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How do you design an intelligent 
agent?

�Definition: An intelligent agent perceives its 

environment via sensors and acts rationally upon that 

environment with its effectors. 

�A discrete agent receives percepts one at a time, and 

maps this percept sequence to a sequence of discrete 

actions. 

� Properties 

�Autonomous 

�Reactive to the environment 

�Pro-active (goal-directed) 

�Interacts with other agents

via the environment 



Rationality

�An ideal rational agent should, for each 

possible percept sequence, do whatever 

actions will maximize its expected 

performance measure based on 

(1) the percept sequence, and 

(2) its built-in and acquired knowledge.



Properties of Environments 

�Fully observable/Partially observable

�Deterministic/Stochastic

�Episodic/Sequential

�Static/Dynamic

�Discrete/Continuous

�Single agent/Multi-agent

Fully observable + Deterministic � no need to deal 

with uncertainty



Characteristics of 
environments

Fully 

observable?

Deterministic? Episodic? Static? Discrete? Single 

agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet 

shopping

No No No No Yes No

Medical 

diagnosis

No No No No No Yes

→ Lots of real-world domains fall into the hardest case!



Formalizing search in a state space

�A state space is a graph (V, E) where V is a set of 

nodes and E is a set of arcs, and each arc is directed 

from a node to another node

•cost of operators

•successor nodes (legal operators)

•expanding a node

•goal test

•solution (sequence of operators)

•cost/length of a solution

State-space search is the process of 

searching through a state space for a 

solution by making explicit a sufficient 

portion of an implicit state-space graph 

to find a goal node.



State-space search algorithm

function general-search (problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops



Key procedures to be defined

�EXPAND

�Generate all successor nodes of a given 

node

�GOAL-TEST

�Test if state satisfies all goal conditions

�QUEUEING-FUNCTION

�Used to maintain a ranked list of nodes that 

are candidates for expansion



So far …
� Uninformed search strategies� No information about the likely “direction” of the goal node(s) � Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, 

bidirectional

� Informed search strategies (heuristic/best-first search)� Use information about the domain to (try to) head in the general direction of the goal node(s)� Order nodes on the nodes list by increasing value of an evaluation function f (n)� Greedy search, beam search, A, A*

� Local search / optimization problems� No path to the goal� Hill-climbing algorithms, simulated annealing, local beam search, stochastic beam search, 
genetic algorithms, tabu search, online search

� CSP� Set of variables to which we have to assign values that satisfy a number of problem-specific 
constraints.

� Generate and test, backtracking, constraint propagation (k-consistency), variable and 
value ordering heuristics (MRV, degree heuristic, LCV), forward checking, intelligent 
backtracking, local search for CSP

� Adversarial Search

� Agents (players) need to consider the actions of other agents� Minimax, alpha-beta pruning, expectiminmax



Evaluating strategies

� Completeness

� Guarantees finding a solution whenever one exists

� Time complexity

� How long (worst or average case) does it take to find a solution? 

Usually measured in terms of the number of nodes expanded

� Space complexity

� How much space (memory) is used by the algorithm? Usually 

measured in terms of the maximum size of the “nodes” list during the 

search

� Optimality/Admissibility

� If a solution is found, is it guaranteed to be an optimal one? That is, is 

it the one with minimum cost?



Breadth-First vs Depth-First (DFS)

Breadth-First
Exponential time and space O(bd)

Optimal if costs are the same

Depth-First

Exponential time O(bd) 

Linear space O(bd)

May not terminate

Uniform-Cost (UCS) Iterative Deepening

solves the infinite-path problemcomplete and optimal



Summary: Informed search

» Best-first search is general search where the minimum-cost nodes 

(according to some measure) are expanded first. 

� Greedy search uses minimal estimated cost h(n) to the goal state 

as measure. This reduces the search time, but the algorithm is 

neither complete nor optimal. 

� A* search combines uniform-cost search and greedy search: f (n) 

= g(n) + h(n). A* handles state repetitions and h(n) never 

overestimates. 

� A* is complete and optimal, but space complexity is high.

