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The goal of image synthesis research in computer graphics is the development of methods
for modeling and rendering three-dimensional scenes. One of the most challenging tasks
of image synthegis 18 the accurate and efficient simulation of global idlumination effects:
the illnmination of objects in a scene by other objects. Early rendering programs shaded
surfaces only, not volumes. Furthermore, they treated the visibility (visible surface) and
shading tasks independently, employing a local dllumination model that assumed that the
shading of each surface ig independent of the shading of other surfaces [Foley et al. %, p.
Thl)]. Loeal illumination models typically assume that light comes from a finite set of point
light sources only. Global illumination models, on the other hand, recognize that visibility
and shading are interrelated: the radiance (roughly, brightness) at one point is determined
by the radiances of all other points in the scene.

The physical phenomenon of global illumination is regponsible for a umber of visual
effecta: indirect illumination, color bleeding and the penumbras or soft shadows from area
light sources. Before quantifying global illumination, we discuss some the physics qualita-
tively.

1 Physics of Light Transport

Light is electromagnetic radiation at wavelengths visible to the human eye. Light interacts
with matter in a number of ways. The phenomena most relevant to global illumination are
emission, scattering, and absorption. All three of these effects occur in three-dimensional
volumes, but because many objects in our world are opaque, it is convenient to speak
of surfaces between volumes, and the emission, scattering, and absorption that ooccurs at
surfaces.

Emission can result from various physical processes including incandescence {emission
due to heat), luminescence (emisgion due to chemical reaction, for example), or phospho-
rescence (time-delayed emission). In image synthesis applications, we typically don't care
which mechanism is responsible, we merely need to know the strength of emission as a
function of position and direction.

Radiation is absorbed and scattered as it propagates through a medium. A medium is
called a parficipating medium if the absorption and scattering are gignificant, and a non-
participating medium if they are negligible. In global illumination, for example, we typically
regard fog and smoke as participating media, and vacuum or air as non-participating. In
soeneg with participating media, the emission, scattering, and absorption at each point
in space are relevant, so radiant power 18 & function of three-dimensional position within
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volumes. In scenes without participating media, the radiation at any point in space is
determined by its values at all surface points.

1.1 Scattering, Reflection, and Transmission

In volumes, scattering can be isofropie, varying with direction, or andsotropic, independent
of direction. At a surface, we typically call half of the scattering reflection and the other
half tranamission. The fraction of light that is reflected or transmitted in a given direction
i8 called the reflectance and fransmiftance, respectively.

If the speed of light changes as light is specularly transmitted from one material into
another then the light refracts, or bends. Some materials, such as calcite, are birefringent,
having double refraction. The amount of bending varies with the wavelength of light,
causing dispersion, the phenomenon responsible for color in rainbows and diamonds.

In this work we make the assumptions of geometric optics, namely that radiation can be
simulated using rays and that radiation is incoferent, having all phases. These assumptions
preclude the simulation of diffraction and interforence phenomena. Unless stated otherwise,
we also ignore polarization, and agsume that scenes are static, media are non-participating,
and that surfaces are gray, having wavelength-independent properties within the wavelength
band of interest. If emission, reflectance, or other properties vary with wavelength then the
apectrum can be broken into several wavelength bands. If there is no Huorescence {reflected
wavelength different from incident wavelength) then each of these bands can be simulated
independently.

2 Terminology and Notation

A derivation of the physics of reflection and transmission for computer graphics is given
in [Shirley91]. For an excollent bibliography on the literature of radiometry (the study of
radiation), see [Horn-Brooks8Y9, bibliography]. A good summary of the basic physics of the
related field of thermal radiation is [Eckert-DrakeT2].

We have tried here to use the standardized terminology of illuminating engineering
[ANSHG]. This terminology has also been adopted in the physice community [Driscoll7H].
In the following, we point out some of the nonstandardized thermal radiation terms as well,
but we discourage their use.

