
CMSC 671CMSC 671

Fall 2010Fall 2010

Tue 9/23/10Tue 9/23/10

Review: Agents/Search/CSP/Adversarial Search

Advanced SearchAdvanced Search

Distributed Constraint SatisfactionDistributed Constraint Satisfaction

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

AI Possible Approaches

Think

Act

Like

humans Well

GPS

Eliza

Rational

agents

Heuristic

systems

AI tends to

work mostly

in this area

How do you design an intelligent
agent?

�Definition: An intelligent agent perceives its

environment via sensors and acts rationally upon that

environment with its effectors.

�A discrete agent receives percepts one at a time, and

maps this percept sequence to a sequence of discrete

actions.

� Properties

�Autonomous

�Reactive to the environment

�Pro-active (goal-directed)

�Interacts with other agents

via the environment

Rationality

�An ideal rational agent should, for each

possible percept sequence, do whatever

actions will maximize its expected

performance measure based on

(1) the percept sequence, and

(2) its built-in and acquired knowledge.

Properties of Environments

�Fully observable/Partially observable

�Deterministic/Stochastic

�Episodic/Sequential

�Static/Dynamic

�Discrete/Continuous

�Single agent/Multi-agent

Fully observable + Deterministic � no need to deal

with uncertainty

Characteristics of
environments

Fully

observable?

Deterministic? Episodic? Static? Discrete? Single

agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet

shopping

No No No No Yes No

Medical

diagnosis

No No No No No Yes

→ Lots of real-world domains fall into the hardest case!

Formalizing search in a state space

�A state space is a graph (V, E) where V is a set of

nodes and E is a set of arcs, and each arc is directed

from a node to another node

•cost of operators

•successor nodes (legal operators)

•expanding a node

•goal test

•solution (sequence of operators)

•cost/length of a solution

State-space search is the process of

searching through a state space for a

solution by making explicit a sufficient

portion of an implicit state-space graph

to find a goal node.

State-space search algorithm

function general-search (problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

Key procedures to be defined

�EXPAND

�Generate all successor nodes of a given

node

�GOAL-TEST

�Test if state satisfies all goal conditions

�QUEUEING-FUNCTION

�Used to maintain a ranked list of nodes that

are candidates for expansion

So far …
� Uninformed search strategies� No information about the likely “direction” of the goal node(s) � Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening,

bidirectional

� Informed search strategies (heuristic/best-first search)� Use information about the domain to (try to) head in the general direction of the goal node(s)� Order nodes on the nodes list by increasing value of an evaluation function f (n)� Greedy search, beam search, A, A*

� Local search / optimization problems� No path to the goal� Hill-climbing algorithms, simulated annealing, local beam search, stochastic beam search,
genetic algorithms, tabu search, online search

� CSP� Set of variables to which we have to assign values that satisfy a number of problem-specific
constraints.

� Generate and test, backtracking, constraint propagation (k-consistency), variable and
value ordering heuristics (MRV, degree heuristic, LCV), forward checking, intelligent
backtracking, local search for CSP

� Adversarial Search

� Agents (players) need to consider the actions of other agents� Minimax, alpha-beta pruning, expectiminmax

Evaluating strategies

� Completeness

� Guarantees finding a solution whenever one exists

� Time complexity

� How long (worst or average case) does it take to find a solution?

Usually measured in terms of the number of nodes expanded

� Space complexity

� How much space (memory) is used by the algorithm? Usually

measured in terms of the maximum size of the “nodes” list during the

search

� Optimality/Admissibility

� If a solution is found, is it guaranteed to be an optimal one? That is, is

it the one with minimum cost?

Breadth-First vs Depth-First (DFS)

Breadth-First
Exponential time and space O(bd)

Optimal if costs are the same

Depth-First

Exponential time O(bd)

Linear space O(bd)

May not terminate

Uniform-Cost (UCS) Iterative Deepening

solves the infinite-path problemcomplete and optimal

Summary: Informed search

» Best-first search is general search where the minimum-cost nodes

(according to some measure) are expanded first.

� Greedy search uses minimal estimated cost h(n) to the goal state

as measure. This reduces the search time, but the algorithm is

neither complete nor optimal.