� The time complexity depends on the quality of the heuristic 

function. 

� IDA* and SMA* reduce the memory requirements of A*. 
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Summary: Local search

� Hill-climbing algorithms keep only a single state in memory, but 
can get stuck on local optima. 

� Simulated annealing escapes local optima, and is complete and 
optimal given a “long enough” cooling schedule. 

� Local beam search hill climbing but with the k best states

� Stochastic beam search keep a state with p(h)

� Genetic algorithms can search a large space by modeling 
biological evolution.

� Tabu search local search but with a memory (k previously visited 
states)

� Online search algorithms are useful in state spaces with partial/no 
information
� Interleave computation and action (search some, act some)



� CSP

� Generate and test Try each possible combination 

� Backtracking Depth first search (choosing unassigned variable)

� Constraint propagation Using the constraints to reduce the number of 
legal values for a variable

� Variable and value ordering heuristics Minimum remaining 

values, degree heuristic: largest # of constraints on unassigned vars, Least 
constraining value

� Forward checking Keep track of remaining legal values for unassigned 
variables

� Intelligent backtracking Better than chronological (jump to most recent 
assignment , track of incompatible val. assignments, track of conflicting vars.)

� Local search for CSP Incomplete states; operators reassign variable 
values

� Distributed constraint satisfaction Dif. agents control dif. subset of 
the constraint variables

Summary: CSP



Summary: Adversarial Search

� Evaluation function is used to evaluate                                 
the “goodness” of a game position 

� Game Trees

� Minimax

� If it is my turn to move, then the root is labeled a "MAX" node; 
otherwise it is labeled a "MIN" node, indicating my opponent's turn.

� Expand nodes down; “Back up” values

� Alpha-beta pruning
� Don’t compute unnecessary nodes

� Expectiminmax (Games of chance)

� Use minimax to compute values for                                          
MAX and MIN nodes

� Use  expected values for chance nodes
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Advanced Advanced 

SearchSearch



Overview

�Real-time heuristic search

� Learning Real-Time A* (LRTA*)

� Minimax Learning Real-Time A* (Min-Max 

LRTA*)

�Genetic algorithms



REAL-TIME SEARCH



Real-Time Search

� Interleave search and execution

�Advantages:

� Provide variable control over amount of search 

(deliberation) vs. execution (reactivity)

� Improves performance over successive trials of 

the same problem: learn to improve quality of 

heuristic function

� Can solve very large problems (if they have the 

right problem structure)

� Short planning time per move (ind. of # states)

Sven Koenig, “Real-time heuristic search: Research issues,” In Proceedings of the AIPS-98 

Workshop on Planning as Combinatorial Search: Propositional, Graph-Based, and 

Disjunctive Planning Methods, pages 75-79, 1998.



LRTA*

�Simplest version: one step lookahead with 

heuristic-value updating:

1. Initialize s to the start state

2. If s is a goal state, stop

3. Choose an action a that minimizes f(succ(s,a))

4. Update f(s) to the max of current f(s), 

1+f(succ(s,a))

5. Execute action a

6. Set s to the current state

7. Go to step 2

Richard E. Korf, “Real-time heuristic search,” Artificial Intelligence 42(2-3): 

189-211, March 1990.



Search Example

�What will each algorithm do?

� Greedy search (with and without repeated states)

� A* (with and without repeated states)

� Hill-climbing

� (One-step-lookahead) LRTA*

S A B C G

f(n): 1 1 2 01

D
0



Min-Max LRTA*

� Variation of LRTA* that can be used in nondeterministic 

domains: the agent is not able to predict with certainty which successor 

state an action execution results in

� Simulated robot-navigation tasks in mazes 

1. Initialize s to the start state

2. If s is a goal state, stop

3. Choose an action a whose worst possible outcome minimizes 

f(succ(s,a)) (minimax step)

4. Update f(s) to the max of current f(s), 1+f(succ(s,a)) (across all 

possible successors of s when performing a)

5. Execute action a

6. Set s to the current state

7. Go to step 2

Sven Koenig, “Minimax real-time heuristic search,” Artificial Intelligence 129 (1-

2): 165-197, June 2001.



