Motivation
Advanced Computer Graphics
(Spring 2013) A polygon mesh is a collection of triangles

Mesh representation, overview of mesh simplification We want to do operations on these triangles
E.g. walk across the mesh for simplification
Display for rendering
Computational geometry

Best representations (mesh data structures)?
Compactncss
Generality
Simplicity for computations
Efficiency

Many slides courtesy Szymon Rusinkiewicz

Mesh Data Structures Mesh Data Structures

Desirable Characteristics 1 Desirable characteristics 2

Generality — from most general to least Efficient support for operations:
Polygon soup Given face, find its vertices
Only triangles Given vertex, find faces touching it
2-manifold — < 2 triangles per edge Given face, find neighboring faces
Orientable — consistent CW / CCW winding Given vertex, find neighboring vertices
Closed — no boundary Given edge, find vertices and faces it touches

Compact storage These are adjacency operations important in mesh
simplification, many other applications

Outline Independent Faces

Independent fa Faces list vertex coordinates
Redundant vertices

Indexed face set No topology information

Adjacency lists
Winged-edge

Half-edge Face Table

Overview of mesh decimation and simplification

Indexed Face Set

Faces list vertex references — “shared vertices”
Commonly used (e.g. OFF file format itself)

Augmented versions simple for mesh processing

Vertex Table Face Table

Vgt (Xg, :

Note CCW ordering

Efficient Algorithm Design
Can sometimes design algorithms to compensate for
operations not supported by data structures

Example: per-vertex normals
Average normal of faces touching each vertex
With indexed face set, vertex — face is O(n)
Naive algorithm for all vertices: O(n?)
Can you think of an O(n) algorithm?

Outline

Independent faces
Indexed face set
Adjacency lists
Winged-edge

Half-edge

Overview of mesh decimation and simplification

Indexed Face Set

Storage efficien

Which operations supported in O(1) time?

Face Table
F:0,1,2

Vai (%4Y425)

Note CCW ordering

Efficient Algorithm Design

Can sometimes design algorithms to compensate for
operations not supported by data structures

Example: per-vertex normals
Average normal of faces touching each vertex
With indexed face set, vertex — face is O(n)
Naive algorithm for all vertices: O(n?)
Can you think of an O(n) algorithm?

Useful to augment with vertex — face adjacency
For all vertices, find adjacent faces as well
Can be implemented while simply looping over faces

Full Adjacency Lists

Store all vertex, face,

and edge adjacencies Edge Adjacency Table Heere Table

e;:1Vy,Vy; Fo.Fy; e5.eq.85,85

Face Adjacency Table
Fo: Vo Vi.Vo; F1 . 2.D; eg.e,,60
VY4V 2; €5,81,85
2:Vy, V3V, OF D e4.65.65

Vertex Adjacency Table
Vo Vy,Vo; Fo; €g,€5
Vii V3,V Vo Vo; Fo F Fo; es.65.80e

Full adjacency: Issues Partial Adjacency Lists

Garland and Heckbert claim they do this Store some adjacencies, :
use to derive others Bl Aoy Tubly

Easy to find stuff) e: Vo, Vi: Fo. 2

Many possibilities. .. el F”‘F:"

Issue is storage
o Vs Vy

€

And updating everything once you do something like Face Adjacency Table

an edge collapse for mesh simplification e &€
¢

I recommend you implement something simpler (like Fyivivave

indexed face set plus vertex to face adjacency) Vertex Adiacency Table
Jertex Adjacency

Partial Adjacency Lists Outline

Some combinations only Independent faces
make sense for closed .
; Indexed face set
manifolds
Adjacency lists
Vy

Winged-edge

Half-edge

Vertex Adjacency Table . N 5 5 . D
Vo! Fy: Overview of mesh decimation and simplification

Vil F,,

Winged, Half Edge Representations Winged Edge

Idea is to associate information with edges Most data stored at edges :
Edge Adjacency Table

Compact Storage Verts, faces point to 0D 82,81,9

. S one edge each °

Many operations efficient = =B Y

4
Allow one to walk around mesh Q - Face Adjacency Table
Fo:
Usually general for arbitrary polygons (not triangles) :

But implementations can be complex with special
cases relative to simple indexed face set++ or partial o Vertex Adjacency Table

adjacency table x € .
iI 3

Winged Edge Half Edge

Each edge stores 2 vertices, 2 Instead of single edge, 2

& 3 3 %5 o D)
faces, 4 edges — fixed size CY— directed “half edges

Enough information to Makes some operations

completely “walk around” more efficient

faces or vertices 8
Walk around face very

Think how to implement © easily (each face need
Walking around vertex only store one pointer)
Finding neighborhood of face
Other ops for simplification

aht

Outline Mesh Decimation

Independem faces Mult lution hierarchies for efficient X
geometry ing and level of detail rendering Tria ngles
Indexed face set : 41,855
; 27,970
Adjacency lists = \ L 20,922

