
1

Mesh representation, overview of mesh simplification

Many slides courtesy Szymon Rusinkiewicz

  A polygon mesh is a collection of triangles

  We want to do operations on these triangles
  E.g. walk across the mesh for simplification
 Display for rendering
  Computational geometry

  Best representations (mesh data structures)?
  Compactness
 Generality
  Simplicity for computations
  Efficiency

Desirable Characteristics 1
  Generality – from most general to least

  Polygon soup
 Only triangles
  2-manifold → ≤ 2 triangles per edge
 Orientable → consistent CW / CCW winding
  Closed → no boundary

  Compact storage

Desirable characteristics 2
  Efficient support for operations:

 Given face, find its vertices
 Given vertex, find faces touching it
 Given face, find neighboring faces
 Given vertex, find neighboring vertices
 Given edge, find vertices and faces it touches

  These are adjacency operations important in mesh
simplification, many other applications

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

Faces list vertex coordinates
  Redundant vertices
 No topology information

2

  Faces list vertex references – “shared vertices”

  Commonly used (e.g. OFF file format itself)

  Augmented versions simple for mesh processing

  Storage efficiency?

  Which operations supported in O(1) time?

  Can sometimes design algorithms to compensate for
operations not supported by data structures

  Example: per-vertex normals
 Average normal of faces touching each vertex
 With indexed face set, vertex → face is O(n)
 Naive algorithm for all vertices: O(n2)
  Can you think of an O(n) algorithm?

  Can sometimes design algorithms to compensate for
operations not supported by data structures

  Example: per-vertex normals
 Average normal of faces touching each vertex
 With indexed face set, vertex → face is O(n)
 Naive algorithm for all vertices: O(n2)
  Can you think of an O(n) algorithm?

  Useful to augment with vertex → face adjacency
  For all vertices, find adjacent faces as well
  Can be implemented while simply looping over faces

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

  Store all vertex, face,
and edge adjacencies

3

  Garland and Heckbert claim they do this

  Easy to find stuff

  Issue is storage

  And updating everything once you do something like
an edge collapse for mesh simplification

  I recommend you implement something simpler (like
indexed face set plus vertex to face adjacency)

  Store some adjacencies,
use to derive others

  Many possibilities…

  Some combinations only
make sense for closed
manifolds

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

  Idea is to associate information with edges

  Compact Storage

  Many operations efficient

  Allow one to walk around mesh

  Usually general for arbitrary polygons (not triangles)

  But implementations can be complex with special
cases relative to simple indexed face set++ or partial
adjacency table

  Most data stored at edges

  Verts, faces point to
one edge each

4

  Each edge stores 2 vertices, 2
faces, 4 edges – fixed size

  Enough information to
completely “walk around”
faces or vertices

  Think how to implement
 Walking around vertex
  Finding neighborhood of face
 Other ops for simplification

  Instead of single edge, 2
directed “half edges”

  Makes some operations
more efficient

  Walk around face very
easily (each face need
only store one pointer)

  Independent faces

  Indexed face set

  Adjacency lists

  Winged-edge

  Half-edge

Overview of mesh decimation and simplification

Multi-resolution hierarchies for efficient
geometry processing and level of detail rendering

Oversampled 3D scan data

5

  Reduce number of polygons
  Less storage
  Faster rendering
  Simpler manipulation

  Desirable properties
 Generality
  Efficiency
  Produces “good” approximation

Simplify model a bit at a time by
removing a few faces (mesh simplification)
  Repeated to simplify whole mesh

Types of operations
 Vertex cluster
 Vertex remove
  Edge collapse (main operation used in assignment)

  Method
  Merge vertices based on proximity
  Triangles with repeated vertices can collapse to edges or points

  Properties
  General and robust
  Can be unattractive if results in topology change

  Cluster generation
 Hierarchical approach
  Top-down or bottom up

  Computing a representative
 Average / median vertex position
  Error quadrics

  Mesh generation

  Topology changes

Further reading: Model simplification using vertex clustering, Low and Tan, I3D, 1997.

  Method
  Remove vertex and adjacent faces
  Fill hole with new triangles (reduction of 2)

  Properties
  Requires manifold surface, preserves topology
  Typically more attractive
  Filling hole well not always easy

6

  Method
  Merge two edge vertices to one
  Delete degenerate triangles (triangle formed by three collinear points)

  Properties
  Special case of vertex cluster
  Allows smooth transition
  Can change topology

Typical: greedy algorithm
 Measure error of possible “simple” operations (primarily

edge collapses)
  Place operations in queue according to error
  Perform operations in queue successively (depending on

how much you want to simplify model)
 After each operation, re-evaluate error metrics

  Motivation
  Promote accurate 3D shape preservation
  Preserve screen-space silhouettes and pixel coverage

  Types
 Vertex-Vertex Distance
 Vertex-Plane Distance
  Point-Surface Distance
  Surface-Surface Distance

7

  E = max(|v3-v1|, |v3-v2|)

  Appropriate during topology changes
  Rossignac and Borrel 93
  Luebke and Erikson 97

  Loose for topology-preserving collapses

  Store set of planes with each vertex
  Error based on distance from vertex to planes
  When vertices are merged, merge sets

  Ronfard and Rossignac 96
  Store plane sets, compute max distance

  Error Quadrics – Garland and Heckbert 96
  Store quadric form, compute sum of squared distances

  For each original vertex,
find closest point on simplified surface

  Compute sum of squared distances

  Compute or approximate maximum distance
between input and simplified surfaces
  Tolerance Volumes - Guéziec 96
  Simplification Envelopes - Cohen/Varshney 96
 Hausdorff Distance - Klein 96
 Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

  Vertex-vertex and vertex-plane distance
  Fast
  Low error in practice, but not guaranteed by metric

  Surface-surface distance
  Required for guaranteed error bounds

vertex-vertex ≠ surface-surface

  Marge vertices across non-edges
  Changes mesh topology
 Need spatial neighborhood information
 Generates non-manifold meshes

8

Advanced Considerations

  Type of input mesh, Modifies topology, Continuous
LOD, Speed vs. quality

  Vertex clustering is fast but difficult to control
simplified mesh that will leads to the previously
mentioned errors

  Simplify dynamically according to viewpoint
 Visibility
  Silhouettes
  Lighting

  Many mesh data structures
  Compact storage vs ease, efficiency of use
 How fast and easy are key operations

  Mesh simplification
  Reduce size of mesh in efficient quality-preserving way
  Based on edge collapses mainly

  Choose appropriate mesh data structure
  Efficient to update, edge-collapses are local

  Material covered in text
  Classical approaches to simplification
 Quadric metrics next week

