x)P⇒ (∃x)¬P

¬(∃x)P⇒ (∀x)¬P

4. Standardize variables: rename all variables so that each 

quantifier has its own unique variable name
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Converting sentences to clausal 

form Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem

constants/functions

(∃x)P(x) ⇒ P(C) 

C is a Skolem constant (a brand-new constant symbol that is not 

used in any other sentence)

(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x))

since ∃ is within the scope of a universally quantified variable, use a 

Skolem function f to construct a new value that depends on the 

universally quantified variable

f must be a brand-new function name not occurring in any other 

sentence in the KB. 

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x)) 

In this case, f(x) specifies the person that x loves
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Converting sentences to clausal 

form

6. Remove universal quantifiers by (1) moving them 

all to the left end; (2) making the scope of each the 

entire sentence; and (3) dropping the “prefix” part

Ex: (∀x)P(x) ⇒ P(x)

7. Put into conjunctive normal form (conjunction of 

disjunctions) using distributive and associative laws

(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R)

(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R)

8. Split conjuncts into separate clauses

9. Standardize variables so each clause contains only 

variable names that do not occur in any other clause
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An example

(∀∀∀∀x)(P(x) →→→→ ((∀∀∀∀y)(P(y) →→→→ P(f(x,y))) ∧∧∧∧ ¬¬¬¬(∀∀∀∀y)(Q(x,y) →→→→ P(y))))

2. Eliminate →

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y)))) 

3. Reduce scope of negation

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y)))) 

4. Standardize variables

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z)))) 

5. Eliminate existential quantification

(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x))))) 

6. Drop universal quantification symbols

(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x))))) 
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Example

7. Convert to conjunction of disjunctions

(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧

(¬P(x) ∨ ¬P(g(x))) 

8. Create separate clauses

¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 

¬P(x) ∨ Q(x,g(x)) 

¬P(x) ∨ ¬P(g(x)) 

9. Standardize variables

¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 

¬P(z) ∨ Q(z,g(z)) 

¬P(w) ∨ ¬P(g(w))
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Unification

(see slides 25-28)
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Resolution example
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Practice example
Did Curiosity kill the cat?

� Jack owns a dog. Every dog owner is an animal lover. No 

animal lover kills an animal. Either Jack or Curiosity killed 

the cat, who is named Tuna. Did Curiosity kill the cat?

� These can be represented as follows:

A. (∃x) Dog(x) ∧ Owns(Jack,x)

B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x)

C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y))

D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. (∀x) Cat(x) → Animal(x)

G. Kills(Curiosity, Tuna) GOAL
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�Convert to clause form

A1. (Dog(D)) 

A2. (Owns(Jack,D))

B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))

C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

E. Cat(Tuna)

F. (¬Cat(z), Animal(z))

�Add the negation of query:

¬G: (¬Kills(Curiosity, Tuna))

D is a skolem constant
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� The resolution refutation proof

R1: ¬G, D, {} (Kills(Jack, Tuna))

R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack), 

~Animal(Tuna))

R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y), 

~Animal(Tuna))

R4: R3, A1, {y/D} (~Owns(Jack, D), 

~Animal(Tuna))

R5: R4, A2, {} (~Animal(Tuna))

R6: R5, F, {z/Tuna} (~Cat(Tuna))

R7: R6, E, {} FALSE
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� The proof tree
¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) ∨ ¬A(T)

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}
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Resolution search strategies

�Repeated applications of the resolution 

inference rule will eventually find a proof if 

one exists.

�Some strategies help to find proofs 

efficiently
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Resolution TP as search

� Resolution can be thought of as the bottom-up 

construction of a search tree, where the leaves are the 

clauses produced by KB and the negation of the goal

� When a pair of clauses generates a new resolvent clause, add 

a new node to the tree with arcs directed from the resolvent

to the two parent clauses

� Resolution succeeds when a node containing the False

clause is produced, becoming the root node of the tree

� A strategy is complete if its use guarantees that the empty 

clause (i.e., false) can be derived whenever it is entailed
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Strategies

�There are a number of general (domain-independent) 

strategies that are useful in controlling a resolution 

theorem prover:

� Unit preference

� Set of support

� Input resolution

� Subsumption

� Ordered resolution
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ExampleExample

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire negated goal
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Breadth-first search

�Level 0 clauses are the original axioms and 

the negation of the goal

�Level k clauses are the resolvents computed 

from two clauses, one of which must be from 

level k-1 and the other from any earlier level

�Compute all possible level 1 clauses, then all 

possible level 2 clauses, etc. 

�Complete, but very inefficient
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BFS exampleBFS example

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Battery-OK ∨ ¬Bulbs-OK
11. ¬Bulbs-OK ∨ Headlights-Work
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
15. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
16. … [and we’re still only at Level 1!]

1,4
1,5
2,3
2,5
2,6
2,7



66

Unit preference (unit resolution)

�Shortest-clause heuristic: 

Generate a clause with the fewest literals first

�Unit resolution: 

Prefer resolution steps in which at least one 

parent clause is a “unit clause,” i.e., a clause 

containing a single literal

� Not complete in general, but complete for Horn 

clause KBs
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Unit resolution exampleUnit resolution example

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Bulbs-OK ∨ Headlights-Work
11. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
12. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
13. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
14. ¬Engine-Starts ∨ Flat-Tire
15. ¬Engine-Starts ¬ Car-OK
16. … [this doesn’t seem to be headed anywhere either!]

