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Propositional logic is a weak 
language

�Propositional logic lacks expressive power

�Hard to identify “individuals” (e.g., Mary, 3)

�Can’t directly talk about properties of individuals or 

relations between individuals (e.g., “Bill is tall”)

�Generalizations, patterns, regularities can’t easily be 

represented (e.g., “all triangles have 3 sides”)
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First-Order Logic: a more expressive 
logic 

� First-Order Logic (abbreviated FOL or FOPC) is 

expressive enough to concisely represent this kind of 

information

� FOL adds relations, variables, and quantifiers, e.g.,

�“Every elephant is gray”: ∀ x (elephant(x) → gray(x))

�“There is a white alligator”: ∃ x (alligator(X) ^ white(X))



FOL: Example



Why a more expressive logic?



First-order logic

� First-order logic (FOL) models the world in terms of 

� Objects, which are things with individual identities

� Properties of objects that distinguish them from other objects

� Relations that hold among sets of objects

� Functions, which are a subset of relations where there is only one 

“value” for any given “input”

� Examples: 

� Objects: Students, lectures, companies, cars ... 

� Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-

after, owns, visits, precedes, ... 

� Properties: blue, oval, even, large, ... 

� Functions: father-of, best-friend, second-half, one-more-than ... 



First-order logic (2)

� Uses Terms for referring to Objects

� a constant symbol, a variable symbol, or an n-place function 

of n terms

� e.g. John, x, LeftLeg(John)

� Uses Predicate Symbols for referring to Relations

� e.g. Brother

� Atomic Sentences state facts. e.g. Brother(John, Sam)

� Complex Sentences are formed from atomic sentences 

connected by the logical connectives: ¬P, P∨Q, P∧Q, 

P→Q, P↔Q

� Quantified sentences add quantifiers ∀ and ∃



First-order logic (3)

� A well-formed formula (wff) is a sentence containing 

no “free” variables. That is, all variables are “bound”

by universal or existential quantifiers. 

– (∀x)P(x,y) has x bound as a universally quantified variable, 

but y is free. 



A BNF for FOL

• S := <Sentence> ;

• <Sentence> := <AtomicSentence> | 

• <Sentence> <Connective> <Sentence> |

• <Quantifier> <Variable>,... <Sentence> |

• "NOT" <Sentence> |

• "(" <Sentence> ")"; 

• <AtomicSentence> := <Predicate> "(" <Term>, ... ")" |

• <Term> "=" <Term>;

• <Term> := <Function> "(" <Term>, ... ")" |

• <Constant> |

• <Variable>;

• <Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";

• <Quantifier> := "EXISTS" | "FORALL" ;

• <Constant> := "A" | "X1" | "John" | ... ;

• <Variable> := "a" | "x" | "s" | ... ;

• <Predicate> := "Before" | "HasColor" | "Raining" | ... ; 

• <Function> := "Mother" | "LeftLegOf" | ... ;
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Ontology and epistemology

• Ontological commitment – what the language assumes about 

the nature of reality

• Epistemological commitment – the possible states of 

knowledge



Quantifiers

� Universal quantification

� (∀∀∀∀x)P(x) means that P holds for all values of x 
in the domain associated with that variable

� E.g., (∀∀∀∀x) dolphin(x) → mammal(x)

� Existential quantification

� (∃∃∃∃ x)P(x) means that P holds for some value of 
x in the domain associated with that variable

� E.g., (∃∃∃∃ x) mammal(x) ∧ lays-eggs(x)

� Permits one to make a statement about some 
object without naming it



Quantifiers

� Universal quantifiers are often used with “implies” to form “rules”:

– (∀x) student(x) → smart(x) means “All students are smart”

� Universal quantification is rarely used to make blanket statements 

about every individual in the world: 

– (∀x)student(x)∧smart(x) means “Everyone in the world is a student and is 

smart”

� Existential quantifiers are usually used with “and” to specify a list 

of properties about an individual:

– (∃x) student(x) ∧ smart(x) means “There is a student who is smart”

� A common mistake is to represent this English sentence as the FOL 

sentence:

– (∃x) student(x) → smart(x) 

� But what happens when there is a person who is not a student?



Pretest

• Everybody likes Raymond

– ∀x likes(x,Raymond) 

• At least one student will get an A

– ∃x student(x) ∧ grade (x, A)

• At least two students will get a B

– ∃x ∃y student(x) ∧ student(y) ∧ grade (x, A) ∧ grade (y, A) 

^ ¬(x=y)

• You can fool some of the people all of the time

– ∃x person(x) ∧ (∀t ∀y person(y) → fool(y,x,t))

– ∃x person(x) ∧ ∀t fool(You,x,t))

• You can fool all of the people some of the time

– ∀x ∃t person(x) → fool(You,x,t)

– ∀x person(x) → ∃t fool(You,x,t)

likes(x,y) - x likes y

student(x) - x is a student

grade(x,y) - x receives grade y

person(x) - x is a person

fool(x,y,t) - x fools y at time t



Translating English to FOL
• Every gardener likes the sun.

