
CMSC 671CMSC 671

Fall 2010Fall 2010

Thu 9/16/10Thu 9/16/10

Constraints Processing /
Constraint Satisfaction Problem

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Algorithms for CSPs

�Backtracking (systematic search)

�Constraint propagation (k-consistency)

�Variable and value ordering heuristics

� Intelligent backtracking

3

Constraint satisfaction - Overview

�Powerful problem-solving paradigm

� View a problem as a set of variables to which

we have to assign values that satisfy a number of

problem-specific constraints.

� Constraint programming, constraint satisfaction

problems (CSPs), constraint logic

programming…

4

Informal example: Map
coloring

�Color the following map using three

colors (red, green, blue) such that no

two adjacent regions have the same

color.
E

D A

C

B

5

Map coloring II

�Variables: A, B, C, D, E all of domain RGB

�Domains: RGB = {red, green, blue}

�Constraints: A≠B, A≠C,A ≠ E, A ≠ D, B ≠ C, C ≠

D, D ≠ E

�One solution: A=red, B=green, C=blue, D=green,

E=blue

E

D A

C
B

E

D A

C
B

=>

Map-Coloring - Australia

� Variables WA, NT, Q, NSW, V, SA, T

� Domains Di = {red,green,blue}

� Constraints : adjacent regions must have different colors

� e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

Map-Coloring - Australia

� Solutions are complete and consistent assignments,

e.g., WA = red, NT = green,Q = red,NSW =

green,V = red,SA = blue,T = green

8

Why formulate (problems) using

CSP?

�CSPs yield a natural representation for a

wide variety of problems

�Easier to use an existing CSP-solving system

than designing custom solution using

another search technique

9

Informal definition of CSP

� CSP = Constraint Satisfaction Problem

� Given

(1) a finite set of variables

(2) each with a domain of possible values (often finite)

(3) a set of constraints that limit the values the variables

can take on

� A solution is an assignment of a value to each variable such

that the constraints are all satisfied.

� Tasks might be to decide if a solution exists, to find a

solution, to find all solutions, or to find the “best solution”

according to some metric (objective function).

10

Example: SATisfiability

�Given a set of propositions containing variables,

find an assignment of the variables to {false,true}

that satisfies them.

� For example, the clauses:

� (A ∨ B ∨ ¬C) ∧ (¬A ∨ D)

� (equivalent to (C → A) ∨ (B ∧ D → A)

are satisfied by

A = false

B = true

C = false

D = false

11

Formal definition of a constraint

network (CN)

A constraint network (CN) consists of

� a set of variables X = {x1, x2, … xn}

� each with an associated domain of values {d1, d2, … dn}.

� the domains are typically finite

� a set of constraints {c1, c2 … cm} where

� each constraint defines a predicate which is a relation
over a particular subset of X.

� e.g., Ci involves variables {Xi1, Xi2, … Xik} and defines
the relation Ri ⊆ Di1 x Di2 x … Dik

� Unary constraint: only involves one variable

� Binary constraint: only involves two variables

12

Formal definition of a CN
(cont.)

�Instantiations

�An instantiation of a subset of variables S

is an assignment of a value in its domain to

each variable in S

�An instantiation is legal iff it does not

violate any constraints.

�A solution is an instantiation of all of the

variables in the network.

13

Real-world problems

�Scheduling

�Temporal reasoning

�Building design

�Planning

�Optimization/satisfaction

�Vision

�Graph layout

�Network

management

�Natural language

processing

�Molecular biology /

genomics

�VLSI design

14

Typical tasks for CSP

�Solutions:

�Does a solution exist?

� Find one solution

� Find all solutions

�Given a partial instantiation, do any of the

above

�Transform the CN into an equivalent

CN that is easier to solve.

15

Binary CSP

�A binary CSP is a CSP in which all of the
constraints are binary or unary.

�Any non-binary CSP can be converted into a
binary CSP by introducing additional
variables.

16

Binary CSP

�A binary CSP can be represented as a
constraint graph, which has a node for each
variable and an arc between two nodes if and
only there is a constraint involving the two
variables.