The following table summarizes the relevant physical quantities, their dimension, and
their units in the metric system:

SYMBOL | PHYSICAL QUANTITY DIMENSION LNITS

P reflectance 1 1

T transmittance 1 1

A wavelength clist e 1m

dx differential surface area area m®

de differential solid angle sielicd angle steradian
CIHTEF CNCTRY joule = kg m® f5*

& PO pHrweT = engrgy ftime witt = joulefs

e radiant emitted fAue densdty | paowes faren watt /m®

b radiosaty peivwer faren watt fm®

L rsliance powwerfarea » solid anghe] | wate/{m *steradian)
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In a general form, radiation is & fanetion of phase, polarization, time £, wavelength A,
position x = (x,y,z), and direction 8@ = {#,¢) [NicodemusT6 Nicodemus7s], where & is
polar angle {angle from the surface normal) and ¢ is azimuoth.

Radiation on a surface s uwsually measured in the units of rodiance, which is defined to
be the energy passing through a given area in a given direction in a given amount of time.
(This has been called “intensity” in thermal radiation and computer graphics literature, but
that term is discouraged because it is not part of the ANSI terminology standard, and it
conflicts with the standardized term “radiant intensity™ for power per unit solid angle.) The

power passing through a differential surface eloment of radiance L and area dx at position
x, in direction & and solid angle d8, is

@ = L{x, 8 cos 6 do dB
The cosine term enters hevause the projected area of dx in direction 8 s dx oos 8.

2.1 Emission

Emitted radiance integrated over all directions is called radiant emifted flur densify. (In
the thermal radiation field, this quantity is called “emissive power”, but use of thiz term
ia discouraged becaunse the name suggests erronecusly that emissive power has dimension
power, when in fact its dimension i power per unit area.] A diffuse emitfer ie one whose
emitted radiance is independent of viewing direction.

2.2 Reflection and Transmission

When thermal radiation arrives at a surface, the energy is cither reflected back into the
original hemisphere, transmitted into the opposite hemisphere, aor absorbed (transduced
into kinetic energy).

Reflection is fully described by the bidirectional reflecfance distribution function (BRDF),
which is the fraction of energy incident on a surface point from one direction that is reflected
in another direction [Nicodemus et al. 77]. If @ is the incident power from incoming direc-
tion B = (&, ¢ ) with polar angle 8, having solid angle 48, and @, is the outgoing power
through the same solid angle in direction 8, = (8, éy ), then the bidirectional reflectance is
defined as:

i,
Pl i, Ba) = G 8
where 8y and &, are both directions in the upper hemisphere. Bidirectional transmittance
Thg 18 defined similarly. Note that the bidirectional reflectance distribution function, at its
most general, is a function of four variables: the two dimensions of the input direction
and two dimensions of the output direction: pee(8y, Be) = pad(f, i, fo, o). Helmholtz'
reciprocity law says that the BRDF is symmetric: ppg (8, 8,) = ppa{ 8, 6],

Many materiale have ifzofropic reflectance, for which the azimuthal dependence s a
function of the angle between incoming and outgoing azimuth only, reducing the dimension
of the BRDF to three:

PI!HI!'::E' '!;'1:1 Eﬂl: "ilﬂl] = PH'::'HII - Ell '!;'1:1 %}

The most important special cases are ideal diffuse or Lomberfion materials, for which the
outgoing radiance is direction-independent, and ideal specular materialg, for which the out-
going radiance ig limited to the solid angle of the incident radiation around the mirror
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Figure 1:  Four classes of reflectance and transmitfance: ideal diffuse, direcfional diffuse,
rough apecular, and tdeal specwdar; showsng a polar plot of radiance for fived incoming di-

rection and varyging outgoing direction.

direction (figure 1). Chalk and polished metal are approximations of ideal diffuse and ideal
specular reflectors, and rice paper and glags are approximations of ideal diffuse and ideal
specular transmitters, respectively. The BRDF of a diffuse material is constant, while that
of a specular material is & delta function:

Papec i, iy B, o) = podi{fa — 8i)d (g — & — 7 mod 2rx)

Real materials have neither of these idealized reflectance distributions. Brushed metal,
for example, is anisotropic. Atbempts have been made to approximate empirical BRDFs
mathematically both in the thermal radiation [Torrance-Sparrowti7] and computer graph-
ica [Phong75,Blinnf7,Cook-Torrancel2,He et al. 91] communities. Approximations good
enough to make very realistic-looking images are possible by modeling a rough surface as a
piecewise smooth surface with random microscopic bumps.