– ∀x gardener(x) → likes(x,Sun) 

• You can fool some of the people all of the time.

– ∃x ∀t  person(x) ∧time(t) → can-fool(x,t)

• You can fool all of the people some of the time.

– ∀x ∃t (person(x) → time(t) ∧can-fool(x,t))

– ∀x (person(x) → ∃t (time(t) ∧can-fool(x,t))

• All purple mushrooms are poisonous.

– ∀x (mushroom(x) ∧ purple(x)) → poisonous(x) 

• No purple mushroom is poisonous.

– ¬∃x purple(x) ∧ mushroom(x) ∧ poisonous(x) 

– ∀x  (mushroom(x) ∧ purple(x)) → ¬poisonous(x) 

• There are exactly two purple mushrooms.

– ∃x ∃y mushroom(x) ∧ purple(x) ∧ mushroom(y) ∧ purple(y) ^ ¬(x=y) ∧ ∀z 
(mushroom(z) ∧ purple(z)) → ((x=z) ∨ (y=z)) 

• Clinton is not tall.

– ¬tall(Clinton) 

• X is above Y iff X is on directly on top of Y or there is a pile of one or more 
other objects directly on top of one another starting with X and ending with Y.

– ∀x ∀y above(x,y) ↔ (on(x,y) ∨ ∃z (on(x,z) ∧ above(z,y))) 

Equivalent

Equivalent



Properties of quantifiers

� ∀x ∀y is the same as ∀y ∀x 
� ∃x ∃y is the same as ∃y ∃x  

� ∃x ∀y is not the same as ∀y ∃x 
� ∃x ∀y Loves(x,y)

� “There is a person who loves everyone in the world” 

� ∀y ∃x Loves(x,y)
� “Everyone in the world is loved by at least one person” 

� Quantifier duality  : each can be expressed using the other

� ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream  )
� ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli  )



Connections between All and 

Exists

•We can relate sentences involving 

∀ and ∃ using De Morgan’s laws:

• (∀x) ¬P(x) ↔ ¬(∃x) P(x)

• ¬(∀x) P ↔ (∃x) ¬P(x)

• (∀x) P(x) ↔ ¬ (∃x) ¬P(x)

• (∃x) P(x) ↔ ¬(∀x) ¬P(x)



Example: A simple genealogy KB in 
FOL

� Build a small genealogy knowledge base using FOL that

� contains facts of immediate family relations (spouses, parents, etc.)

� contains definitions of more complex relations (ancestors, relatives)

� is able to answer queries about relationships between people

� Predicates:

� parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.

� spouse(x, y), husband(x, y), wife(x,y)

� ancestor(x, y), descendant(x, y)

� male(x), female(y)

� relative(x, y)

� Facts:

� husband(Joe, Mary), son(Fred, Joe)

� spouse(John, Nancy), male(John), son(Mark, Nancy)

� father(Jack, Nancy), daughter(Linda, Jack)

� daughter(Liz, Linda)

� etc.



� Rules for genealogical relations

� (∀x,y) parent(x, y) ↔ child (y, x)

– (∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) (similarly for mother(x, y))

– (∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) (similarly for son(x, y))

� (∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) (similarly for wife(x, y))

– (∀x,y) spouse(x, y) ↔ spouse(y, x)  (spouse relation is symmetric)

� (∀x,y) parent(x, y) → ancestor(x, y) 

– (∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y) 

� (∀x,y) descendant(x, y) ↔ ancestor(y, x) 

� (∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y) 

– (related by common ancestry)

– (∀x,y) spouse(x, y) → relative(x, y) (related by marriage)

– (∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y) (transitive)

– (∀x,y) relative(x, y) ↔ relative(y, x) (symmetric)

� Queries
� ancestor(Jack, Fred)   /* the answer is yes */

� relative(Liz, Joe)        /* the answer is yes */

� relative(Nancy,  Matthew)   

– /* no answer in general, no if under closed world assumption */

� (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz)



Axioms for Set Theory in FOL

• 1. The only sets are the empty set and those made by adjoining something to a set: 

– ∀s set(s) <=> (s=EmptySet) v (∃x,r Set(r) ^ s=Adjoin(s,r))

• 2. The empty set has no elements adjoined to it: 

