
1

Mesh representation, overview of mesh simplification

Many slides courtesy Szymon Rusinkiewicz

  A polygon mesh is a collection of triangles

  We want to do operations on these triangles
  E.g. walk across the mesh for simplification
 Display for rendering
  Computational geometry

  Best representations (mesh data structures)?
  Compactness
 Generality
  Simplicity for computations
  Efficiency

Desirable Characteristics 1
  Generality – from most general to least

  Polygon soup
 Only triangles
  2-manifold → ≤ 2 triangles per edge
 Orientable → consistent CW / CCW winding
  Closed → no boundary

  Compact storage

Desirable characteristics 2
  Efficient support for operations:

 Given face, find its vertices
 Given vertex, find faces touching it
 Given face, find neighboring faces
 Given vertex, find neighboring vertices
 Given edge, find vertices and faces it touches

  These are adjacency operations important in mesh
simplification, many other applications

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

Faces list vertex coordinates
  Redundant vertices
 No topology information

2

  Faces list vertex references – “shared vertices”

  Commonly used (e.g. OFF file format itself)

  Augmented versions simple for mesh processing

  Storage efficiency?

  Which operations supported in O(1) time?

  Can sometimes design algorithms to compensate for
operations not supported by data structures

  Example: per-vertex normals
 Average normal of faces touching each vertex
 With indexed face set, vertex → face is O(n)
 Naive algorithm for all vertices: O(n2)
  Can you think of an O(n) algorithm?

  Can sometimes design algorithms to compensate for
operations not supported by data structures

  Example: per-vertex normals
 Average normal of faces touching each vertex
 With indexed face set, vertex → face is O(n)
 Naive algorithm for all vertices: O(n2)
  Can you think of an O(n) algorithm?

  Useful to augment with vertex → face adjacency
  For all vertices, find adjacent faces as well
  Can be implemented while simply looping over faces

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

  Store all vertex, face,
and edge adjacencies

3

  Garland and Heckbert claim they do this

  Easy to find stuff

  Issue is storage

  And updating everything once you do something like
an edge collapse for mesh simplification

  I recommend you implement something simpler (like
indexed face set plus vertex to face adjacency)

  Store some adjacencies,
use to derive others

  Many possibilities…

  Some combinations only
make sense for closed
manifolds

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

  Idea is to associate information with edges

  Compact Storage

  Many operations efficient

  Allow one to walk around mesh

  Usually general for arbitrary polygons (not triangles)

  But implementations can be complex with special
cases relative to simple indexed face set++ or partial
adjacency table

  Most data stored at edges

  Verts, faces point to
one edge each

4

  Each edge stores 2 vertices, 2
faces, 4 edges – fixed size

  Enough information to
completely “walk around”
faces or vertices

  Think how to implement
 Walking around vertex
  Finding neighborhood of face
 Other ops for simplification

  Instead of single edge, 2
directed “half edges”

  Makes some operations
more efficient

  Walk around face very
easily (each face need
only store one pointer)

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

Multi-resolution hierarchies for efficient
geometry processing and level of detail rendering

Oversampled 3D scan data

5

  Reduce number of polygons
  Less storage
  Faster rendering
  Simpler manipulation

  Desirable properties
 Generality
  Efficiency
  Produces “good” approximation

Simplify model a bit at a time by
removing a few faces (mesh simplification)
  Repeated to simplify whole mesh

Types of operations
 Vertex cluster
 Vertex remove
  Edge collapse (main operation used in assignment)

  Method
  Merge vertices based on proximity
  Triangles with repeated vertices can collapse to edges or points

  Properties
  General and robust
  Can be unattractive if results in topology change

  Cluster generation
 Hierarchical approach
  Top-down or bottom up

  Computing a representative
 Average / median vertex position
  Error quadrics

  Mesh generation

  Topology changes

Further reading: Model simplification using vertex clustering, Low and Tan, I3D, 1997.

  Method
  Remove vertex and adjacent faces
  Fill hole with new triangles (reduction of 2)

  Properties
  Requires manifold surface, preserves topology
  Typically more attractive
  Filling hole well not always easy

6

  Method
  Merge two edge vertices to one
  Delete degenerate triangles (triangle formed by three collinear points)

  Properties
  Special case of vertex cluster
  Allows smooth transition
  Can change topology

Typical: greedy algorithm
 Measure error of possible “simple” operations (primarily

edge collapses)
  Place operations in queue according to error
  Perform operations in queue successively (depending on

how much you want to simplify model)
 After each operation, re-evaluate error metrics

  Motivation
  Promote accurate 3D shape preservation
  Preserve screen-space silhouettes and pixel coverage

  Types
 Vertex-Vertex Distance
 Vertex-Plane Distance
  Point-Surface Distance
  Surface-Surface Distance

7

  E = max(|v3-v1|, |v3-v2|)

  Appropriate during topology changes
  Rossignac and Borrel 93
  Luebke and Erikson 97

  Loose for topology-preserving collapses

  Store set of planes with each vertex
  Error based on distance from vertex to planes
  When vertices are merged, merge sets

  Ronfard and Rossignac 96
  Store plane sets, compute max distance

  Error Quadrics – Garland and Heckbert 96
  Store quadric form, compute sum of squared distances

  For each original vertex,
find closest point on simplified surface

  Compute sum of squared distances

  Compute or approximate maximum distance
between input and simplified surfaces
  Tolerance Volumes - Guéziec 96
  Simplification Envelopes - Cohen/Varshney 96
 Hausdorff Distance - Klein 96
 Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

  Vertex-vertex and vertex-plane distance
  Fast
  Low error in practice, but not guaranteed by metric

  Surface-surface distance
  Required for guaranteed error bounds

vertex-vertex ≠ surface-surface

  Marge vertices across non-edges
  Changes mesh topology
 Need spatial neighborhood information
 Generates non-manifold meshes

8

Advanced Considerations

  Type of input mesh, Modifies topology, Continuous
LOD, Speed vs. quality

  Vertex clustering is fast but difficult to control
simplified mesh that will leads to the previously
mentioned errors

  Simplify dynamically according to viewpoint
 Visibility
  Silhouettes
  Lighting

  Many mesh data structures
  Compact storage vs ease, efficiency of use
 How fast and easy are key operations

  Mesh simplification
  Reduce size of mesh in efficient quality-preserving way
  Based on edge collapses mainly

  Choose appropriate mesh data structure
  Efficient to update, edge-collapses are local

  Material covered in text
  Classical approaches to simplification
 Quadric metrics next week