E

D A

C
B

D

B

CA

E

17

Example: Sudoku

3 1

1 4

3 4 1 2

4

18

Running example: Sudoku

� Variables and their domains� vij is the value in the jth cell of the ith row� Dij = D = {1, 2, 3, 4}

� Blocks:
� B1 = {11, 12, 21, 22}… B4 = {33, 34, 43, 44}

� Constraints (implicit/intensional)
� CR : ∀i, ∪j vij = D (every value appears in every row)

� CC : ∀j, ∪j vij = D (every value appears in every column)

� CB : ∀k, ∪ (vij | ij ∈Bk) = D (every value appears in every block)

� Alternative representation: pairwise inequality constraints:
� IR : ∀i, j≠j’ : vij ≠ vij’ (no value appears twice in any row)

� IC : ∀j, i≠i’ : vij ≠ vi’j (no value appears twice in any column)

� IB : ∀k, ij ∈ Bk, i’j’ ∈ Bk, ij ≠ i’j’ :vij ≠ vi’j’ (no value appears twice in any
block)

� Advantage of the second representation: all binary constraints!

v
11

3 v
13

1

v
21

1 v
23

4

3 4 1 2

v
41

v
42

4 v
44

19

Sudoku constraint network

v
11

3 v
13

1

v
21

1 v
23

4

3 4 1 2

v
41

v
42

4 v
44

v11

v44v42v41

v23v21

v13

20

Solving constraint problems

�Systematic search

�Generate and test

�Backtracking

�Variable ordering heuristics

�Value ordering heuristics

�Constraint propagation (consistency)

�Backjumping and dependency-directed
backtracking

�Try each possible combination until you find one

that works:

� green – red – green – red – green

� green – red – green – red – blue

� green – red – green – red – red

� …

�Doesn’t check constraints until all variables have

been instantiated

�Very inefficient way to explore the space of

possibilities

21

Generate and test

E

D A

C
B

22

Backtracking
(a.k.a. depth-first search!)

�Consider the variables in some order

� Pick an unassigned variable and give it a

provisional value such that it is consistent with all

of the constraints

� If no such assignment can be made, we’ve reached

a dead end and need to backtrack to the previous

variable

�Continue this process until a solution is found or we

backtrack to the initial variable and have exhausted

all possible values

Backtracking search

Backtracking example

http://aima.eecs.berkeley.edu/slides-ppt/

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

� General-purpose methods can give huge

 gains in speed:

� Which variable should be assigned next?

� In what order should its values be tried?

� Can we detect inevitable failure early?

29

Problems with backtracking

�Inefficiency: can explore areas of the

search space that aren’t likely to

succeed

� Variable and value ordering can help

�Thrashing: keep repeating the same

failed variable assignments

� Consistency checking can help

� Intelligent backtracking schemes can also help

30

Variable and value ordering

�Minimum remaining values (variables)

� fewest legal values

�Degree heuristic (variables)

� largest number of constraints on other

unassigned variables

� reduces branching factor

�Least constraining value (values)

� rules out the fewest choices for neighboring vars

31

Constraint Propagation

�Using the constraints to reduce the number
of legal values for a variable, which in turn
reduces the number of legal values for
another variable, and so on.

32

Consistency

�Node consistency

� A node X is node-consistent if every value in
the domain of X is consistent with X’s unary
constraints

� A graph is node-consistent if all nodes are node-
consistent

33

Consistency

�Arc consistency

� An arc (X, Y) is arc-consistent if, for every
value x of X, there is a value y for Y that
satisfies the constraint represented by the arc.

� A graph is arc-consistent if all arcs are arc-
consistent.

�To create arc consistency, we perform
constraint propagation: that is, we
repeatedly reduce the domain of each
variable to be consistent with its arcs

Arc consistency algorithm AC-3

� Time complexity: O(n2d3)

35

Constraint propagation: Sudoku

v
11

3 v
13

1

v
21

1 v
23

4

3 4 1 2

v
41

v
42

4 v
44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2

Arc consistency

4

321

32

2
Node consistency

…and we didn’t even need to search!

36

K-consistency

�K- consistency generalizes the notion of arc
consistency to sets of more than two variables.

� A graph is K-consistent if, for legal values of any K-1
variables in the graph, and for any Kth variable Vk, there
is a legal value for Vk

� Strong K-consistency = J-consistency for all J<=K

�Node consistency = strong 1-consistency

�Arc consistency = strong 2-consistency

� Path consistency = strong 3-consistency

37

Why do we care?

1. If we have a CSP with N variables that
is known to be strongly N-consistent,
we can solve it without backtracking

2. For any CSP that is strongly K-
consistent, if we find an appropriate
variable ordering (one with “small
enough” branching factor), we can
solve the CSP without backtracking

Forward checking

� Idea:

� Interleaving search and inference of reductions in the domain of the

variables

� Keep track of remaining legal values for unassigned variables

� Terminate search when any variable has no legal values

Forward checking

� Idea:

� Keep track of remaining legal values for unassigned variables

� Terminate search when any variable has no legal values

Forward checking

� Idea:

� Keep track of remaining legal values for unassigned variables

� Terminate search when any variable has no legal values

Forward checking

� Idea:

� Keep track of remaining legal values for unassigned variables

� Terminate search when any variable has no legal values

42

Tree-structured constraint
graph

� A constraint tree rooted at V1 satisfies the following property:

� There exists an ordering V1, …, Vn such that every node has zero or one

parents (i.e., each node only has constraints with at most one “earlier” node

in the ordering)

� Also known as an ordered constraint graph with width 1

� If this constraint tree is also node- and arc-consistent (a.k.a. strongly 2-

consistent), then it can be solved without backtracking

� (More generally, if the ordered graph is strongly k-consistent, and has

width w < k, then it can be solved without backtracking.)