In addition to ideal diffuse and ideal specular reflectance, it is belpful to define two
additional classes. We define directional diffuse to be reflection that is & smooth but non-
constant function of direction [Sillion et al  91], and reugh speculor to be reflection to
a finite mumber of cones [Heckbert8()]. {These two classes overlap, and their definitions
are intentionally vague, in order that they and the two ideal classes will cover all possible
BRDF's.) Directional diffuse and rough specular transmittance are defined analogously.

An ideal diffuse surface has equal radiance from all viewing directions, but & general
surface’s radiance varies with viewing direction, go we say that ideal diffuse reflection is
view-independent while general reflection is view-dependent. For computer graphics pur-
poses, the simplest materials have a position-invariant, ieotropic BRDF consisting of a
linear combination of ideal diffuse and ideal specular reflection, but a fully-general BRDF
can be position-dependeont and simulate textured, anisotropic, directional diffuse or rough
specular surfaces.

We define seatfering to mean either reflection or transmission. The BRDF gy and
BTDF myy can be regarded as two halves of a bidirectional scotfering distribution function
(BSDF) which we denote myg,. Merging the roflectance and transmittance functions into
one simplifies the notation. For example, when computing the outgoing radiance of light,
two integrals are needed if the BRDF and BTDF are used (one for each hemisphere) but if
the BSDF is used, only & single integral {over an entire sphere) is needed.
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2.3 Diffuse Heflectance

The fraction of the incident radiance for a given incoming direction that is reflected anywhere
can be caleulated by integrating the bidirectional reflectance over the hemigphere of outgoing

directions, yielding the diffuse reflectance:

pal®:) = [ 8, cond, pra(6,8,)
el

For an diffuse material, pke is constant, and pg = mohd. Diffuse transmittance 74 is defined
analogously.

The fraction of radiation from direction € that is absorbed is denoted of8)y). This is
the absorptance. The fractions of the incident radiance with incoming direction 8 that are
reflected, transmitted, and absorbed are therefore pg(6y), T9(8y), and c{8y), respectively.
By conservation of energy, they sum to one at each position and in each direction: pa(8y) +
Ta{8y )+ a{8y) = 1. Since radiance is nonnegative, each of these cocfficients must be greater
than or equal to zero. In practice, sero reflectance and transmittance are never achieved,
so ll < pg, T4, o < 1. Because of dirt and other factors, it is uncommon to find diffuse
reflectances above (B85 [Ward).

3 Why Integral Equations?

Global illumination is governed by an integral equation. Why this comes about and what
this means are described intuitively here, then a brief tutorial on integral equations is
given, and the integral equation governing global illumination is discussed. The following
discusgion is specialized to the case of non-participating media.

The light leaving & surface consista of two parts, the emitted light (if this is the surface
of a light source) and the reflected or transmitted light. In general, the radiance of a surface
is & function of both position and viewing direction.

Assuming that the geometry and the emissive, reflective and transmissive properties of
all surfaces are known, the radiance at each surface point in each direction is determined.
The light scattered at a surface point in a given direction could, in general, have come from
any direction. Some of this light will come from the designated light sources, and other
light will come from other surfaces. The radiance at a point is thus related to the radiance
of all points visible to if.

