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Algorithms for CSPs

�Backtracking (systematic search)

�Constraint propagation (k-consistency)

�Variable and value ordering heuristics

� Intelligent backtracking
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Constraint satisfaction - Overview

�Powerful problem-solving paradigm

� View a problem as a set of variables to which 

we have to assign values that satisfy a number of 

problem-specific constraints.

� Constraint programming, constraint satisfaction 

problems (CSPs), constraint logic 

programming…
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Informal example: Map 
coloring

�Color the following map using three 

colors (red, green, blue) such that no 

two adjacent regions have the same 

color.
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Map coloring II

�Variables:  A, B, C,  D,  E all of domain RGB

�Domains: RGB = {red, green, blue}

�Constraints: A≠B, A≠C,A ≠ E, A ≠ D, B ≠ C, C ≠

D, D ≠ E

�One solution: A=red, B=green, C=blue, D=green, 

E=blue
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Map-Coloring - Australia

� Variables WA, NT, Q, NSW, V, SA, T

� Domains Di = {red,green,blue}

� Constraints  : adjacent regions must have different colors

� e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green  )}



Map-Coloring - Australia

� Solutions are complete and consistent assignments, 

e.g., WA = red, NT = green,Q = red,NSW = 

green,V = red,SA = blue,T  = green
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Why formulate (problems) using 

CSP?

�CSPs yield a natural representation for a 

wide variety of problems

�Easier to use an existing CSP-solving system  

than designing custom solution using 

another search technique
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Informal definition of CSP

� CSP = Constraint Satisfaction Problem

� Given

(1) a finite set of variables

(2) each with a domain of possible values (often finite)

(3) a set of constraints that limit the values the variables 

can take on

� A solution is an assignment of a value to each variable such 

that the constraints are all satisfied.

� Tasks might be to decide if a solution exists, to find a 

solution, to find all solutions, or to find the “best solution”

according to some metric (objective function).
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Example: SATisfiability

�Given a set of propositions containing variables, 

find an assignment of the variables to {false,true} 

that satisfies them.

� For example, the clauses:

� (A ∨ B ∨ ¬C) ∧ ( ¬A ∨ D)

� (equivalent to (C → A) ∨ (B ∧ D → A)

are satisfied by

A = false

B = true

C = false

D = false
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Formal definition of a constraint 

network (CN)

A constraint network (CN) consists of

� a set of variables X = {x1, x2, … xn} 

� each with an associated domain of values {d1, d2, … dn}.  

� the domains are typically finite

� a set of constraints {c1, c2 … cm} where

� each constraint defines a predicate which is a relation 
over a particular subset of X.  

� e.g., Ci involves variables {Xi1, Xi2, … Xik} and defines 
the relation Ri ⊆ Di1 x Di2 x … Dik

� Unary constraint: only involves one variable

� Binary constraint: only involves two variables
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Formal definition of a CN 
(cont.)

�Instantiations

�An instantiation of a subset of variables S 

is an assignment of a value in its domain to 

each variable in S

�An instantiation is legal iff it does not 

violate any constraints.

�A solution is an instantiation of all of the 

variables in the network.
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Real-world problems

�Scheduling

�Temporal reasoning

�Building design

�Planning

�Optimization/satisfaction

�Vision

�Graph layout

�Network 

management

�Natural language 

processing

�Molecular biology / 

genomics

�VLSI design
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Typical tasks for CSP

�Solutions:

�Does a solution exist?

� Find one solution

� Find all solutions

�Given a partial instantiation, do any of the 

above

�Transform the CN into an equivalent 

CN that is easier to solve.
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Binary CSP

�A binary CSP is a CSP in which all of the 
constraints are binary or unary.

�Any non-binary CSP can be converted into a 
binary CSP by introducing additional 
variables.
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Binary CSP

�A binary CSP can be represented as a 
constraint graph, which has a node for each 
variable and an arc between two nodes if and 
only there is a constraint involving the two 
variables.
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Example: Sudoku
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Running example: Sudoku

� Variables and their domains� vij is the value in the jth cell of the ith row� Dij = D = {1, 2, 3, 4}

� Blocks:
� B1 = {11, 12, 21, 22}… B4 = {33, 34, 43, 44}

� Constraints (implicit/intensional)
� CR : ∀i, ∪j vij = D (every value appears in every row)

� CC : ∀j, ∪j vij = D (every value appears in every column)

� CB : ∀k, ∪ (vij | ij ∈Bk) = D (every value appears in every block)