– ~ ∃x,s Adjoin(x,s)=EmptySet

• 3. Adjoining an element already in the set has no effect: 

– ∀x,s Member(x,s) <=> s=Adjoin(x,s)

• 4. The only members of a set are the elements that were adjoined into it: 

– ∀x,s Member(x,s) <=>  ∃y,r (s=Adjoin(y,r) ^ (x=y ∨ Member(x,r)))

• 5. A set is a subset of another iff all of the 1st set’s members are members of the 

2nd:

– ∀s,r Subset(s,r) <=> (∀x Member(x,s) => Member(x,r))

• 6. Two sets are equal iff each is a subset of the other: 

– ∀s,r (s=r) <=> (subset(s,r) ^ subset(r,s))

• 7. Intersection 

– ∀x,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) ^ member(X,s2)

• 8. Union 

– ∃x,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) ∨ member(X,s2)



Using  FOL

� Domain M: the set of all objects in the world (of interest)

� Assertions: sentences added to KB by using TELL (as in 

propositional logic)

� TELL (KB, Person(Richard))

� Queries/Goals: ask questions of the KB. Any query that is 

logically entailed by the knowledge base should be answered 

affirmatively.

� ASK (KB, Person(Richard))



� Model: an interpretation of a set of sentences such that 

every sentence is True

� A sentence is

� satisfiable if it is true under some interpretation

� valid if it is true under all possible interpretations

� inconsistent if there does not exist any interpretation 

under which the sentence is true

� Logical consequence: S |= X if all models of S are also 

models of X

Semantics of FOL 



Axioms, definitions and 
theorems

�Axioms are facts and rules that attempt to capture all of the 

(important) facts and concepts about a domain; axioms can 

be used to prove theorems

�Mathematicians don’t want any unnecessary (dependent) axioms –ones 

that can be derived from other axioms

�Dependent axioms can make reasoning faster, however

�Choosing a good set of axioms for a domain is a kind of design 

problem

�A definition of a predicate is of the form “p(X) ↔…” and 

can be decomposed into two parts

�Necessary description: “p(x) → …”

�Sufficient description “p(x) ← …”

�Some concepts don’t have complete definitions (e.g., person(x))



More on definitions

� Examples: define father(x, y) by parent(x, y) and 

male(x)

� parent(x, y) is a necessary (but not sufficient) description 

of 

father(x, y)

� father(x, y) → parent(x, y)

� parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not 

necessary) description of father(x, y):

– father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35) 

� parent(x, y) ^ male(x) is a necessary and sufficient

description of father(x, y) 

– parent(x, y) ^ male(x) ↔ father(x, y)



More on definitions

P(x)

S(x)

S(x) is a 

necessary 

condition of P(x)

(∀x) P(x) => S(x)

S(x)

P(x)

S(x) is a 

sufficient 

condition of P(x)

(∀x) P(x) <= S(x)

P(x)

S(x)

S(x) is a 

necessary and 

sufficient 

condition of P(x)

(∀x) P(x) <=> S(x)



Higher-order logic

� FOL only allows to quantify over variables, and variables 

can only range over objects. 

� HOL allows us to quantify over relations

� Example: (quantify over functions)

– “two functions are equal iff they produce the same value 

for all arguments”

– ∀f ∀g (f = g) ↔ (∀x f(x) = g(x))

� Example: (quantify over predicates)

– ∀r transitive( r ) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z)) 

� More expressive, but undecidable. 



Representing change

� Representing change in the world in logic can be 

tricky.

� One way is just to change the KB

� Add and delete sentences from the KB to reflect changes

� How do we remember the past, or reason about 

changes?

� Situation calculus is another way

� A situation is a snapshot of the world at some 

instant in time

� When the agent performs an action A                    

in situation S1, the result is a new                

situation S2.



Situation calculus

� A situation is a snapshot of the world at an interval of time during which 

nothing changes 

� Every true or false statement is made with respect to a particular situation. 

� Add situation variables to every predicate.

� at(Agent,1,1) becomes at(Agent,1,1,s0): at(Agent,1,1) is true in situation (i.e., 

state) s0.

