CMSC 671
Fall 2010

Tue 9/23/10

Review: Agents/Search/CSP/Adversarial Search
Advanced Search
Distributed Constraint Satisfaction

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

CAC A~
]




Al Possible Approaches

Like
humans _**Well.,

Rational
Think GPS -,
EERILE °* Al tends to

2 o work mostly

K in this area
Heuristic ©,

s

Act Eliza

systems




How do you design an intelligent

* Definition: An intelligent agent perceives its
environment via sensors and acts rationally upon that
environment with its effectors.

" A discrete agent receives percepts one at a time, and
maps this percept sequence to a sequence of discrete
actions. sensors

" Properties

percepts

cAutonomous environment

oReactive to the environme actions

oPro-active (goal-directed)

effectors

oInteracts with other agents

via the environment &




Rationality

" An 1deal rational agent should, for each
possible percept sequence, do whatever
actions will maximize its expected
performance measure based on

(1) the percept sequence, and

(2) 1ts built-in and acquired knowledge.




Properties of Environments

" Fully observable/Partially observable
" Deterministic/Stochastic

= Episodic/Sequential

=" Static/Dynamic

" Discrete/Continuous

" Single agent/Multi-agent

Fully observable + Deterministic = no need to deal
with uncertainty

CAC A~
]



Characteristics of
environments

Fully Deterministic? | Episodic? | Static? | Discrete? | Single

observable? agent?
Solitaire No Yes Yes Yes Yes Yes
Backgammon | Yes No No Yes Yes No
Taxi driving | No No No No No No
Internet No No No No Yes No
shopping
Medical No No No No No Yes
diagnosis

— Lots of real-world domains fall into the hardest case!@%



Formalizing search in a state space

" A state space 1s a graph (V, E) where V 1s a set of
nodes and E is a set of arcs, and each arc 1s directed
from a node to another node

«cost of operators

*successor nodes (legal operators)
~expanding a node

-goal test

*solution (sequence of operators)
.cost/length of a solution

State-space search is the process of
searching through a state space for a
solution by making explicit a sufficient
portion of an implicit state-space graph

to find a goal node. 6—6—67




State-space search algorithm

function general-search (problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure
nodes = MAKE-QUEUE (MAKE-NODE (problem.INITIAL-STATE))
loop
if EMPTY (nodes) then return "failure"
node = REMOVE-FRONT (nodes)
1f problem.GOAL-TEST (node.STATE) succeeds
then return node
nodes = QUEUEING-FUNCTION (nodes, EXPAND (node,
problem.OPERATORS) )
end
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

CAC A~
]



Key procedures to be defined

"EXPAND

o Generate all successor nodes of a given
node

*GOAL-TEST

o Test 1f state satisties all goal conditions

*QUEUEING-FUNCTION

o Used to maintain a ranked list of nodes that
are candidates for expansion

CAC A~
]



So far ...

Uninformed search strategies
o No information about the likely “direction” of the goal node(s)

o Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening,
bidirectional

Informed search strategies (heuristic/best-first search)
o Use information about the domain to (try to) head in the general direction of the goal node(s)
o Order nodes on the nodes list by increasing value of an evaluation function f (n)
o Greedy search, beam search, A, A*
Local search / optimization problems
o No path to the goal

o Hill-climbing algorithms, simulated annealing, local beam search, stochastic beam search,
genetic algorithms, tabu search, online search

CSP

o Set of variables to which we have to assign values that satisfy a number of problem-specific
constraints.

o Generate and test, backtracking, constraint propagation (k-consistency), variable and
value ordering heuristics (MRYV, degree heuristic, LCV), forward checking, intelligent
backtracking, local search for CSP

Adversarial Search

o Agents (players) need to consider the actions of other agents
o Minimax, alpha-beta pruning, expectiminmax

CAC A~
]



Evaluating strategies

= Completeness
o Guarantees finding a solution whenever one exists
* Time complexity

o How long (worst or average case) does it take to find a solution?
Usually measured in terms of the number of nodes expanded

= Space complexity

o How much space (memory) is used by the algorithm? Usually
measured in terms of the maximum size of the “nodes” list during the
search

= Optimality/Admissibility

o If a solution 1s found, is it guaranteed to be an optimal one? That is, is
it the one with minimum cost?

