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Saving the path to the goal (2)

� Informed and Uninformed search methods 

we have seen so far

� Breadth-first, uniform-cost, depth-first, depth-

limited, iterative deepening, bidirectional

� Greedy, A*, IDA*, SMA*

�The path to the goal is available as part of 

the solution



� In many problems the path to the goal is irrelevant

�Can you tell which ones?

Saving the path to the goal
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� In many problems the path to the goal is irrelevant

Saving the path to the goal (3)

N-Queens

Integrated Circuit Design

�Vehicle routing, job-shop schedulling, process 

scheduling, etc.

� In general: Optimization Problems



Optimization problem

�The aim is to find the best state according 

to an objective function.

�The objective function determines how 

good a solution is.



Local search

�Keep a single "current" state, try to 

improve it.

� Very memory efficient (only remember 

current state)

State space landscape

Elevation - Objective function
Location – State

Depending on app., aim is 
either to find lowest valley or 
highest peak



Hill-climbing search

� If there exists a successor for the current state n 

such that 

� h(s) < h(n)

� then move from n to s. Otherwise, halt at n. 

�Looks one step ahead to determine if any successor 

is better than the current state; if there is, move to 

the best successor. 

� Similar to Greedy search in that it uses h, but does 

not allow backtracking or jumping to an alternative 

path since it doesn’t “remember” where it has been.



Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html
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Exploring the Landscape

�Local Maxima: peaks 

that aren’t the highest 

point in the space

�Plateaus: the space has a 

broad flat region that 

gives the search 

algorithm no direction 

(random walk)

�Ridges: sequence of 

local maxima very 

difficult to navigate



Example: n-queens problem

� Put n queens on an n × n board with no two 

queens on the same row, column, or 

diagonal



8-queens problem

� h = number of pairs of 
queens that are attacking 
each other, either directly 
or indirectly 

� h = 17 for the given state

Numbers indicate h if we move a 
queen in its corresponding column



Local minima

� Local minimum, h = 1
How do we get out of this local minima?



Hill-climbing search 

Local minima/maxima

�Depending on initial state, can get stuck in 

local minima (maxima)

State space landscape



Hill-climbing search issues

�Not complete since the search will 
terminate at "local minima (maxima)," 
"plateaus," and "ridges.“

�Some problem spaces are great for hill 
climbing and others are terrible.
� Depends very much on the shape of the state-

space landscape



Alternatives to hill climbing

�Problems: local maxima, plateaus, ridges

�Remedies: 

� Random restart: keep restarting the search 

from random locations until a goal is found.

� Stochastic Hill Climbing: randomly choosing 

from among the uphill moves (prob. according to 

steepness)

� First choice hill climbing: randomly generates 

successors, one by one, until a better one is found

� Good when thousands of successors



Simulated annealing

�Simulated annealing (SA) exploits an analogy 

between the way in which a metal cools and 

freezes into a minimum-energy crystalline 

structure (the annealing process) and the search 

for a minimum [or maximum] in a more general 

system. 

�We “shake” the surface to bounce out of a local 

minima.



Simulated annealing (2)

� SA can avoid becoming trapped at local minima

� SA uses a random search that accepts changes that 

increase objective function f, as well as some that 

decrease it (i.e. it accepts bad moves).

� SA uses a control parameter T, which by analogy with 

the original application is known as the system 

“temperature” (shaking intensity).

�The higher the temperature, the more likely it is that a 

bad move can be made.

�T starts out high and gradually decreases toward 0.

�Widely used in VLSI layout and airline scheduling



Simulated annealing (3)

�A “bad” move from A to B is accepted with a 

probability

P(moveA→B) = e( f (B) – f (A))  / T

�The higher the temperature, the more likely it is 

that a bad move can be made.

�As T tends to zero, this probability tends to zero, 

and SA becomes more like hill climbing

� If T is lowered slowly enough, SA is complete and 

optimal. 



The simulated annealing algorithm 



Local beam search

�Begin with k random states

�Generate all successors of these states

�Keep the k best states

�Can suffer lack of diversity among k states 
(expensive version of hill climbing)

�Stochastic beam search: Probability of 
keeping a state is a function of its heuristic 
value



Genetic algorithms

�Similar to stochastic beam search, but new 

states are generated by “reproducing”

(combining via crossover) two parent states 

(selected according to their fitness) rather 

than modifying a single state.



Genetic algorithms (2)

� A state is represented as a string over a 

finite alphabet (often a string of 0s and 1s)

� Evaluation function (fitness function).

� Higher values for better states.

1. Start with k randomly generated states 

(population)

2. Produce the next generation of states by 

1. selection

2. crossover

3. mutation



Genetic algorithms: Example

�Fitness function: number of non-attacking pairs of queens 

�min = 0, max = 8 × 7/2 = 28

32752411 24748552
23 24



Genetic algorithms: Example (2)

Fitness-based stochastic selection :

P(24748552) = 24/(24+23+20+11) = 31%

P(32752411) = 23/(24+23+20+11) = 29% 



More on genetic algorithms

�Mimic the process of natural evolution 

�Encoding used for the “genome” of an 

individual strongly affects the behavior of the 

search

�Genetic algorithms / genetic programming 

are a large and active area of research



Tabu search

�A simple local search but with a memory

�Problem:  Hill climbing can get stuck on local 

maxima

�Solution:  Maintain a list of k previously 

visited states, and prevent the search from 

revisiting them



Online search

� Interleave computation and action (search some, act some)

� Exploration: Can’t infer outcomes of actions; must actually perform 

them to learn what will happen

� Competitive ratio = Path cost found* / Path cost that could be found** 

* On average, or in an adversarial scenario (worst case)

** If the agent knew the nature of the space, and could use offline search

� Relatively easy if actions are reversible (ONLINE-DFS-AGENT)

� LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on 

experience

� More about online search and nondeterministic actions later un the 

course …



Summary: Local search

�Hill-climbing algorithms keep only a single state in 

memory, but can get stuck on local optima. 

� Simulated annealing escapes local optima, and is 

complete and optimal given a “long enough” cooling 

schedule. 

�Genetic algorithms can search a large space by 

modeling biological evolution.

�Online search algorithms are useful in state spaces with 

partial/no information.



Thanks for coming -- see you 

next Thursday!


