
CMSC 671CMSC 671

Fall 2010Fall 2010

Tue 9/7/10Tue 9/7/10

LispLisp

Problem solving as search Problem solving as search

Uninformed SearchUninformed Search

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

LISPLISP

Lisp

Lisp is worth learning for the profound

enlightenment experience you will have when

you finally get it; that experience will make

you a better programmer for the rest of your

days, even if you never actually use Lisp itself

a lot.

Graham article

Why Lisp?

• Because it’s the most widely used AI
programming language

• Because it’s good for writing production
software (Graham article)

• Because it’s got lots of features other languages
don’t

• Because you can write new programs and
extend old programs really, really quickly in
Lisp

Why All Those Parentheses?

• Lisp syntax: parenthesized prefix notation

• Surprisingly readable if you indent properly

• Makes prefix notation manageable

• An expression is an expression is an expression,

whether it’s inside another one or not

� (+ 1 2)

� (* (+ 1 2) 3)

� (list (* 3 5) 'atom '(list inside a list)

(list 3 4) '(((very) (very) (very) (nested
list))))

Cool Things About Lisp

• Functions as objects (pass a function as an

argument)

• Lambda expressions (construct a function on

the fly)

• Lists as first-class objects

• Program as data

• Macros (smart expansion of expressions)

• Symbol manipulation

Functional Programming

• Decomposes a problem into a set of functions

• Functions only take inputs and produce

outputs, and don't have any internal state

(global and local variables) that affects the

output produced for a given input

• Recursion is a natural way of thinking in

functional programming languages

• Truly functional programs are highly

parallelizable

Basic Lisp Types

�NIL and T

� Symbols
� ‘a ‘x ‘marie

�Numbers
� 27 -2 7.519

�Lists
� ‘(a b c) ‘(2 3 marie)

� Strings
� “This is a string!”

�Characters
� #\x #\- #\B

Basic Lisp Functions

• Numeric functions: + - * / incf decf

• List access: car (first), second … tenth, nth,

cdr (rest), last, length

• List construction: cons, append, list

• Advanced list processing: assoc, mapcar,
mapcan

• Predicates: listp, numberp, stringp, atom,
null, equal, eql, and, or, not

• Special forms: setq/setf, quote, defun, if,
cond, case, progn, loop

MapReduce

• Without understanding functional

programming, you can't invent

MapReduce, the algorithm that makes

Google so massively scalable.

• The terms Map and Reduce come from

Lisp and functional programming.

Useful help facilities

• (apropos ‘str) → list of symbols whose name

contains ‘str

• (describe ‘symbol) → description of symbol

• (describe #’fn) → description of function

• (trace fn) → print a trace of fn as it runs

• (print “string”) → print output

• (format …) → formatted output (see Norvig p. 84)

• :a → abort one level out of debugger

Great! How Can I Get Started?

• On sunserver or linux server (CS), run

/usr/local/bin/clisp

• From http://clisp.cons.org you can

download CLISP for your own PC

(Windows or Linux)

• Great Lisp resource page:

http://www.apl.jhu.edu/~hall/lisp.html

Remember to subscribe!

�Course mailing list: cps-cmsc671@lists.umbc.edu

� Visit http://lists.umbc.edu

� Search for cps-cmsc671

� Click “Subscribe” link

Building goal-based agents

To build a goal-based agent we need to answer the

following questions:

� What is the goal to be achieved?

� What are the actions?

� What relevant information is necessary to encode in

order to describe the state of the world, describe the

available transitions, and solve the problem?

Initial

state

Goal

state
Actions

What is the goal to be achieved?

� Could describe a situation we want to achieve, a set of properties

that we want to hold, etc.

� Requires defining a “goal test” so that we know what it means

to have achieved/satisfied our goal.

� This is a hard question that is rarely tackled in AI, usually

assuming that the system designer or user will specify the goal to

be achieved.

� Certainly psychologists and motivational speakers always stress

the importance of people establishing clear goals for themselves

as the first step towards solving a problem.

� What are your goals???

What is the goal to be achieved?

Start State

Goal State a Goal State b

What are the actions?

� Characterize the primitive actions or events that are

available for making changes in the world in order to

achieve a goal.

� Deterministic world: no uncertainty in an action’s effects.

