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Mesh representation, overview of mesh simplification 

Many slides courtesy Szymon Rusinkiewicz 

  A polygon mesh is a collection of triangles 

  We want to do operations on these triangles 
  E.g. walk across the mesh for simplification 
 Display for rendering 
  Computational geometry 

  Best representations (mesh data structures)? 
  Compactness 
 Generality 
  Simplicity for computations 
  Efficiency 

Desirable Characteristics 1  
  Generality – from most general to least 

  Polygon soup 
 Only triangles 
  2-manifold → ≤ 2 triangles per edge 
 Orientable → consistent CW / CCW winding 
  Closed → no boundary 

  Compact storage 

Desirable characteristics 2 
  Efficient support for operations: 

 Given face, find its vertices 
 Given vertex, find faces touching it 
 Given face, find neighboring faces 
 Given vertex, find neighboring vertices 
 Given edge, find vertices and faces it touches 

  These are adjacency operations important in mesh 
simplification, many other applications 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

Faces list vertex coordinates 
  Redundant vertices 
 No topology information 



2 

  Faces list vertex references – “shared vertices” 

  Commonly used (e.g. OFF file format itself) 

  Augmented versions simple for mesh processing 

  Storage efficiency? 

  Which operations supported in O(1) time? 

  Can sometimes design algorithms to compensate for 
operations not supported by data structures 

  Example: per-vertex normals 
 Average normal of faces touching each vertex 
 With indexed face set, vertex → face is O(n) 
 Naive algorithm for all vertices: O(n2) 
  Can you think of an O(n) algorithm? 

  Can sometimes design algorithms to compensate for 
operations not supported by data structures 

  Example: per-vertex normals 
 Average normal of faces touching each vertex 
 With indexed face set, vertex → face is O(n) 
 Naive algorithm for all vertices: O(n2) 
  Can you think of an O(n) algorithm? 

  Useful to augment with vertex → face adjacency 
  For all vertices, find adjacent faces as well 
  Can be implemented while simply looping over faces 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

  Store all vertex, face, 
and edge adjacencies 
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  Garland and Heckbert claim they do this 

  Easy to find stuff 

  Issue is storage 

  And updating everything once you do something like 
an edge collapse for mesh simplification 

  I recommend you implement something simpler (like 
indexed face set plus vertex to face adjacency) 

  Store some adjacencies, 
use to derive others 

  Many possibilities… 

  Some combinations only 
make sense for closed 
manifolds 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

  Idea is to associate information with edges 

  Compact Storage 

  Many operations efficient 

  Allow one to walk around mesh 

  Usually general for arbitrary polygons (not triangles) 

  But implementations can be complex with special 
cases relative to simple indexed face set++ or partial 
adjacency table 

  Most data stored at edges 

  Verts, faces point to 
one edge each 
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  Each edge stores 2 vertices, 2 
faces, 4 edges – fixed size 

  Enough information to 
completely “walk around” 
faces or vertices 

  Think how to implement 
 Walking around vertex 
  Finding neighborhood of face 
 Other ops for simplification 

  Instead of single edge, 2 
directed “half edges” 

  Makes some operations 
more efficient 

  Walk around face very 
easily (each face need 
only store one pointer) 

  Independent faces 

  Indexed face set 

  Adjacency lists 

  Winged-edge 

  Half-edge 

Overview of mesh decimation and simplification 

Multi-resolution hierarchies for efficient 
geometry processing and level of detail rendering  

Oversampled 3D scan data 
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  Reduce number of polygons 
  Less storage 
  Faster rendering 
  Simpler manipulation 

  Desirable properties 
 Generality 
  Efficiency 
  Produces “good” approximation 

Simplify model a bit at a time by 
removing a few faces (mesh simplification) 
  Repeated to simplify whole mesh 

Types of operations 
 Vertex cluster 
 Vertex remove 
  Edge collapse (main operation used in assignment) 

  Method 
  Merge vertices based on proximity 
  Triangles with repeated vertices can collapse to edges or points 

  Properties 
  General and robust 
  Can be unattractive if results in topology change 

  Cluster generation 
 Hierarchical approach 
  Top-down or bottom up  

  Computing a representative 
 Average / median vertex position 
  Error quadrics 

  Mesh generation 

  Topology changes 

Further reading: Model simplification using vertex clustering, Low and Tan, I3D, 1997. 

  Method 
  Remove vertex and adjacent faces 
  Fill hole with new triangles (reduction of 2) 

  Properties 
  Requires manifold surface, preserves topology 
  Typically more attractive 
  Filling hole well not always easy 
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  Method 
  Merge two edge vertices to one 
  Delete degenerate triangles (triangle formed by three collinear points) 

  Properties 
  Special case of vertex cluster 
  Allows smooth transition 
  Can change topology 

Typical: greedy algorithm 
 Measure error of possible “simple” operations (primarily 

edge collapses) 
  Place operations in queue according to error 
  Perform operations in queue successively (depending on 

how much you want to simplify model) 
 After each operation, re-evaluate error metrics 

  Motivation 
  Promote accurate 3D shape preservation 
  Preserve screen-space silhouettes and pixel coverage 

  Types 
 Vertex-Vertex Distance 
 Vertex-Plane Distance 
  Point-Surface Distance 
  Surface-Surface Distance 
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  E = max(|v3-v1|, |v3-v2|) 

  Appropriate during topology changes 
  Rossignac and Borrel 93 
  Luebke and Erikson 97 

  Loose for topology-preserving collapses 

  Store set of planes with each vertex 
  Error based on distance from vertex to planes 
  When vertices are merged, merge sets 

  Ronfard and Rossignac 96 
  Store plane sets, compute max distance 

  Error Quadrics – Garland and Heckbert 96 
  Store quadric form, compute sum of squared distances 

  For each original vertex, 
find closest point on simplified surface 

  Compute sum of squared distances 

  Compute or approximate maximum distance 
between input and simplified surfaces 
  Tolerance Volumes - Guéziec 96 
  Simplification Envelopes - Cohen/Varshney 96 
 Hausdorff Distance - Klein 96 
 Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97 

  Vertex-vertex and vertex-plane distance 
  Fast 
  Low error in practice, but not guaranteed by metric 

  Surface-surface distance 
  Required for guaranteed error bounds 

vertex-vertex ≠ surface-surface 

  Marge vertices across non-edges 
  Changes mesh topology 
 Need spatial neighborhood information 
 Generates non-manifold meshes 
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Advanced Considerations 

  Type of input mesh, Modifies topology, Continuous 
LOD, Speed vs. quality 

  Vertex clustering is fast but difficult to control 
simplified mesh that will leads to the previously 
mentioned errors  

  Simplify dynamically according to viewpoint 
 Visibility 
  Silhouettes 
  Lighting 

  Many mesh data structures 
  Compact storage vs ease, efficiency of use 
 How fast and easy are key operations  

  Mesh simplification 
  Reduce size of mesh in efficient quality-preserving way 
  Based on edge collapses mainly 

  Choose appropriate mesh data structure 
  Efficient to update, edge-collapses are local 

  Material covered in text 
  Classical approaches to simplification 
 Quadric metrics next week 