� A* search combines uniform-cost search and greedy search: f (n)

= g(n) + h(n). A* handles state repetitions and h(n) never

overestimates.

� A* is complete and optimal, but space complexity is high.

� The time complexity depends on the quality of the heuristic

function.

� IDA* and SMA* reduce the memory requirements of A*.

S

BA

D

G

1 5 8

3

1

5

C

1

9

4

5 8
9

Summary: Local search

� Hill-climbing algorithms keep only a single state in memory, but
can get stuck on local optima.

� Simulated annealing escapes local optima, and is complete and
optimal given a “long enough” cooling schedule.

� Local beam search hill climbing but with the k best states

� Stochastic beam search keep a state with p(h)

� Genetic algorithms can search a large space by modeling
biological evolution.

� Tabu search local search but with a memory (k previously visited
states)

� Online search algorithms are useful in state spaces with partial/no
information
� Interleave computation and action (search some, act some)

� CSP

� Generate and test Try each possible combination

� Backtracking Depth first search (choosing unassigned variable)

� Constraint propagation Using the constraints to reduce the number of
legal values for a variable

� Variable and value ordering heuristics Minimum remaining

values, degree heuristic: largest # of constraints on unassigned vars, Least
constraining value

� Forward checking Keep track of remaining legal values for unassigned
variables

� Intelligent backtracking Better than chronological (jump to most recent
assignment , track of incompatible val. assignments, track of conflicting vars.)

� Local search for CSP Incomplete states; operators reassign variable
values

� Distributed constraint satisfaction Dif. agents control dif. subset of
the constraint variables

Summary: CSP

Summary: Adversarial Search

� Evaluation function is used to evaluate
the “goodness” of a game position

� Game Trees

� Minimax

� If it is my turn to move, then the root is labeled a "MAX" node;
otherwise it is labeled a "MIN" node, indicating my opponent's turn.

� Expand nodes down; “Back up” values

� Alpha-beta pruning
� Don’t compute unnecessary nodes

� Expectiminmax (Games of chance)

� Use minimax to compute values for
MAX and MIN nodes

� Use expected values for chance nodes

2 7 1 8

2 1

2

3 7 2

=3

>=3

<=2

?

MAX

MAX

MIN

Advanced Advanced

SearchSearch

Overview

�Real-time heuristic search

� Learning Real-Time A* (LRTA*)

� Minimax Learning Real-Time A* (Min-Max

LRTA*)

�Genetic algorithms

REAL-TIME SEARCH

Real-Time Search

� Interleave search and execution

�Advantages:

� Provide variable control over amount of search

(deliberation) vs. execution (reactivity)

� Improves performance over successive trials of

the same problem: learn to improve quality of

heuristic function

� Can solve very large problems (if they have the

right problem structure)

� Short planning time per move (ind. of # states)

Sven Koenig, “Real-time heuristic search: Research issues,” In Proceedings of the AIPS-98

Workshop on Planning as Combinatorial Search: Propositional, Graph-Based, and

Disjunctive Planning Methods, pages 75-79, 1998.

LRTA*

�Simplest version: one step lookahead with

heuristic-value updating:

1. Initialize s to the start state

2. If s is a goal state, stop

3. Choose an action a that minimizes f(succ(s,a))

4. Update f(s) to the max of current f(s),

1+f(succ(s,a))

5. Execute action a

6. Set s to the current state

7. Go to step 2

Richard E. Korf, “Real-time heuristic search,” Artificial Intelligence 42(2-3):

189-211, March 1990.

Search Example

�What will each algorithm do?

� Greedy search (with and without repeated states)

� A* (with and without repeated states)

� Hill-climbing

� (One-step-lookahead) LRTA*

S A B C G

f(n): 1 1 2 01

D
0

Min-Max LRTA*

� Variation of LRTA* that can be used in nondeterministic

domains: the agent is not able to predict with certainty which successor

state an action execution results in

� Simulated robot-navigation tasks in mazes

1. Initialize s to the start state

2. If s is a goal state, stop

3. Choose an action a whose worst possible outcome minimizes

f(succ(s,a)) (minimax step)

4. Update f(s) to the max of current f(s), 1+f(succ(s,a)) (across all

possible successors of s when performing a)

5. Execute action a

6. Set s to the current state

7. Go to step 2

Sven Koenig, “Minimax real-time heuristic search,” Artificial Intelligence 129 (1-

2): 165-197, June 2001.