Given an action (a.k.a. operator or move) and a description

of the current world state, the action completely specifies

� whether that action can be applied to the current world

(i.e., is it applicable and legal), and

� what the exact state of the world will be after the action

is performed in the current world (i.e., no need for

“history” information to compute what the new world

looks like).

Representing actions

�Note also that actions in this framework can all
be considered as discrete events that occur at
an instant of time.

� For example, if “Mary is in class” and then
performs the action “go home,” then in the next
situation she is “at home.” There is no
representation of a point in time where she is
neither in class nor at home (i.e., in the state of
“going home”).

Representing actions

� The number of actions / operators depends on the

representation used in describing a state

� In the 8-puzzle, we could specify 4 possible moves for each

of the 8 tiles, resulting in a total of 4*8=32 operators

� On the other hand, we could specify four moves for the

“blank” square and we would only need 4 operators

� BlankUp, BlankDown, BlankLeft, BlankRight

Representational shift can greatly simplify a problem!

Only 4 operators also for 15-puzzle

Representing states

� What information is necessary to encode about the world to

sufficiently describe all relevant aspects to solving the goal?

That is, what knowledge needs to be represented in a state

description to adequately describe the current state or

situation of the world?

� The size of a problem is usually described in terms of the

number of states that are possible.

� Tic-Tac-Toe has about 39 states.

� Checkers has about 1040 states.

� Rubik’s Cube has about 1019 states.

� Chess has about 10120 states in a typical game.

Closed World Assumption

�We will generally use the Closed

World Assumption.

�All necessary information about a

problem domain is available in each

percept so that each state is a complete

description of the world.

�There is no incomplete information at

any point in time.

Some example problems

�Toy problems and micro-worlds

�8-Puzzle

�Missionaries and Cannibals

�Cryptarithmetic

�Remove 5 Sticks

�Water Jug Problem

�Real-world problems

8-Puzzle

Given an initial configuration of 8 numbered tiles

on a 3 x 3 board, move the tiles in such a way so

as to produce a desired goal configuration of the

tiles.

8 puzzle

�State: 3 x 3 array configuration of the tiles on

the board.

�Operators: Blank Left, Blank Right, Blank Up,

Blank Down.

�Initial State: A particular configuration of the

board.

�Goal: A particular configuration of the board.

The 8-Queens Problem

Place eight

queens on a

chessboard such

that no queen

attacks any

other!

Missionaries and Cannibals
There are 3 missionaries, 3 cannibals,

and 1 boat that can carry up to two

people on one side of a river.

� Goal: Move all the missionaries and

cannibals across the river.

� Constraint: Missionaries can never be

outnumbered by cannibals on either side

of river, or else the missionaries are

killed.

� State: configuration of missionaries and

cannibals and boat on each side of river.

� Operators: Move boat containing some

set of occupants across the river (in

either direction) to the other side.

Missionaries and Cannibals

Solution
Near side Far side

0 Initial setup: MMMCCC B -

1 Two cannibals cross over: MMMC B CC

2 One comes back: MMMCC B C

3 Two cannibals go over again: MMM B CCC

4 One comes back: MMMC B CC

5 Two missionaries cross: MC B MMCC

6 A missionary & cannibal return: MMCC B MC

7 Two missionaries cross again: CC B MMMC

8 A cannibal returns: CCC B MMM

9 Two cannibals cross: C B MMMCC

10 One returns: CC B MMMC

11 And brings over the third: - B MMMCCC

Remove 5 Sticks

�Given the following

configuration of

sticks, remove

exactly 5 sticks in

such a way that the

remaining

configuration forms

exactly 3 squares.

Water Jug Problem

Given a full 5-gallon jug

and an empty 2-gallon

jug, the goal is to fill

the 2-gallon jug with

exactly one gallon of

water.

� State = (x,y), where x is

the number of gallons

of water in the 5-gallon

jug and y is # of gallons

in the 2-gallon jug

� Initial State = (5,0)

� Goal State = (*,1),

where * means any

amount

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.

jug

Empty2 – (x,y)→(x,0) Empty 2-gal.

jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal.

into 5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal.

into 2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial

5-gal. into 2-

gal.

Operator table

Some real-world problems

�Route finding

�Touring (traveling salesman)

�Logistics

�VLSI layout

�Robot navigation

Knowledge representation issues

�What’s in a state ?