The equation describing the interdependency thus has the general form

radiance(p) = emit(p) + I radiance{q) scat(p, q) dg

where p and g each represent a point and direction, where radiance(p) is the outgoing radi-
ance at p, where emit{p) is the emitted radiance at p, and scat(p, q) is the fraction of light
leaving ¢ that is scattered to p. Naturally, scat{p,q) = () if there i3 an occluding object
between points p and g. The above is called an integral equation becanse the unknown
radiance function appears inside an integral. When the radiation passes through a partici-
pating medium, the equation becomes integro-differential: a combination of both integrals
and differentials.
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4 Integral Equations

There are a number of good books on integral equations for both the beginner |JerrifG]
and the mathematically sophisticated [Delves-Mohamedi5, Atkinson76,Courant-Hilbert 37,
Hildebrandfis|. Most of this section is adapted from [Delves-Mohamed#5, Atkinson76].

An ntegral eguafion 18 an equation in which the function to be determined appears

inside an integral. The class of integral equation of interest in this work is the Fredholm
integral equation of the second kind, with general form!

i)
b(s) = e(s) +J£ dt w( s, E)(t)

where e and the kernel k are given and b is to be determined. This is a Fredholm integral
equation becanse the limits of integration o and § are constant, and it is a second-kind
integral equation because the unknown function bis) appears outside the integral. Most
integral equation properties and solution methods generalize when the domain variables s
and t are multi-dimensional |[Courant-Hilbertd7, p. 152].

The above equation is abbreviated as b = e+ ICh, where K denotes the integral operator
which when applied to a function b, yvields a function

(Kb (s) = Jﬂ " 4t w(a, )0

We write the inner product of two real functione f and g over the domain [a, b] as

(f.g) = L  ds F{s)als)

Functions f and g are said to be orthagonal if {f, g) = 0.
Formally, our integral equation b = e + Kb can be rewritten (I — )b = e, where T is
the identity operator, and the solution can be obtained by inverting the operator T — K

b= (T —K) e

It is typically impractical and unnecessary to invert the integral operator explicitly, however
[Alpertdi).

4.1 Neumann Series Approximation

Approximate solutions to many integral equations can be found iteratively. Starting with
some initial guess b["]{a]l: subsequent approximations are defined by

B = & 4 bl
If we start with % = e, then the ith approximant is the truncated series
M = et Ke+ K2e+- + Kl

where ' denotes ¢ successive applications of the integral operator K.

"We nse the notation * [dr f(x)" instead of * [ f{x)dr” because it most clearly indicates the variabde of
integration during maltiple integration.
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The sequence b converges if the norm of the integral operator is less than 1 (|| < 1),
where the operator norm is defined in terms of a function norm:

Kb
K|l = max Bl 1
= max i )

The L,, norms are & general class of function norms:

g 1
il = (" dslsiap)"” @)

the most common of which are the Ly norm, the Ly norm, and the L, norm.
When [|K]|| < 1, the exact solution to the integral equation is given by the Neumann

FETLES

b= plech =i.ﬁf’e ()
[E]

The Neumann series is a generalization of the geometric series for 1/{1 — a).

5 The Global Illumination Equation

We derive the integral equation defining radiance in a scene with non-participating media
and opaque surfaces with general reflectance [ﬁzlnﬁk?.‘{-

We now make explicit the position-dependence of the surface properties. At a surface,
the outgoing radiance L, at position x in direction €, equals the emitted radiance Lomg,.
plus the scattored radiance Leea:

Lﬂ':1| ﬂﬂ;l = Lﬂﬂﬂilﬂ ﬂﬂ;l + Ln:n.tix1 EEI;I

The ecattored radiance in & given outgoing direction ie the integral of the bidirectional
scattering distribution function times the incident radiance over all incoming directions:

Ll 00} = [ dB;cos6) puas(x, 0, 04) Lix, €)) (4)
sphere
So the outgoing radiance function 8 L, = Logy + Ly |ﬁr.lail:'?3: eg. 4-1]:
Ly(x,8,) = Lomin (%, 85) + f@h ey cos b s (%, By, 0, ) Li(x, 8) (5)
Bre

In a non-participating medium, radiance is not attenuated with distance, so if the first
surface point hit by the ray from point x in direction 8; is x', and the polar angle and
azimuth of this ray are & = (8] 4.} in the local coordinate system of point x', then the
incoming radiance at x and the outgoing radiance at x', in this common direction are equal
(figure 2):