CAC A~
]



Breadth-First vs Depth-First (DFS)

|f1-x'
g / \ l,.-f/f"'l,x\"“
/|\2 ' 4 2 (1) (8]
L 1\_ L 1\
59 (6) (7) (8 3 (6) 9) 12
L I\‘ ST TN
(9) 10 11 12 (4) (5) 10 11
Breadth-First Depth-First
Exponential time and space O(b9) Exponential time O(bd)
Optimal if costs are the same Linear space O(bd)
May not terminate
Uniform-Cost (UCS) Iterative Deepening
complete and optimal solves the infinite-path problem

CAC A~
]



1

588

~

7

~ Summary: Informed search

» Best-first search is general search where the minimum-cost nodes
(according to some measure) are expanded first.

" Greedy search uses minimal estimated cost 4(n) to the goal state
as measure. This reduces the search time, but the algorithm 1s
neither complete nor optimal.

= A* search combines uniform-cost search and greedy search: f(n)
= g(n) + h(n). A* handles state repetitions and h(n) never
overestimates.

o A* 1s complete and optimal, but space complexity 1s high.

o The time complexity depends on the quality of the heuristic
function.

o IDA* and SMA* reduce the memory requirements of A*.

CAC A~
]




Summary: Local search

= Hill-climbing algorithms keep only a single state in memory, but
can get stuck on local optima.

* Simulated annealing escapes local optima, and is complete and
optimal given a “long enough” cooling schedule.

" Local beam search hill climbing but with the k best states
= Stochastic beam search keep a state with p(h)

* Genetic algorithms can search a large space by modeling
biological evolution.

* Tabu search local search but with a memory (k previously visited
states)

* Online search algorithms are useful in state spaces with partial/no
information

o Interleave computation and action (search some, act some)

CAC A~
]



R

— f —

Padade Summary: CSP

o &

/\

s ¢r

o (Generate and test Try each possible combination
o Backtracking Depth first search (choosing unassigned variable)

o Constraint propagation Using the constraints to reduce the number of
legal values for a variable

o Variable and value ordering heuristics Minimum remaining

values, degree heuristic: largest # of constraints on unassigned vars, Least
constraining value

o Forward checking Keep track of remaining legal values for unassigned
variables

o Intelligent backtracking Better than chronological (jump to most recent
assignment , track of incompatible val. assignments, track of conflicting vars.)

o Local search for CSP Incomplete states; operators reassign variable
values

o Distributed constraint satisfaction Dif. agents control dif. subset of

the constraint variables 6_6_&




Summary: Adversarial Search

2

o Evaluation function is used to evaluate \
the “goodness” of a game position 2 Al
7 1 3

o Game Trees
o Minimax 2

If it is my turn to move, then the root is labeled a "MAX" node;
otherwise it is labeled a "MIN" node, indicating my opponent's turn.

Expand nodes down; “Back up” values
o Alpha-beta pruning
Don’t compute unnecessary nodes

o Expectiminmax (Games of chance)

Use minimax to compute values for
MAX and MIN nodes

Use expected values for chance nodes




Advanced
Search




Overview

" Real-time heuristic search
o Learning Real-Time A* (LRTA¥*)

o Minimax Learning Real-Time A* (Min-Max
LRTA%*)

" Genetic algorithms




REAL-TIME SEARCH




Real-Time Search

Sven Koenig, “Real-time heuristic search: Research issues,” In Proceedings of the AIPS-98
Workshop on Planning as Combinatorial Search: Propositional, Graph-Based, and
Disjunctive Planning Methods, pages 75-79, 1998.

" Interleave search and execution

" Advantages:

o Provide variable control over amount of search
(deliberation) vs. execution (reactivity)

o Improves performance over successive trials of
the same problem: learn to improve quality of
heuristic function

o Can solve very large problems (if they have the
right problem structure)

o Short planning time per move (ind. ofi&talﬁs@%
]



LRTA*

Richard E. Korf, “Real-time heuristic search,” Artificial Intelligence 42(2-3):
189-211, March 1990.

