Subdivision

Materials from Denis Zorin, Peter Schroder et al. siggraph presentations

CMSC 635

Motivation

- Still a hot topic today in computer graphics
- Advantages: simple (only need subdivision rule); local (only look at nearby vertices); arbitrary topology (since only local); no seams (unlike joining spline patches)
- Detailed study quite sophisticated
 - See online materials

In this class, we will briefly survey literature and discuss some ideas

CMSC 635

Motivation

 E.g., Gari's Game created using subdivision: <u>http://www.youtube.com/</u> <u>watch?v=1m7dcbIKvlw</u>

CMSC 635

Key Questions

- How to refine mesh?
- Where to place new vertices?
 - Provable properties about limit surface

CMSC 635

Loop Subdivision Scheme

- How to refine mesh?
 - Refine each triangle into 4 triangles by splitting each edge and connecting new vertices

- Where to place new vertices?
 - Choose locations for new vertices as weighted average of original vertices in local neighborhood

CMSC 635

Loop Subdivision Scheme

- Where to place new vertices?
 - Rules for extraordinary vertices and boundaries

Choose β by analyzing continuity of limit surface

Original Loop:

Warren:

$$\beta = \frac{1}{n} \left(\frac{3}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos^2 \frac{3}{8} \right) \right)$$
$$\beta = \begin{cases} \frac{3}{8n} & n > 3\\ \frac{3}{16} & n = 3 \end{cases}$$

CMSC 635

Butterfly Subdivision

 Interpolating subdivision: Larger neighborhood

CMSC 635

Modified Butterfly Subdivision

- Need special weights near extraodinary vertices
 - For n=3, weights are 5/12, -1/12, -1/12
 - For n=4, weights are 3/8, 0, -1/8, 0
 - For n lt.eq 5, weights are,

$$\frac{1}{n} \left(\frac{1}{4} + \cos \frac{2\pi j}{n} + \frac{1}{2} \cos \frac{4\pi j}{n} \right), \ j = 0 \dots n - 1$$

 Weight of extraordinary vertex = 1 = the sum of other weights

CMSC 635

A Variety of Subdivision Schemes

- Triangles vs. quads
- Interpolating vs. approximating

Face split			Norton on life
	Triangular meshes	Quad. meshes	Vertex split
Approximating	$Loop(C^2)$	Catmull-Clark (C^2)	Doo-Sabin, Midedge (C^2) Biguartic (C^2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C^1)	Biquartic (C)

CMSC 635

Results

CMSC 635

Analysis of Continuity

- Analyzing subdivision schemes
 - Smoothness properties

 Start with curves: 4-point interpolating scheme (old points left where they are)

CMSC 635

Calculate New Points

CMSC 635

Fun with Subdivision Methods

 Behavior of surfaces depends on eigenvalues of the matrix

CMSC 635

Practical Evaluation

- Problems with Uniform Subdivision
 - Exponential growth of control mesh
 - Need several subdivisions before error is small
 - OK if you are "drawing and forgetting", otherwise...
- Exact Evaluation at arbitrary points
- Tangent and other derivative evaluation needed
- Jos Stam SIGGRAPH 98 efficient method
 - Exact evaluation (essentially take out "subdivision)
 - Smoothness analysis methods used to evaluate