Incremental Heuristic Search

�Reuse information gathered during A* to 

improve future searches

�Variations:

� Failure � restart search at the point where the 

search failed

� Failure � update h-values and restart search

� Failure � update g-values and restart search

�Fringe Saving A*, Adaptive A*, Lifelong 

Planning A*, DLite*...



GENETIC ALGORITHMS



Genetic Algorithms
�Active area of research. Many applications. Annual 

conferences and workshops

� Probabilistic search/optimization algorithm 

�Mimic the process of natural evolution

� Start with k random states (the initial population)

�Generate new states by “mutating” a single state or 

“reproducing” (combining via crossover) two 

parent states

� Selection mechanism based on children’s fitness

values



GA: Genome Encoding

�Each variable or attribute is typically 

encoded as an integer value 

� Number of values determines the granularity of 

encoding of continuous attributes

�For problems with more complex relational 

structure:

� Encode each aspect of the problem

� Constrain mutation/crossover operators to only 

generate legal offspring



Genetic Algorithms (2)

�Encoding used for the “genome” of an individual 

strongly affects the behavior of the search

�Most effective in situations, for which a well-

defined problem offers a compact encoding of all 

necessary solution parameters



Genetic algorithms: Example

�Fitness function: number of non-attacking pairs of queens 

�min = 0, max = 8 × 7/2 = 28

32752411 24748552
23 24



Genetic algorithms: Example (2)

Fitness-based stochastic selection :

P(24748552) = 24/(24+23+20+11) = 31%

P(32752411) = 23/(24+23+20+11) = 29% 



Exercise

�Design a genetic algorithm to find a perfect 

Tic-Tac-Toe strategy, which never loses a 

game it plays.



Encoding

� Binary Encoding

� 101100101100101011100101

� 111111100000110000011111

� Permutation Encoding

� 1 5 3 2 6 4 7 9 8

� 8 5 6 7 2 3 1 4 9

� Value Encoding

� 1.2324 5.3243 0.4556 2.3293 2.4545

� BABDJEIFJDHDIERJFDLDFLFEGT 

� (back), (back), (right), (forward), (left)

� Tree Encoding

( + x ( / 5 y ) )

http://www.obitko.com/tutorials/genetic-algorithms/encoding.php



Selection Mechanisms

� Proportionate selection:  Each offspring should be represented in 

the new population proportionally to its fitness

� Roulette wheel selection (stochastic sampling):  Random sampling, with 

fitness-proportional probabilities. Better individuals get higher chance

� Deterministic sampling: Exact numbers of offspring (rounding up for most-

fit individuals; rounding down for “losers”)

� Tournament selection:  Offspring compete against each other in a

series of competitions

� Particularly useful when fitness can’t be readily measured (e.g., genetically 

evolving game-playing algorithms or RoboCup players)

A
B

C

3/6=50%

1/6 = 17%

2/6 = 33%



GA: Crossover

� Selecting parents: Pick pairs at random, or fitness-biased 

selection (e.g., using a Boltzmann distribution)

� One-point crossover (swap at same point in each parent)

� Two-point crossover

� Cut and splice (cut point could be different in the two 

parents)

� Bitwise crossover (“uniform crossover”)

� Many specialized crossover methods for specific problem 

types and representation choices



GA: Mutation

�Bitwise (“single point”) mutation

�Order changing - two numbers are selected 

and exchanged 

�Adding a small number (for real value 

encoding) 

�Change selected nodes (tree representation)



GA: When to Stop?

�After a fixed number of generations

�When a certain fitness level is reached

�When fitness variability drops below a 

threshold

� ...



GA: Parameters

�Running a GA involves many parameters

� Population size

� Crossover rate

� Mutation rate

� Number of generations

� Target fitness value

� ...



Exercise

�Design a genetic algorithm to find a perfect 

Tic-Tac-Toe strategy, which never loses a 

game it plays.