� Is the color of the boat relevant to solving the Missionaries

and Cannibals problem? Is sunspot activity relevant to

predicting the stock market? What to represent is a very

hard problem that is usually left to the system designer to

specify.

�What level of abstraction or detail to describe the

world.

� Too fine-grained and we’ll “miss the forest for the trees.”

Too coarse-grained and we’ll miss critical details for

solving the problem.

Knowledge representation issues

�The number of states depends on the

representation and level of abstraction chosen.

� In the Remove-5-Sticks problem, if we represent

the individual sticks, then there are 17-choose-5

possible ways of removing 5 sticks. On the other

hand, if we represent the “squares” defined by 4

sticks, then there are 6 squares initially and we

must remove 3 squares, so only 6-choose-3 ways of

removing 3 squares.

Formalizing search in a state space

�A state space is a graph (V, E) where V is a set of

nodes and E is a set of arcs, and each arc is directed

from a node to another node

Each node is a data structure that contains a

state description plus other information such

as the parent of the node, the name of the

operator that generated the node from that

parent, and other bookkeeping data

Each arc corresponds to an instance of one of

the operators. When the operator is applied to

the state associated with the arc’s source

node, then the resulting state is the state

associated with the arc’s destination node

Formalizing search II

�Each arc has a fixed, positive cost associated with it

corresponding to the cost of the operator.

�Each node has a set of successor nodes

corresponding to all of the legal operators that can

be applied at the source node’s state.

� The process of expanding a node means to generate all of

the successor nodes and add them and their associated

arcs to the state-space graph

�One or more nodes are designated as start nodes.

�A goal test predicate is applied to a state to

determine if its associated node is a goal node.

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

5to2

5to2part

Water jug state space

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

Formalizing search III

�A solution is a sequence of operators that is

associated with a path in a state space from a

start node to a goal node.

�The cost of a solution is the sum of the arc

costs on the solution path.

� If all arcs have the same (unit) cost, then the

solution cost is just the length of the solution

(number of steps / state transitions)

Formalizing search IV

� State-space search is the process of searching through a

state space for a solution by making explicit a sufficient

portion of an implicit state-space graph to find a goal node.

� For large state spaces, it isn’t practical to represent the whole space.

� Initially V={S}, where S is the start node; when S is expanded, its

successors are generated and those nodes are added to V and the

associated arcs are added to E. This process continues until a goal

node is found.

� Each node implicitly or explicitly represents a partial

solution path (and cost of the partial solution path) from the

start node to the given node.

� In general, from this node there are many possible paths (and

therefore solutions) that have this partial path as a prefix.

Search Process

� Search process constructs a search tree, where

� root is the initial state and

� leaf nodes are nodes

� not yet expanded (i.e., they are in the list “nodes”) or

� having no successors (i.e., they’re “deadends” because no

operators were applicable and yet they are not goals)

Some issues

� Search tree may be infinite because of loops even if state

space is small

� Return a path or a node depending on problem.

� E.g., in cryptarithmetic return a node; in 8-puzzle return a path

� Changing the way we choose which state to expand next

leads to different search strategies

Evaluating search strategies

� Completeness

� Guarantees finding a solution whenever one exists

� Time complexity

� How long (worst or average case) does it take to find a solution?

Usually measured in terms of the number of nodes expanded

� Space complexity

� How much space (memory) is used by the algorithm? Usually

measured in terms of the maximum size of the “nodes” list during the

search

� Optimality/Admissibility

� If a solution is found, is it guaranteed to be an optimal one? That is, is

it the one with minimum cost?

Uninformed vs. informed search

� Uninformed search strategies

� Also known as “blind search,” uninformed search strategies use no

information about the likely “direction” of the goal node(s)

� generate successors

� distinguish a goal state from a non-goal state

� Uninformed search methods: Breadth-first, depth-first, depth-limited,

uniform-cost, depth-first iterative deepening, bidirectional

� Informed search strategies

� Also known as “heuristic search,” informed search strategies use

information about the domain to (try to) (usually) head in the general

direction of the goal node(s)

� Informed search methods: Hill climbing, best-first, greedy search, beam

search, A, A*

Uninformed Search Methods

Breadth-First

Depth-First (DFS)

Breadth-First vs Depth-First (DFS)

Breadth-First
Exponential time and space

complexity O(bd)

Depth-First

Exponential time O(bd)

Linear space O(bd)

Breadth-First
� Complete

� Optimal (i.e., admissible) if all operators have the same cost(1)

Otherwise, not optimal but finds solution with shortest path

length.