� Alternative representation: pairwise inequality constraints:
� IR : ∀i, j≠j’ : vij ≠ vij’ (no value appears twice in any row)

� IC : ∀j, i≠i’ : vij ≠ vi’j (no value appears twice in any column)

� IB : ∀k, ij ∈ Bk, i’j’ ∈ Bk, ij ≠ i’j’ :vij ≠ vi’j’ (no value appears twice in any 
block)

� Advantage of the second representation:  all binary constraints!
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Sudoku constraint network
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Solving constraint problems

�Systematic search

�Generate and test

�Backtracking

�Variable ordering heuristics

�Value ordering heuristics

�Constraint propagation (consistency)

�Backjumping and dependency-directed 
backtracking



�Try each possible combination until you find one 

that works:

� green – red – green – red – green 

� green – red – green – red – blue

� green – red – green – red – red

� …

�Doesn’t check constraints until all variables have 

been instantiated

�Very inefficient way to explore the space of 

possibilities

21

Generate and test

E

D A

C
B



22

Backtracking
(a.k.a. depth-first search!)

�Consider the variables in some order

� Pick an unassigned variable and give it a 

provisional value such that it is consistent with all 

of the constraints

� If no such assignment can be made, we’ve reached 

a dead end and need to backtrack to the previous 

variable

�Continue this process until a solution is found or we 

backtrack to the initial variable and have exhausted 

all possible values



Backtracking search



Backtracking example

http://aima.eecs.berkeley.edu/slides-ppt/



Backtracking example



Backtracking example



Backtracking example



Improving backtracking efficiency

� General-purpose methods can give huge 

 gains in speed:

�  Which variable should be assigned next?

�  In what order should its values be tried?

�  Can we detect inevitable failure early?
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Problems with backtracking

�Inefficiency: can explore areas of the 

search space that aren’t likely to 

succeed

� Variable and value ordering can help

�Thrashing: keep repeating the same 

failed variable assignments

� Consistency checking can help

� Intelligent backtracking schemes can also help
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Variable and value ordering

�Minimum remaining values (variables)

� fewest legal values

�Degree heuristic (variables)

� largest number of constraints on other 

unassigned variables

� reduces branching factor

�Least constraining value (values)

� rules out the fewest choices for neighboring vars
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Constraint Propagation

�Using the constraints to reduce the number 
of legal values for a variable, which in turn 
reduces the number of legal values for 
another variable, and so on.
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Consistency

�Node consistency

� A node X is node-consistent if every value in 
the domain of X is consistent with X’s unary 
constraints

� A graph is node-consistent if all nodes are node-
consistent
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Consistency

�Arc consistency 

� An arc (X, Y) is arc-consistent if, for every 
value x of X, there is a value y for Y that 
satisfies the constraint represented by the arc.

� A graph is arc-consistent if all arcs are arc-
consistent.

�To create arc consistency, we perform 
constraint propagation: that is, we 
repeatedly reduce the domain of each 
variable to be consistent with its arcs



Arc consistency algorithm AC-3

� Time complexity: O(n2d3  )
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Constraint propagation: Sudoku
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K-consistency

�K- consistency generalizes the notion of arc 
consistency to sets of  more than two variables.

� A graph is K-consistent if, for legal values of any K-1 
variables in the graph, and for any Kth variable Vk, there 
is a legal value for Vk

� Strong K-consistency = J-consistency for all J<=K

�Node consistency = strong 1-consistency

�Arc consistency = strong 2-consistency

� Path consistency = strong 3-consistency
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Why do we care?

1. If we have a CSP with N variables that 
is known to be strongly N-consistent, 
we can solve it without backtracking

2. For any CSP that is strongly K-
consistent, if we find an appropriate 
variable ordering (one with “small 
enough” branching factor), we can 
solve the CSP without backtracking



Forward checking

� Idea:

� Interleaving search and inference of reductions in the domain of the 

variables

� Keep track of remaining legal values for unassigned variables

�  Terminate search when any variable has no legal values



Forward checking

� Idea: 

� Keep track of remaining legal values for unassigned variables

�  Terminate search when any variable has no legal values
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Forward checking

� Idea: 

� Keep track of remaining legal values for unassigned variables

�  Terminate search when any variable has no legal values
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Tree-structured constraint 
graph

� A constraint tree rooted at V1 satisfies the following property:

� There exists an ordering V1, …, Vn such that every node has zero or one 

parents (i.e., each node only has constraints with at most one “earlier” node 

in the ordering)

� Also known as an ordered constraint graph with width 1

� If this constraint tree is also node- and arc-consistent (a.k.a. strongly 2-

consistent), then it can be solved without backtracking

� (More generally, if the ordered graph is strongly k-consistent, and has 

width w < k, then it can be solved without backtracking.)