1,5
2,5
2,6
2,7
3,8
3,9
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Set of support

�At least one parent clause must be the 

negation of the goal or a “descendant” of 

such a goal clause (i.e., derived from a goal 

clause)

� (When there’s a choice, take the most recent 

descendant)

�Complete (assuming all possible set-of-

support clauses are derived) 

�Gives a goal-directed character to the search



69

Set of support exampleSet of support example

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
12. ¬Engine-Starts
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK
15. ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK
16. … [a bit more focused, but we still seem to be wandering]

9,3
10,2
10,8
11,5
11,6
11,7
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Unit resolution + set of support Unit resolution + set of support 

exampleexample
1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Engine-Starts
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank
13. ¬Starter-OK ∨ Empty-Gas-Tank
14. Empty-Gas-Tank
15. FALSE
[Hooray! Now that’s more like it!]

9,3
10,8
12,2
12,5
13,6
14,7
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Simplification heuristics

� Subsumption:
Eliminate all sentences that are subsumed by (more specific 
than) an existing sentence to keep the KB small

� If P(x) is already in the KB, adding P(A) makes no sense – P(x) is a 
superset of P(A)

� Likewise adding P(A) ∨ Q(B) would add nothing to the KB

� Tautology: 
Remove any clause containing two complementary literals 
(tautology)

� Pure symbol:
If a symbol always appears with the same “sign,” remove 
all the clauses that contain it

� Equivalent to assuming that symbol to be always-true or always-
false 
(∴ can’t draw any inferences about other symbols in the clause)
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Example (Pure Symbol)Example (Pure Symbol)

1. ¬Battery-OK ∨∨∨∨ ¬Bulbs-OK ∨∨∨∨ Headlights-Work
2. ¬Battery-OK ∨∨∨∨ ¬Starter-OK ∨∨∨∨ Empty-Gas-Tank ∨∨∨∨ Engine-Starts
3. ¬Engine-Starts ∨∨∨∨ Flat-Tire ∨∨∨∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire



73

Input resolution

�At least one parent must be one of the input 

sentences (i.e., either a sentence in the 

original KB or the negation of the goal) 

�Not complete in general, but complete for 

Horn clause KBs

�Linear resolution

� Extension of input resolution

� One of the parent sentences must be an input 

sentence or an ancestor of the other sentence

� Complete
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Ordered resolution

�Search for resolvable sentences in order (left 

to right)

�This is how Prolog operates

�Resolve the first element in the sentence first

�This forces the user to define what is 

important in generating the “code”

�The way the sentences are written controls 

the resolution



Using FOL



Using  FOL

� Domain M: the set of all objects in the world (of interest)

� Assertions: sentences added to KB by using TELL (as in 

propositional logic)

� TELL (KB, Person(Richard))

� Queries/Goals: ask questions of the KB. Any query that is 

logically entailed by the knowledge base should be answered 

affirmatively.

� ASK (KB, Person(Richard))



Using  FOL (2)

� Can be cumbersome and prone to mistakes

� Database systems approach

� Unique names assumption

� Closed-World assumption (not unknown truth)

� Domain closure



Using forward chaining

� Systems implementing forward chaining are 

known as production systems.

� Perform efficient updates with very large rule 

sets

� Example: Datalog



Using backward chaining

� Backward chaining is used in logic 

programming systems.

� Employ sophisticated compiler technology to 

provide fast inference.

� It is the mechanism underlying the execution of 

Prolog programs



Forward vs. backward chaining

� FC is data-driven

� Automatic, unconscious processing

� E.g., object recognition, routine decisions

� May do lots of work that is irrelevant to the goal

� BC is goal-driven, appropriate for problem-solving

� Where are my keys?  How do I get to my next class?

� Complexity of BC can be much less than linear in the 
size of the KB
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Prolog

� A logic programming language based on Horn clauses

� Resolution refutation

� Control strategy: goal-directed and depth-first

� always start from the goal clause

� always use the new resolvent as one of the parent clauses for resolution

� backtracking when the current thread fails

� complete for Horn clause KB

� Support answer extraction (can request single or all answers)

� Orders the clauses and literals within a clause to resolve non-determinism

� Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)

� A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

� Use “closed world” assumption (negation as failure)

� If it fails to derive P(a), then assume ~P(a)



Prolog (2)

� Proof method of Prolog is resolution 

refutation 

� Backward reasoning with sub-goaling: we 

assert the negated goal and try to work 

backwards, unifying and resolving clauses 

until we get to the empty clause 
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Summary

� Logical agents apply inference to a knowledge base to 
derive new information and make decisions

� Basic concepts of logic:
� Syntax: formal structure of sentences

� Semantics: truth of sentences wrt models

� Entailment: necessary truth of one sentence given another

� Inference: deriving sentences from other sentences

� Soundness: derivations produce only entailed sentences

� Completeness: derivations can produce all entailed sentences

� FC and BC are linear time, complete for Horn clauses

� Resolution is a sound and complete inference method for 
propositional and first-order logic


