
1 

Mesh representation, overview of mesh simplification 

Many slides courtesy Szymon Rusinkiewicz 

  A polygon mesh is a collection of triangles 

  We want to do operations on these triangles 
  E.g. walk across the mesh for simplification 
 Display for rendering 
  Computational geometry 

  Best representations (mesh data structures)? 
  Compactness 
 Generality 
  Simplicity for computations 
  Efficiency 

Desirable Characteristics 1  
  Generality – from most general to least 

  Polygon soup 
 Only triangles 
  2-manifold → ≤ 2 triangles per edge 
 Orientable → consistent CW / CCW winding 
  Closed → no boundary 

  Compact storage 

Desirable characteristics 2 
  Efficient support for operations: 

 Given face, find its vertices 
 Given vertex, find faces touching it 
 Given face, find neighboring faces 
 Given vertex, find neighboring vertices 
 Given edge, find vertices and faces it touches 

  These are adjacency operations important in mesh 
simplification, many other applications 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

Faces list vertex coordinates 
  Redundant vertices 
 No topology information 
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  Faces list vertex references – “shared vertices” 

  Commonly used (e.g. OFF file format itself) 

  Augmented versions simple for mesh processing 

  Storage efficiency? 

  Which operations supported in O(1) time? 

  Can sometimes design algorithms to compensate for 
operations not supported by data structures 

  Example: per-vertex normals 
 Average normal of faces touching each vertex 
 With indexed face set, vertex → face is O(n) 
 Naive algorithm for all vertices: O(n2) 
  Can you think of an O(n) algorithm? 

  Can sometimes design algorithms to compensate for 
operations not supported by data structures 

  Example: per-vertex normals 
 Average normal of faces touching each vertex 
 With indexed face set, vertex → face is O(n) 
 Naive algorithm for all vertices: O(n2) 
  Can you think of an O(n) algorithm? 

  Useful to augment with vertex → face adjacency 
  For all vertices, find adjacent faces as well 
  Can be implemented while simply looping over faces 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

  Store all vertex, face, 
and edge adjacencies 
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  Garland and Heckbert claim they do this 

  Easy to find stuff 

  Issue is storage 

  And updating everything once you do something like 
an edge collapse for mesh simplification 

  I recommend you implement something simpler (like 
indexed face set plus vertex to face adjacency) 

  Store some adjacencies, 
use to derive others 

  Many possibilities… 

  Some combinations only 
make sense for closed 
manifolds 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

  Idea is to associate information with edges 

  Compact Storage 

  Many operations efficient 

  Allow one to walk around mesh 

  Usually general for arbitrary polygons (not triangles) 

  But implementations can be complex with special 
cases relative to simple indexed face set++ or partial 
adjacency table 

  Most data stored at edges 

  Verts, faces point to 
one edge each 
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  Each edge stores 2 vertices, 2 
faces, 4 edges – fixed size 

  Enough information to 
completely “walk around” 
faces or vertices 

  Think how to implement 
 Walking around vertex 
  Finding neighborhood of face 
 Other ops for simplification 

  Instead of single edge, 2 
directed “half edges” 

  Makes some operations 
more efficient 

  Walk around face very 
easily (each face need 
only store one pointer) 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

Multi-resolution hierarchies for efficient 
geometry processing and level of detail rendering  

Oversampled 3D scan data 
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  Reduce number of polygons 
  Less storage 
  Faster rendering 
  Simpler manipulation 

  Desirable properties 
 Generality 
  Efficiency 
  Produces “good” approximation 

Simplify model a bit at a time by 
removing a few faces (mesh simplification) 
  Repeated to simplify whole mesh 

Types of operations 
 Vertex cluster 
 Vertex remove 
  Edge collapse (main operation used in assignment) 

  Method 
  Merge vertices based on proximity 
  Triangles with repeated vertices can collapse to edges or points 

  Properties 
  General and robust 
  Can be unattractive if results in topology change 

  Cluster generation 
 Hierarchical approach 
  Top-down or bottom up  

  Computing a representative 
 Average / median vertex position 
  Error quadrics 

  Mesh generation 

  Topology changes 

Further reading: Model simplification using vertex clustering, Low and Tan, I3D, 1997. 

  Method 
  Remove vertex and adjacent faces 
  Fill hole with new triangles (reduction of 2) 

  Properties 
  Requires manifold surface, preserves topology 
  Typically more attractive 
  Filling hole well not always easy 
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  Method 
  Merge two edge vertices to one 
  Delete degenerate triangles (triangle formed by three collinear points) 

  Properties 
  Special case of vertex cluster 
  Allows smooth transition 
  Can change topology 

Typical: greedy algorithm 
 Measure error of possible “simple” operations (primarily 

edge collapses) 
  Place operations in queue according to error 
  Perform operations in queue successively (depending on 

how much you want to simplify model) 
 After each operation, re-evaluate error metrics 

  Motivation 
  Promote accurate 3D shape preservation 
  Preserve screen-space silhouettes and pixel coverage 

  Types 
 Vertex-Vertex Distance 
 Vertex-Plane Distance 
  Point-Surface Distance 
  Surface-Surface Distance 
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  E = max(|v3-v1|, |v3-v2|) 

  Appropriate during topology changes 
  Rossignac and Borrel 93 
  Luebke and Erikson 97 

  Loose for topology-preserving collapses 

  Store set of planes with each vertex 
  Error based on distance from vertex to planes 
  When vertices are merged, merge sets 

  Ronfard and Rossignac 96 
  Store plane sets, compute max distance 

  Error Quadrics – Garland and Heckbert 96 
  Store quadric form, compute sum of squared distances 

  For each original vertex, 
find closest point on simplified surface 

  Compute sum of squared distances 

  Compute or approximate maximum distance 
between input and simplified surfaces 
  Tolerance Volumes - Guéziec 96 
  Simplification Envelopes - Cohen/Varshney 96 
 Hausdorff Distance - Klein 96 
 Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97 

  Vertex-vertex and vertex-plane distance 
  Fast 
  Low error in practice, but not guaranteed by metric 

  Surface-surface distance 
  Required for guaranteed error bounds 

vertex-vertex ≠ surface-surface 

  Marge vertices across non-edges 
  Changes mesh topology 
 Need spatial neighborhood information 
 Generates non-manifold meshes 
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Advanced Considerations 

  Type of input mesh, Modifies topology, Continuous 
LOD, Speed vs. quality 

  Vertex clustering is fast but difficult to control 
simplified mesh that will leads to the previously 
mentioned errors  

  Simplify dynamically according to viewpoint 
 Visibility 
  Silhouettes 
  Lighting 

  Many mesh data structures 
  Compact storage vs ease, efficiency of use 
 How fast and easy are key operations  

  Mesh simplification 
  Reduce size of mesh in efficient quality-preserving way 
  Based on edge collapses mainly 

  Choose appropriate mesh data structure 
  Efficient to update, edge-collapses are local 

  Material covered in text 
  Classical approaches to simplification 
 Quadric metrics next week 


