
CMSC 671CMSC 671

Fall 2010Fall 2010

Tue 9/14/10Tue 9/14/10

Local Local Search and Optimization Search and Optimization

Problems Problems

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Saving the path to the goal (2)

� Informed and Uninformed search methods

we have seen so far

� Breadth-first, uniform-cost, depth-first, depth-

limited, iterative deepening, bidirectional

� Greedy, A*, IDA*, SMA*

�The path to the goal is available as part of

the solution

� In many problems the path to the goal is irrelevant

�Can you tell which ones?

Saving the path to the goal

8-Puzzle N-QueensMissionaries & Cannibals

Water Jug Problem

5 2

Integrated Circuit Design

� In many problems the path to the goal is irrelevant

Saving the path to the goal (3)

N-Queens

Integrated Circuit Design

�Vehicle routing, job-shop schedulling, process

scheduling, etc.

� In general: Optimization Problems

Optimization problem

�The aim is to find the best state according

to an objective function.

�The objective function determines how

good a solution is.

Local search

�Keep a single "current" state, try to

improve it.

� Very memory efficient (only remember

current state)

State space landscape

Elevation - Objective function
Location – State

Depending on app., aim is
either to find lowest valley or
highest peak

Hill-climbing search

� If there exists a successor for the current state n

such that

� h(s) < h(n)

� then move from n to s. Otherwise, halt at n.

�Looks one step ahead to determine if any successor

is better than the current state; if there is, move to

the best successor.

� Similar to Greedy search in that it uses h, but does

not allow backtracking or jumping to an alternative

path since it doesn’t “remember” where it has been.

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape

�Local Maxima: peaks

that aren’t the highest

point in the space

�Plateaus: the space has a

broad flat region that

gives the search

algorithm no direction

(random walk)

�Ridges: sequence of

local maxima very

difficult to navigate

Example: n-queens problem

� Put n queens on an n × n board with no two

queens on the same row, column, or

diagonal

8-queens problem

� h = number of pairs of
queens that are attacking
each other, either directly
or indirectly

� h = 17 for the given state

Numbers indicate h if we move a
queen in its corresponding column

Local minima

� Local minimum, h = 1
How do we get out of this local minima?

Hill-climbing search

Local minima/maxima

�Depending on initial state, can get stuck in

local minima (maxima)

State space landscape

Hill-climbing search issues

�Not complete since the search will
terminate at "local minima (maxima),"
"plateaus," and "ridges.“

�Some problem spaces are great for hill
climbing and others are terrible.
� Depends very much on the shape of the state-

space landscape

Alternatives to hill climbing

�Problems: local maxima, plateaus, ridges

�Remedies:

� Random restart: keep restarting the search

from random locations until a goal is found.

� Stochastic Hill Climbing: randomly choosing

from among the uphill moves (prob. according to

steepness)

� First choice hill climbing: randomly generates

successors, one by one, until a better one is found

� Good when thousands of successors

Simulated annealing

�Simulated annealing (SA) exploits an analogy

between the way in which a metal cools and

freezes into a minimum-energy crystalline

structure (the annealing process) and the search

for a minimum [or maximum] in a more general

system.

�We “shake” the surface to bounce out of a local

minima.

Simulated annealing (2)

� SA can avoid becoming trapped at local minima

� SA uses a random search that accepts changes that

increase objective function f, as well as some that

decrease it (i.e. it accepts bad moves).

� SA uses a control parameter T, which by analogy with

the original application is known as the system

“temperature” (shaking intensity).

�The higher the temperature, the more likely it is that a

bad move can be made.

�T starts out high and gradually decreases toward 0.

�Widely used in VLSI layout and airline scheduling

Simulated annealing (3)

�A “bad” move from A to B is accepted with a

probability

P(moveA→B) = e(f (B) – f (A)) / T

�The higher the temperature, the more likely it is

that a bad move can be made.

�As T tends to zero, this probability tends to zero,

and SA becomes more like hill climbing

� If T is lowered slowly enough, SA is complete and

optimal.

The simulated annealing algorithm

Local beam search

�Begin with k random states

�Generate all successors of these states

�Keep the k best states

�Can suffer lack of diversity among k states
(expensive version of hill climbing)

�Stochastic beam search: Probability of
keeping a state is a function of its heuristic
value

Genetic algorithms

�Similar to stochastic beam search, but new

states are generated by “reproducing”

(combining via crossover) two parent states

(selected according to their fitness) rather

than modifying a single state.

Genetic algorithms (2)

� A state is represented as a string over a

finite alphabet (often a string of 0s and 1s)

� Evaluation function (fitness function).

� Higher values for better states.

1. Start with k randomly generated states

(population)

2. Produce the next generation of states by

1. selection

2. crossover

3. mutation

Genetic algorithms: Example

�Fitness function: number of non-attacking pairs of queens

�min = 0, max = 8 × 7/2 = 28

32752411 24748552
23 24

Genetic algorithms: Example (2)

Fitness-based stochastic selection :

P(24748552) = 24/(24+23+20+11) = 31%

P(32752411) = 23/(24+23+20+11) = 29%

More on genetic algorithms

�Mimic the process of natural evolution

�Encoding used for the “genome” of an

individual strongly affects the behavior of the

search

�Genetic algorithms / genetic programming

are a large and active area of research

Tabu search

�A simple local search but with a memory

�Problem: Hill climbing can get stuck on local

maxima

�Solution: Maintain a list of k previously

visited states, and prevent the search from

revisiting them

Online search

� Interleave computation and action (search some, act some)

� Exploration: Can’t infer outcomes of actions; must actually perform

them to learn what will happen

� Competitive ratio = Path cost found* / Path cost that could be found**

* On average, or in an adversarial scenario (worst case)

** If the agent knew the nature of the space, and could use offline search

� Relatively easy if actions are reversible (ONLINE-DFS-AGENT)

� LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on

experience

� More about online search and nondeterministic actions later un the

course …

Summary: Local search

�Hill-climbing algorithms keep only a single state in

memory, but can get stuck on local optima.

� Simulated annealing escapes local optima, and is

complete and optimal given a “long enough” cooling

schedule.

�Genetic algorithms can search a large space by

modeling biological evolution.

�Online search algorithms are useful in state spaces with

partial/no information.

Thanks for coming -- see you

next Thursday!