� Exponential time and space complexity, O(bd), where d is the

depth of the solution and b is the branching factor (i.e., number of

children) at each node

� Will take a long time to find solutions with a large number of

steps because must look at all shorter length possibilities first

� For a complete search tree of depth 12, where every node at depths 0, ..., 11 has 10

children and every node at depth 12 has 0 children, there are 1 + 10 + 100 + 1000 +

... + 1012 = (1013 - 1)/9 = O(1012) nodes in the complete search tree. If BFS expands

1000 nodes/sec and each node uses 100 bytes of storage, then BFS will take 35

years to run in the worst case, and it will use 111 terabytes of memory!

(1) more strictly if the path cost is a non decreasing function of the depth of the node

Depth-First (DFS)

� May not terminate without a “depth bound,” i.e., cutting

off search below a fixed depth D (“depth-limited search”)

� Complete in Finite State Spaces, otherwise Not complete

(with or without cycle detection, and with or without a

cutoff depth)

� Exponential time, O(bd), but only linear space, O(bd)

� Can find long solutions quickly if lucky (and short

solutions slowly if unlucky!)

Uniform-Cost (UCS)

�Breadth-First search not optimal when steps

have different costs

�Store nodes in the frontier by path cost.

� Called “Dijkstra’s Algorithm” in the algorithms literature

and similar to “Branch and Bound Algorithm” in operations

research literature

�Complete (*), Optimal/Admissible (*)

�Exponential time and space complexity,

O(bd)

Depth-First Iterative Deepening (DFID)

� First do DFS to depth 0 (i.e., treat start node as

having no successors), then, if no solution found,

do DFS to depth 1, etc.

�Complete1 (if depth limit >= shallowest goal).

�Optimal/Admissible if all operators have the same

cost. Otherwise, not optimal but guarantees finding

solution of shortest length (like BFS).

�Time complexity is still exponential, O(bd)

�Linear space complexity, O(bd), like DFS

(1) solves the infinite-path problem

Depth-First Iterative Deepening

�Has advantage of BFS (i.e., completeness) and

also advantages of DFS (i.e., limited space and

finds longer paths more quickly)

�Generally preferred for large state spaces

where solution depth is unknown

Uninformed Search Results

Example for illustrating uninformed search strategies

S

CBA

D GE

3 1 8

15
20 5

3
7

Depth-First Search

Expanded node Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }

G18 { B1 C8 }

Solution path found is S A G, cost 18

Number of nodes expanded (including goal node) = 5

Breadth-First Search

Expanded node Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }

D6 { E10 G18 G21 G13 }

E10 { G18 G21 G13 }

G18 { G21 G13 }

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7

Uniform-Cost Search

Expanded node Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G1 }

C8 { E10 G13 G18 G21 }

E10 { G13 G18 G21 }

G13 { G18 G21 }

Solution path found is S B G, cost 13

Number of nodes expanded (including goal node) = 7

How they perform

� Depth-First Search:

� Expanded nodes: S A D E G

� Solution found: S A G (cost 18)

� Breadth-First Search:

� Expanded nodes: S A B C D E G

� Solution found: S A G (cost 18)

� Uniform-Cost Search:

� Expanded nodes: S A D B C E G

� Solution found: S B G (cost 13)

This is the only uninformed search that worries about costs.

� Iterative-Deepening Search:

� nodes expanded: S S A B C S A D E G

� Solution found: S A G (cost 18)

Bi-directional search

� Alternate searching from the start state toward the goal and

from the goal state toward the start.

� Stop when the frontiers intersect.

� Works well only when there are unique start and goal states.

� Requires the ability to generate “predecessor” states.

� Can (sometimes) lead to finding a solution more quickly.

Comparing Search Strategies

Avoiding Repeated States

� In increasing order of effectiveness in
reducing size of state space and with
increasing computational costs:

1. Do not return to the state you just came
from.

2. Do not create paths with cycles in them.

3. Do not generate any state that was ever
created before.

�Net effect depends on frequency of “loops”
in state space.

Thanks for coming -- see you
next Thursday!