V1

V8 V4 V7

V6
V10V9

V5V3V2
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Proof sketch for constraint 
trees

� Perform backtracking search in the order that 

satisfies the constraint tree condition

�Every node, when instantiated, is constrained only 

by at most one previous node

�Arc consistency tells us that there must be at least 

one legal instantiation in this case

� (If there are no legal solutions, the arc consistency 

procedure will collapse the graph – some node will have 

no legal instantiations)

�Keep doing this for all n nodes, and you have a 

legal solution – without backtracking!
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Backtrack-free CSPs: Proof 
sketch

� Given a strongly k-consistent OCG, G, with width w < k:
� Instantiate variables in order, choosing values that are consistent with 

the constraints between Vi and its parents

� Each variable has at most w parents, and k-consistency tells us we 
can find a legal value consistent with the values of those w parents

� Unfortunately, achieving k-consistency is hard (and can 
increase the width of the graph in the process!)

� Fortunately, 2-consistency is relatively easy to achieve, so 
constraint trees are easy to solve

� Unfortunately, many CGs have width greater than one (that 
is, no equivalent tree), so we still need to improve search
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So what if we don’t have a 
tree?

�Answer #1: Try interleaving constraint propagation 

and backtracking

�Answer #2: Try using variable-ordering heuristics 

to improve search

�Answer #3: Try using value-ordering heuristics 

during variable instantiation

�Answer #4: See if iterative repair works better

�Answer #5: Try using intelligent backtracking

methods
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Intelligent backtracking

�Backtracking search is chronological 

backtracking

�Backjumping:

� Jumps to the most recent assignment in the 

conflict set

� if Vj fails, jump back to the variable Vi with 

greatest i such that the constraint (Vi, Vj) fails 

(i.e., most recently instantiated variable in 

conflict with Vi)
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Intelligent backtracking

�Backchecking: keep track of incompatible 

value assignments computed during 

backjumping

�Backmarking: keep track of which variables 

led to the incompatible variable assignments 

for improved backchecking



Local search for CSPs

� Hill-climbing, simulated annealing typically work with 
 "complete" states, i.e., all variables assigned

� To apply to CSPs  :
�  allow states with unsatisfied constraints

� operators reassign  variable values

� Variable selection: randomly select any conflicted 
 variable

� Value selection by min-conflicts  heuristic:
�  choose value that violates the fewest constraints

� i.e., hill-climb with h(n)  = total number of violated constraints
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Local search for CSPs

�Min-conflicts: Select new values that 

minimally conflict with the other variables

� Use in conjunction with hill climbing or 

simulated annealing or…

�Local maxima strategies

� Random restart

� Random walk

� Tabu search: don’t try recently attempted values



Example: 4-Queens

� States: 4 queens in 4 columns (44  = 256 states)

� Actions  : move queen in column

� Goal test  : no attacks

� Evaluation: h(n)  = number of attacks

� Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability (e.g., n = 

 10,000,000)
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Min-conflicts heuristic

� Iterative repair method

1. Find some “reasonably good” initial solution
– E.g., in N-queens problem, use greedy search through rows, 

putting each queen where it conflicts with the smallest number of 
previously placed queens, breaking ties randomly

2. Find a variable in conflict (randomly)

3. Select a new value that minimizes the number of 
constraint violations
– O(N) time and space

4. Repeat steps 2 and 3 until done

� Performance depends on quality and 
informativeness of initial assignment; inversely 
related to distance to solution
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Some challenges for constraint 

reasoning

�What if not all constraints can be satisfied?

� Hard vs. soft constraints

� Degree of constraint satisfaction

� Cost of violating constraints

�What if constraints are of different forms?

� Symbolic constraints

� Numerical constraints [constraint solving]

� Temporal constraints

� Mixed constraints
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Some challenges for constraint 

reasoning II

�What if constraints are represented intensionally?

� Cost of evaluating constraints (time, memory, resources)

�What if constraints, variables, and/or values change 
over time?

� Dynamic constraint networks

� Temporal constraint networks

� Constraint repair

�What if you have multiple agents or systems 
involved in constraint satisfaction?

� Distributed CSPs

� Localization techniques
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Distributed Constraint Satisfaction

�Looks at solving CSP when there is a 

collection of agents, each of which controls a 

subset of the constraint variables.

�Active area of research; annual conferences 

and workshops.



Thanks for coming -- see you 
next Tuesday!