Li(x,8,) = L,(x, &)

By changing the variable of integration from incoming direction 8 to surface position x',
we can eliminate the incoming radiance function, leaving the outgoing radiance function as
the only unknown. To do this we find the solid angle d8; subtended by a surface element



1-8 Introdwction to Global Hvmination

Figure 2:  Geomeiry of thermal radiation leaving poini x' and arriving at peind x.

with area dx' at a distance r and angle &, to the normal at x’. The solid angle of dx' at
distance r equals this area projected onto a sphere of radius r, divided by r2, so

¢
d@, = o5t "‘:“Ei’
-
Therefore, the integral equation governing global illumination in a scene with general
emission and scattering in a non-participating mediom is™:

L'ﬂ[11 E’n] = anlt{l, E:'n] + j‘;dlrtmﬂ:‘—;mﬂ ‘-'.I'-"'hi'l[-"- By, E'ﬂ} LE{IJ:HL_] iﬁj

where v is the wsshility function, which equals 1 if x and »' are inter-visible, and 0 if they
are oocluded from each other’s view; and T is the set of all surfaces in the scene. The
variahbles 9y, @, r, and v are functions of x and x'. The only unknown in this equation is
the outgoing radianee L.

We call thie the global illumination equation for non-participating media. It is a Fred-
holm integral equation of the second kind.

Intogral equations similar to this have appeared in the thermal radiation literature
[ﬁzlﬁik'i’:{:, in illuminating engineering [Mooni6], in the field of noutron transport in physics,
where it is called the Bolizrmann equation [Lewis-Miller8d|, in computer vision [Koenderink-
van Doornld], where it has been called the mutual dlumination eguation |Forsyth-Zisser-
man#¥, and in computer graphics, where it has been called the rendering eguafion [Ka-
jivaBtImmel et al. 86, Bouville et al. 90.5hirley81].

5.1 Integral Equation for Diffuse, Opagque Surfaces

The equation simplifies if we assume that all surfaces are opague, diffuse emitiers and
reflectors. Then radiant emitted Aux density and reflectance are functions of position only,
and we can substitute hemispherical quantities: the radiant emitted flux density e{x) =
ThLii (36, 8,), the diffuse reflectance pg(x) = mppg,(x, 8, 8,), and the radiosity bix] =

*a generalization of (=igk’s equations 4-1 and 51
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wLga{x,8,). Radiosity”® is the sum of emitted and reflected radiation over the hemisphere
of directions. A more standard term for “radicsity” iz “radiant exitance”, but we will use
the former for historical reasons.

With diffuse reflectance, the radiance of outgoing radiation is independent of the di-
rectional distribution of incident radiation: Lo{x,8) = L.(x). Put another way, diffuse
reflectance obliterates the history of the incident radiation [Sparrow-CessT8. In & non-
participating medinm, radiance is then a function of two-dimensional surface position only.

The integral equation governing diffuse, opague surfaces in a non-participating medinm
is:

cog 8 cos &
bix) = e(x) + palx) fr ! e i)
Esgentially equivalent integral equations are given in [Sparrow-Haji-Sheikh6h), [Hottel-
Sarofim#7, eq. 3-ba), [OzisikT3, eq. 5-1).

5.2 Properties of the Integral Equation of Global Illumination

The kernel of this integral equation in a specular seone is non-smooth and sparse (zero almeost
everywhere)|, while the kernel in a diffuse scene with no occlusions ie smooth and dense
(nonzero almost everywhere). The special case of global illumination in two-dimensional,
diffuge scenes is discuseed in depth elsewhere [Heckbert91 Heckbert82].

Global illumination algorithms can be characterized by the approximations they make
to the global illumination equation. In diffuse scenes, one can exploit the smoothness of the
kernel using radiosity algorithms, and in specular scenes, one can exploit the sparseness of
the kernel using ray tracing algorithms. These solution methods are explored in succeeding

chapters.
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