. : .- 12,939
Winged-edge) 8,385

Half-edge e/ ‘ 4,766

Overview of mesh decimation and simplification

point, Cohen

Adapt to hardware capabilities

Oversampled 3D scan data

~150k triangles ~80Kk triangles

Mesh Decimation Primitive Operations

Reduce number of polygons Simplify model a bit at a time by
Less storage | removing a few faces (mesh simplification)
Faster rendering Repeated to simplify whole mesh
Simpler manipulation
: : A Types of operations
Desirable properties ‘ Vertex cluster
Generality b Y : Vertex remove
Efficiency \ Edge collapse (main operation used in a
Produces “good” ap 8

Michelangelo’s St. Matthew
Original model: ~400M polygons

Vertex Cluster Vertex Clustering

Method Cluster generation

Merge vertices based on proximity Hierarchical approach
Triangles with repeated vertices can collapse to edges or points)
Top-down or bottom up

Properties . .
General and rob Computing a representative

Can be unattractive if results in topology change Average / median vertex
Error quadrics

Mesh generation

Topology changes

rtex Remove

Method
| Best approach Remove and adjacent fa
Fill hole with new triangl
Properties
Requires manifold

Error quadrics Typically more attr:
Filling hole well not alv

Average vertex position Median vertex position

Vertex Removal

Select all triangles
sharing this vertex

Remove the Fill he hole with
selected triangles, new triangles.

creating the hole

Select a vertex to
eliminated

Half-edge collapse

Mesh Decimation/Simplification

Typical: greedy algorithm

Measure error of possible “simple” operations (primarily
edge collapses)

Place operations in queue according to error

Perform operations in queue successively (depending on
how much you want to simplify model)

After each operation, re-evaluate error metrics

Edge Collapse

Method

Merge two edge i 0 One

Delete degenerate gles (triangle formed by three collinear points)

se of vertex cluster
ooth i

Half-Edge Collapse

Geometric Error Metrics

Motivation
Promote accurate 3D shape preservation
Preserve screen-space silhouettes and pixel coverage

Types
Vertex-Vertex Distance
Vertex-Plane Distance
Point-Surface Distance
Surface-Surface Distance

Vertex-Vertex Distance

E = max(|v3-vl|, [v3-v2|)

Appropriate during topology changes
Rossignac and Borrel 93
Luebke and Erikson 97

Loose for topology-preserving collapses

[J
/vg\
Vi Va

Point-Surface Distance

For each original vertex,
find closest point on simplified surface

Compute sum of squared distances

([]
/ L]
: \

N 4

Geometric Error Observations

Vertex-vertex and vertex-plane distance
Fast
Low error in practice, but not guaranteed by metric

Surface-surface distance
Required for guaranteed error bounds

Edge swap
—_

vertex-vertex # surface-surface

Vertex-Plane Distance

Store set of planes with each vertex

Error based on e from vertex to planes
When vertices are merged, merge sets

Ronfard and Rossignac 96

Store plane sets, compute max

Error Quadrics — Garland and Heckbert 96

Surface-Surface Distance

Compute or approximate maximum distance
between input and simplified surfaces
Tolerance Volumes - Guéziec 96
Simplification Envelopes - Cohen/Varshney 96
Hausdorff Distance - Klein 96
Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

Topology changes

Marge vertices across non-edges

03

Changes mesh topology
Need spatial neighborhood information
Generates non-manifold meshes

e Vertex Contraction
L2 L] L J
Vertex Separation

Mesh Simplification

Advanced Considerations

Type of input mesh, Modifies topology, Continuous
LOD, Speed vs. quality

Vertex clustering is fast but difficult to control
simplified mesh that will leads to the previously
mentioned errors

Appearance Preserving

488 tris

975 tris

1,951 tris

3,905 tris

7,809 tris

View-Dependent Simplification

Simplify dynamically according to viewpoint
Visibility
Silhouettes
Lighting

Summary

Many mesh data structures
Compact storage vs ease, efficiency of use
How fast and easy are key operations

Mesh simplification
Reduce size of mesh in efficient quality-preserving way
Based on edge collapses mainly

Choose appropriate mesh data structure
Efficient to update, edge-collapses are local

Material covered in text
Classical approaches to simplification
Quadric metrics next week