" Simplest version: one step lookahead with
heuristic-value updating:

Initialize s to the start state
If s 1s a goal state, stop
Choose an action a that minimizes f(succ(s,a))

Update f(s) to the max of current f{s),
I +f(succ(s,a))

Execute action a

= b=

AN

Set s to the current state

7. Go to step 2 OO
0]




Search Example

" What will each algorithm do?
o Greedy search (with and without repeated states)
o A* (with and without repeated states)
o Hill-climbing
o (One-step-lookahead) LRTA*
f(n): 1 1 2

@@@@
D -




Min-Max LRTA*

Sven Koenig, “Minimax real-time heuristic search,” Artificial Intelligence 129 (1-

2): .165'—197, June 2001. ' o
= Variation of LRTA* that can be used in nondeterministic

domains: the agent is not able to predict with certainty which successor
state an action execution results in

* Simulated robot-navigation tasks in mazes
I. Initialize s to the start state
2. If s 1s a goal state, stop

3. Choose an action a whose worst possible outcome minimizes
f(succ(s,a)) (minimax step)

4. Update f(s) to the max of current f{(s), I+f(succ(s,a)) (across all
possible successors of s when performing a)

5. Execute action a
6. Set s to the current state
7. Go to step 2

CAC A~
]



Incremental Heuristic Search

" Reuse information gathered during A* to
improve future searches

= Variations:

o Failure =» restart search at the point where the
search failed

o Failure =2 update s-values and restart search

o Failure =2 update g-values and restart search
" Fringe Saving A*, Adaptive A*, Litelong
Planning A*, DLite*...

CAC A~
]



GENETIC ALGORITHMS




Genetic Algorithms

" Active area of research. Many applications. Annual
conferences and workshops

" Probabilistic search/optimization algorithm
* Mimic the process of natural evolution
= Start with k random states (the initial population)

* Generate new states by “mutating” a single state or
“reproducing” (combining via Crossover) two
parent states

= Selection mechanism based on children’s fitness
values

CAC A~
]



GA: Genome Encoding

= Each variable or attribute 1s typically
encoded as an integer value

o Number of values determines the granularity of
encoding of continuous attributes

" For problems with more complex relational
structure:
o Encode each aspect of the problem

o Constrain mutation/crossover operators to only
generate legal offspring

CAC A~
]



Genetic Algorithms (2)

* Encoding used for the “genome” of an individual
strongly affects the behavior of the search

= Most effective 1n situations, for which a well-
defined problem offers a compact encoding of all
necessary solution parameters




Genetic algorithms: Example

W _J¥E
| O
.I Cl

W

W =
e
247748552

24

*Fitness function: number of non-attacking pairs of queens
smin=0,max =8 x 7/2 =28




Genetic algorithms: Example (2)
N _EuE_m

_
mw
.I _

"

32748552 —=| 3274812

24748552 |24 3% 32?552411

A

24752411 —= 24752411

32752411 [ 23 29% | 24748552

24415124 |_20 26% 32?535411 32752124 = 372F2124

i
¢

32543213 | 1 14% ™| 24415124 24415411 —{ 24415417

fa] ibi icl idj (=]
Thitial E’Dj_::ulati-:nh Fithess Function Selection Cioss—COvel Ilutation

Fitness-based stochastic selection :
P(24748552) = 24/(24+23+20+11) = 31%

P(32752411) = 23/(24+23+20+11) = 29% el




Exercise

" Design a genetic algorithm to find a perfect
Tic-Tac-Toe strategy, which never loses a
game 1t plays.




Encoding

* Binary Encoding

o 101100101100101011100101 " Tree Encoding

o 111111100000110000011111 +

* Permutation Encoding x)
01 53264798 5) 1Y
°8567231409 (+x(/5y))

* Value Encoding
0 1.2324 5.3243 0.4556 2.3293 2.4545

1 BABDJEIFIDHDIERJFDLDFLFEGT
o (back), (back), (right), (forward), (left)

CAC A~
| ttpi//www.obitko.com/tutorials/genetic-algorithms/encodingphp |



Selection Mechanisms

A

3/6=50%

2/6 = 33%

* Proportionate selection: Each offspring should be represented in
the new population proportionally to its fitness

o Roulette wheel selection (stochastic sampling): Random sampling, with
fitness-proportional probabilities. Better individuals get higher chance

o Deterministic sampling: Exact numbers of offspring (rounding up for most-
fit individuals; rounding down for “losers™)
* Tournament selection: Offspring compete against each other in a
series of competitions

o Particularly useful when fitness can’t be readily measured (e.g., genetically
evolving game-playing algorithms or RoboCup players)

CAC A~
]



GA: Crossover

= Selecting parents: Pick pairs at random, or fitness-biased
selection (e.g., using a Boltzmann distribution)

* One-point crossover (swap at same point in each parent)
* Two-point crossover

= Cut and splice (cut point could be different in the two
parents)

" Bitwise crossover (“‘uniform crossover’)

* Many specialized crossover methods for specific problem
types and representation choices

CAC A~
]



GA: Mutation

" Bitwise (“‘single point”’) mutation

" Order changing - two numbers are selected
and exchanged

* Adding a small number (for real value
encoding)

" Change selected nodes (tree representation)




GA: When to Stop?