Incremental Heuristic Search

�Reuse information gathered during A* to

improve future searches

�Variations:

� Failure � restart search at the point where the

search failed

� Failure � update h-values and restart search

� Failure � update g-values and restart search

�Fringe Saving A*, Adaptive A*, Lifelong

Planning A*, DLite*...

GENETIC ALGORITHMS

Genetic Algorithms
�Active area of research. Many applications. Annual

conferences and workshops

� Probabilistic search/optimization algorithm

�Mimic the process of natural evolution

� Start with k random states (the initial population)

�Generate new states by “mutating” a single state or

“reproducing” (combining via crossover) two

parent states

� Selection mechanism based on children’s fitness

values

GA: Genome Encoding

�Each variable or attribute is typically

encoded as an integer value

� Number of values determines the granularity of

encoding of continuous attributes

�For problems with more complex relational

structure:

� Encode each aspect of the problem

� Constrain mutation/crossover operators to only

generate legal offspring

Genetic Algorithms (2)

�Encoding used for the “genome” of an individual

strongly affects the behavior of the search

�Most effective in situations, for which a well-

defined problem offers a compact encoding of all

necessary solution parameters

Genetic algorithms: Example

�Fitness function: number of non-attacking pairs of queens

�min = 0, max = 8 × 7/2 = 28

32752411 24748552
23 24

Genetic algorithms: Example (2)

Fitness-based stochastic selection :

P(24748552) = 24/(24+23+20+11) = 31%

P(32752411) = 23/(24+23+20+11) = 29%

Exercise

�Design a genetic algorithm to find a perfect

Tic-Tac-Toe strategy, which never loses a

game it plays.

Encoding

� Binary Encoding

� 101100101100101011100101

� 111111100000110000011111

� Permutation Encoding

� 1 5 3 2 6 4 7 9 8

� 8 5 6 7 2 3 1 4 9

� Value Encoding

� 1.2324 5.3243 0.4556 2.3293 2.4545

� BABDJEIFJDHDIERJFDLDFLFEGT

� (back), (back), (right), (forward), (left)

� Tree Encoding

(+ x (/ 5 y))

http://www.obitko.com/tutorials/genetic-algorithms/encoding.php

Selection Mechanisms

� Proportionate selection: Each offspring should be represented in

the new population proportionally to its fitness

� Roulette wheel selection (stochastic sampling): Random sampling, with

fitness-proportional probabilities. Better individuals get higher chance

� Deterministic sampling: Exact numbers of offspring (rounding up for most-

fit individuals; rounding down for “losers”)

� Tournament selection: Offspring compete against each other in a

series of competitions

� Particularly useful when fitness can’t be readily measured (e.g., genetically

evolving game-playing algorithms or RoboCup players)

A
B

C

3/6=50%

1/6 = 17%

2/6 = 33%

GA: Crossover

� Selecting parents: Pick pairs at random, or fitness-biased

selection (e.g., using a Boltzmann distribution)

� One-point crossover (swap at same point in each parent)

� Two-point crossover

� Cut and splice (cut point could be different in the two

parents)

� Bitwise crossover (“uniform crossover”)

� Many specialized crossover methods for specific problem

types and representation choices

GA: Mutation

�Bitwise (“single point”) mutation

�Order changing - two numbers are selected

and exchanged

�Adding a small number (for real value

encoding)

�Change selected nodes (tree representation)

GA: When to Stop?

�After a fixed number of generations

�When a certain fitness level is reached

�When fitness variability drops below a

threshold

� ...

GA: Parameters

�Running a GA involves many parameters

� Population size

� Crossover rate

� Mutation rate

� Number of generations

� Target fitness value

� ...

Exercise

�Design a genetic algorithm to find a perfect

Tic-Tac-Toe strategy, which never loses a

game it plays.