V1

V8 V4 V7

V6
V10V9

V5V3V2

43

Proof sketch for constraint
trees

� Perform backtracking search in the order that

satisfies the constraint tree condition

�Every node, when instantiated, is constrained only

by at most one previous node

�Arc consistency tells us that there must be at least

one legal instantiation in this case

� (If there are no legal solutions, the arc consistency

procedure will collapse the graph – some node will have

no legal instantiations)

�Keep doing this for all n nodes, and you have a

legal solution – without backtracking!

44

Backtrack-free CSPs: Proof
sketch

� Given a strongly k-consistent OCG, G, with width w < k:
� Instantiate variables in order, choosing values that are consistent with

the constraints between Vi and its parents

� Each variable has at most w parents, and k-consistency tells us we
can find a legal value consistent with the values of those w parents

� Unfortunately, achieving k-consistency is hard (and can
increase the width of the graph in the process!)

� Fortunately, 2-consistency is relatively easy to achieve, so
constraint trees are easy to solve

� Unfortunately, many CGs have width greater than one (that
is, no equivalent tree), so we still need to improve search

45

So what if we don’t have a
tree?

�Answer #1: Try interleaving constraint propagation

and backtracking

�Answer #2: Try using variable-ordering heuristics

to improve search

�Answer #3: Try using value-ordering heuristics

during variable instantiation

�Answer #4: See if iterative repair works better

�Answer #5: Try using intelligent backtracking

methods

46

Intelligent backtracking

�Backtracking search is chronological

backtracking

�Backjumping:

� Jumps to the most recent assignment in the

conflict set

� if Vj fails, jump back to the variable Vi with

greatest i such that the constraint (Vi, Vj) fails

(i.e., most recently instantiated variable in

conflict with Vi)

47

Intelligent backtracking

�Backchecking: keep track of incompatible

value assignments computed during

backjumping

�Backmarking: keep track of which variables

led to the incompatible variable assignments

for improved backchecking

Local search for CSPs

� Hill-climbing, simulated annealing typically work with
 "complete" states, i.e., all variables assigned

� To apply to CSPs :
� allow states with unsatisfied constraints

� operators reassign variable values

� Variable selection: randomly select any conflicted
 variable

� Value selection by min-conflicts heuristic:
� choose value that violates the fewest constraints

� i.e., hill-climb with h(n) = total number of violated constraints

49

Local search for CSPs

�Min-conflicts: Select new values that

minimally conflict with the other variables

� Use in conjunction with hill climbing or

simulated annealing or…

�Local maxima strategies

� Random restart

� Random walk

� Tabu search: don’t try recently attempted values

Example: 4-Queens

� States: 4 queens in 4 columns (44 = 256 states)

� Actions : move queen in column

� Goal test : no attacks

� Evaluation: h(n) = number of attacks

� Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =

 10,000,000)

51

Min-conflicts heuristic

� Iterative repair method

1. Find some “reasonably good” initial solution
– E.g., in N-queens problem, use greedy search through rows,

putting each queen where it conflicts with the smallest number of
previously placed queens, breaking ties randomly

2. Find a variable in conflict (randomly)

3. Select a new value that minimizes the number of
constraint violations
– O(N) time and space

4. Repeat steps 2 and 3 until done

� Performance depends on quality and
informativeness of initial assignment; inversely
related to distance to solution

52

Some challenges for constraint

reasoning

�What if not all constraints can be satisfied?

� Hard vs. soft constraints

� Degree of constraint satisfaction

� Cost of violating constraints

�What if constraints are of different forms?

� Symbolic constraints

� Numerical constraints [constraint solving]

� Temporal constraints

� Mixed constraints

53

Some challenges for constraint

reasoning II

�What if constraints are represented intensionally?

� Cost of evaluating constraints (time, memory, resources)

�What if constraints, variables, and/or values change
over time?

� Dynamic constraint networks

� Temporal constraint networks

� Constraint repair

�What if you have multiple agents or systems
involved in constraint satisfaction?

� Distributed CSPs

� Localization techniques

54

Distributed Constraint Satisfaction

�Looks at solving CSP when there is a

collection of agents, each of which controls a

subset of the constraint variables.

�Active area of research; annual conferences

and workshops.

Thanks for coming -- see you
next Tuesday!