�“On the Genetic Evolution of a Perfect Tic-

Tac-Toe Strategy”, Gregor Hochmuth, 

Stanford University
http://www.genetic-programming.org/sp2003/Hochmuth.pdf



DISTRIBUTED CONSTRAINT 
SATISFACTION
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Distributed Constraint Satisfaction

�Looks at solving CSP when there is a 

collection of agents, each of which controls a 

subset of the constraint variables.

�Active area of research; annual workshops.
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Why multiple agents?

�Agents have limited rationality

� search is often intractable

�may not have a complete picture of the 

problem

�may not have the required computational 

capability

�Agents may be self interested 



DCSP: Approach

� If we represent the search problem as a 

graph, we can solve it by accumulating local 

computations for each node in the graph

� Local computations can be executed 

asynchronously and concurrently

Agent 1

Agent 2
Agent 3

http://www.cis.udel.edu/~kamboj



Asynchronous Backtracking

� The processes are priority ordered (by the alphabetical 
order of the variable identifiers)

� Each process chooses an assignment and communicates it 
to the neighboring processes (ok message)

� Each process maintains the current value of other 
processes from its viewpoint (local view)

� A value assignment is changed if it is not consistent with the 
assignments of the higher priority processes

� If no values are consistent with the higher priority processes, 
then the process creates a nogood message and sends it to the 
higher priority processes

� All agents wait for and respond to messages 



Asynchronous Backtracking 
Example

x1 x2

x3

x1, x2, x3 {red, blue, green}
x1≠x3, x2≠x3, 

(ok? (x1, red)) (ok? (x2, blue))

{(x1=red), (x2=blue)}



X1

{1,2}
X2

{2}

X3

{1,2}

(ok?, (x1,1))

Local view: 
{(x1,1),(x2,2)}

≠≠
 ))(ok?, (x2,2

Asynchronous Backtracking 
Example 2



X1

{1,2}
X2

{2}

X3

{1,2}

(nogood, {(x1,1),(x2,2)})

≠≠

Local view: 

{(x1,1)}
New link

Add neighbor, and 
get value requests

Asynchronous Backtracking 
Example 2



X1

{1,2}
X2

{2}

X3

{1,2}

≠≠

(nogood,{(x1,1)})

Asynchronous Backtracking 
Example 2



Asynchronous Weak-Commitment

� Asynchronous backtracking 

� Process priorities are statically determined

� Higher priority processes can make a poor 

value assignment resulting in the lower level 

process having to do a long search in order to 

reverse the higher level process’ decision

� An improved alternative: AWC



� AWC allows dynamic reordering of the 

process priorities so that a bad decision 

can be revised without an exhaustive 

search.

� Use a value ordered heuristic

� i.e. min-conflict heuristic – minimize the 

number of constraints violations.

Asynchronous Weak-Commitment (2)
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DCS: Algorithms

� 1992—Asynchronous Backtracking (ABT), -static ordering, complete 

� 1994—Asynchronous Weak-Commitment (AWC), -reordering, fast, 
complete (only with exponential space) 

� 1995—Distributed Breakout Algorithm (DBA), -incomplete but fast 

� 2000—Distributed Forward Chaining (DFC), -slow, comparable to ABT 

� 2000—Asynchronous Aggregation Search (AAS), -aggregation of 
values in ABT 

� 2001—Maintaining Asynchronously Consistencies (DMAC), -the fastest 
algorithm 

� 2001—Asynchronous Backtracking with Reordering (ABTR), -
reordering in ABT with bounded nogoods

� 2002—Secure Computation with Semi-Trusted Servers, -security 
increases with the number of trustworthy servers 

� 2003—Secure Multiparty Computation For Solving DisCSPs (MPC-
DisCSP1-MPC-DisCSP4), secure if 1/2 of the participants are 
trustworthy 

http://en.wikipedia.org/wiki/DisCSP



51

Also …

�You can check my implementation of the 

Asynchronous Weak-Commitment Search for the n-

queens problem:

�http://www.cs.umbc.edu/~rzavala/netlogomas.html

�Or other implementations - Graph Coloring, 

asynchronous backtracking:

�http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html

http://en.wikipedia.org/wiki/DisCSP