�“On the Genetic Evolution of a Perfect Tic-

Tac-Toe Strategy”, Gregor Hochmuth,

Stanford University
http://www.genetic-programming.org/sp2003/Hochmuth.pdf

DISTRIBUTED CONSTRAINT
SATISFACTION

40

Distributed Constraint Satisfaction

�Looks at solving CSP when there is a

collection of agents, each of which controls a

subset of the constraint variables.

�Active area of research; annual workshops.

41

Why multiple agents?

�Agents have limited rationality

� search is often intractable

�may not have a complete picture of the

problem

�may not have the required computational

capability

�Agents may be self interested

DCSP: Approach

� If we represent the search problem as a

graph, we can solve it by accumulating local

computations for each node in the graph

� Local computations can be executed

asynchronously and concurrently

Agent 1

Agent 2
Agent 3

http://www.cis.udel.edu/~kamboj

Asynchronous Backtracking

� The processes are priority ordered (by the alphabetical
order of the variable identifiers)

� Each process chooses an assignment and communicates it
to the neighboring processes (ok message)

� Each process maintains the current value of other
processes from its viewpoint (local view)

� A value assignment is changed if it is not consistent with the
assignments of the higher priority processes

� If no values are consistent with the higher priority processes,
then the process creates a nogood message and sends it to the
higher priority processes

� All agents wait for and respond to messages

Asynchronous Backtracking
Example

x1 x2

x3

x1, x2, x3 {red, blue, green}
x1≠x3, x2≠x3,

(ok? (x1, red)) (ok? (x2, blue))

{(x1=red), (x2=blue)}

X1

{1,2}
X2

{2}

X3

{1,2}

(ok?, (x1,1))

Local view:
{(x1,1),(x2,2)}

≠≠
))(ok?, (x2,2

Asynchronous Backtracking
Example 2

X1

{1,2}
X2

{2}

X3

{1,2}

(nogood, {(x1,1),(x2,2)})

≠≠

Local view:

{(x1,1)}
New link

Add neighbor, and
get value requests

Asynchronous Backtracking
Example 2

X1

{1,2}
X2

{2}

X3

{1,2}

≠≠

(nogood,{(x1,1)})

Asynchronous Backtracking
Example 2

Asynchronous Weak-Commitment

� Asynchronous backtracking

� Process priorities are statically determined

� Higher priority processes can make a poor

value assignment resulting in the lower level

process having to do a long search in order to

reverse the higher level process’ decision

� An improved alternative: AWC

� AWC allows dynamic reordering of the

process priorities so that a bad decision

can be revised without an exhaustive

search.

� Use a value ordered heuristic

� i.e. min-conflict heuristic – minimize the

number of constraints violations.

Asynchronous Weak-Commitment (2)

50

DCS: Algorithms

� 1992—Asynchronous Backtracking (ABT), -static ordering, complete

� 1994—Asynchronous Weak-Commitment (AWC), -reordering, fast,
complete (only with exponential space)

� 1995—Distributed Breakout Algorithm (DBA), -incomplete but fast

� 2000—Distributed Forward Chaining (DFC), -slow, comparable to ABT

� 2000—Asynchronous Aggregation Search (AAS), -aggregation of
values in ABT

� 2001—Maintaining Asynchronously Consistencies (DMAC), -the fastest
algorithm

� 2001—Asynchronous Backtracking with Reordering (ABTR), -
reordering in ABT with bounded nogoods

� 2002—Secure Computation with Semi-Trusted Servers, -security
increases with the number of trustworthy servers

� 2003—Secure Multiparty Computation For Solving DisCSPs (MPC-
DisCSP1-MPC-DisCSP4), secure if 1/2 of the participants are
trustworthy

http://en.wikipedia.org/wiki/DisCSP

51

Also …

�You can check my implementation of the

Asynchronous Weak-Commitment Search for the n-

queens problem:

�http://www.cs.umbc.edu/~rzavala/netlogomas.html

�Or other implementations - Graph Coloring,

asynchronous backtracking:

�http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html

http://en.wikipedia.org/wiki/DisCSP