* After a fixed number of generations
* When a certain fitness level is reached

" When fitness variability drops below a
threshold




GA: Parameters

* Running a GA involves many parameters
o Population size
o Crossover rate
o Mutation rate
o Number of generations

o Target fitness value

O




Exercise

" Design a genetic algorithm to find a perfect
Tic-Tac-Toe strategy, which never loses a
game 1t plays.

" “On the Genetic Evolution of a Perfect Tic-

Tac-Toe Strategy”, Gregor Hochmuth,

Stanford University
http://www.genetic-programming.org/sp2003/Hochmuth.pdf




DISTRIBUTED CONSTRAINT
SATISFACTION




Distributed Constraint Satisfaction

" Looks at solving CSP when there 1s a
collection of agents, each of which controls a
subset of the constraint variables.

" Active area of research; annual workshops.




Why multiple agents?

" Agents have limited rationality
o search 1s often intractable

o may not have a complete picture of the
problem

o may not have the required computational
capability
" Agents may be self interested




DCSP: Approach

= If we represent the search problem as a
graph, we can solve 1t by accumulating local
computations for each node in the graph

o Local computations can be executed
asynchronously and concurrently




Asynchronous Backtracking

= The processes are priority ordered (by the alphabetical
order of the variable 1dentifiers)

= Each process chooses an assignment and communicates it
to the neighboring processes (ok message)

= Each process maintains the current value of other
processes from its viewpoint (local view)

o A value assignment 1s changed if it 1s not consistent with the
assignments of the higher priority processes

o If no values are consistent with the higher priority processes,
then the process creates a nogood message and sends it to the
higher priority processes

= All agents wait for and respond to messages

CAC A~
]



Asynchronous Backtracking

Example—

x1, x2, x3 {red, blue, green}
x1+x3, Xx2#x3,

& )

(ok? (x1, red)) (ok? (x2, blue))

{(x1=red), (x2=Dblue)}




Asynchronous Backtracking

Local view:
{(x4,1),(X5,2)}




Asynchronous Backtracking

Example 2

Add neighbor, and

get value requests Local view:
| @ ((x;1)]
New link {2}
//
(n0good, {(x,,1),(xx2)})

CA A~




Asynchronous Backtracking

Example 2

(nogood.{(x;,1)})




Asynchronous Weak-Commitment

= Asynchronous backtracking
o Process priorities are statically determined

o Higher priority processes can make a poor
value assignment resulting in the lower level
process having to do a long search 1n order to
reverse the higher level process’ decision

= An improved alternative: AWC




Asynchronous Weak-Commitment (2)

= AWC allows dynamic reordering of the
process priorities so that a bad decision
can be revised without an exhaustive
search.

= Use a value ordered heuristic

o 1.e. min-conflict heuristic — minimize the
number of constraints violations.




DCS: Algorithms

= 1992—Asynchronous Backtracking (ABT), -static ordering, complete

" 1994—Asynchronous Weak-Commitment (AWC), -reordering, fast,
complete (only with exponential space)

= 1995—Distributed Breakout Algorithm (DBA), -incomplete but fast
= 2000—Distributed Forward Chaining (DFC), -slow, comparable to ABT

= 2000—Asynchronous Aggregation Search (AAS), -aggregation of
values in ABT

* 2001—Maintaining Asynchronously Consistencies (DMAC), -the fastest
algorithm

= 2001—Asynchronous Backtracking with Reordering (ABTR), -
reordering in ABT with bounded nogoods

= 2002—Secure Computation with Semi-Trusted Servers, -security
increases with the number of trustworthy servers

= 2003—Secure Multiparty Computation For Solving DisCSPs (MPC-
DisCSP1-MPC-DisCSP4), secure if 1/2 of the participants are
trustworthy

CAC A~
| httpi/fen.wikipedia.orgiwikiDiscsp 9]



Also ...

" You can check my implementation of the
Asynchronous Weak-Commitment Search for the n-
queens problem:

" http://www.cs.umbc.edu/~rzavala/netlogomas.html

" Or other implementations - Graph Coloring,
asynchronous backtracking:

" http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html

CAC A~
| httpi/fen.wikipedia.orgiwikiDiscsp ]