� Alernatively, add a special 2nd-order predicate, holds(f,s), that means “f is 

true in situation s.” E.g., holds(at(Agent,1,1),s0) 

� Add a new function, result(a,s), that maps a situation s into a new 

situation as a result of performing action a. For example, result(forward, 

s) is a function that returns the successor state (situation) to s 

� Example: The action agent-walks-to-location-y could be represented by

� (∀x)(∀y)(∀s) (at(Agent,x,s) ∧ ¬onbox(s)) → at(Agent,y,result(walk(y),s)) 



Deducing hidden properties

� From the perceptual information we obtain 

in situations, we can infer properties of 

locations

– ∀l,s at(Agent,l,s) ∧ Breeze(s) → Breezy(l) 

– ∀l,s at(Agent,l,s) ∧ Stench(s) → Smelly(l) 

� Neither Breezy nor Smelly need situation 

arguments because pits and Wumpuses do 

not move around



Deducing hidden properties II

� We need to write some rules that relate various aspects of a 

single world state (as opposed to across states)

� There are two main kinds of such rules: 

� Causal rules reflect the assumed direction of causality in the 

world: 

• (∀l1,l2,s) At(Wumpus,l1,s) ∧ Adjacent(l1,l2) → Smelly(l2) 

• (∀ l1,l2,s) At(Pit,l1,s) ∧ Adjacent(l1,l2) → Breezy(l2) 

– Systems that reason with causal rules are called model-based                  

reasoning systems

� Diagnostic rules infer the presence of hidden properties directly 

from the percept-derived information. We have already seen two 

diagnostic rules:

• (∀ l,s) At(Agent,l,s) ∧ Breeze(s) → Breezy(l) 

• (∀ l,s) At(Agent,l,s) ∧ Stench(s) → Smelly(l) 



Representing change:

The frame problem

� Frame axioms: If property x doesn’t change 

as a result of applying action a in state s, 

then it stays the same.

� On (x, z, s) ∧ Clear (x, s) →

On (x, table, Result(Move(x, table), s)) ∧

¬On(x, z, Result (Move (x, table), s))

� On (y, z, s) ∧ y≠ x → On (y, z, Result (Move (x, 

table), s))

� The proliferation of frame axioms becomes very 

cumbersome in complex domains



The frame problem II

� Successor-state axiom: General statement that 

characterizes every way in which a particular predicate can 

become true:

� Either it can be made true, or it can already be true and not be 

changed:

� On (x, table, Result(a,s)) ↔

[On (x, z, s) ∧ Clear (x, s) ∧ a = Move(x, table)] v

[On (x, table, s) ∧ a ≠ Move (x, z)]

� In complex worlds, where you want to reason about longer 

chains of action, even these types of axioms are too 

cumbersome

� Planning systems use special-purpose inference methods to reason 

about the expected state of the world at any point in time during a 

multi-step plan



Qualification problem

� Qualification problem:

� How can you possibly characterize every single effect of 

an action, or every single exception that might occur?

� When I put my bread into the toaster, and push the 

button, it will become toasted after two minutes, 

unless…

� The toaster is broken, or…

� The power is out, or…

� I blow a fuse, or…

� A neutron bomb explodes nearby and fries all electrical 

components, or…

� A meteor strikes the earth, and the world we know it ceases to 

exist, or…



Ramification problem

� Similarly, it’s just about impossible to characterize every 

side effect of every action, at every possible level of detail:

� When I put my bread into the toaster, and push the button, the bread 

will become toasted after two minutes, and…

� The crumbs that fall off the bread onto the bottom of the toaster over 

tray will also become toasted, and…

� Some of the aforementioned crumbs will become burnt, and…

� The outside molecules of the bread will become “toasted,” and…

� The inside molecules of the bread will remain more “breadlike,” and…

� The toasting process will release a small amount of humidity into the 

air because of evaporation, and…

� The heating elements will become a tiny fraction more likely to burn 

out the next time I use the toaster, and…

� The electricity meter in the house will move up slightly, and…



Knowledge engineering!

� Modeling the “right” conditions and the “right” effects 
at the “right” level of abstraction is very difficult

� Knowledge engineering (creating and maintaining 
knowledge bases for intelligent reasoning) is an entire 
field of investigation

� Many researchers hope that automated knowledge 
acquisition and machine learning tools can fill the gap:

� Our intelligent systems should be able to learn about the 
conditions and effects, just like we do!

� Our intelligent systems should be able to learn when to pay 
attention to, or reason about, certain aspects of processes, 
depending on the context!



Knowledge engineering in FOL

1.  Identify the task

2.  Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, functions, 
 and constants

4.  Encode general knowledge about the domain

5. Encode a description of the specific problem 
 instance

6. Pose queries to the inference procedure and get 
 answers

7.  Debug the knowledge base



Goal-based agents

� Once the gold is found, it is necessary to change strategies.  

So now we need a new set of action values. 

� We could encode this as a rule: 

� (∀s) Holding(Gold,s) → GoalLocation([1,1]),s)

� We must now decide how the agent will work out a sequence 

of actions to accomplish the goal. 

� Three possible approaches are:

� Inference: good versus wasteful solutions (Next topic!)

� Search: make a problem with operators and set of states

� Planning: to be discussed later


