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Chapter 2

Rendering Concepts

by Pat Hanrahan

2.1 Motivation

The progress in rendering in the last few years has been driven by a deeper and
better understanding of the physics of materials and lighting. Physically based or
realistic rendering can be viewed as the problem of simulating the propagation
of light in an environment. In this view of rendering, there are sources that
emit light energy into the environment; there are materials that scatter, reflect,
refract, and absorb light; and there are cameras or retinas that record the quantity
of light in different places. Given a specification of a scene consisting of the
positions of objects, lights and the camera, as well as the shapes, material, and
optical properties of objects, a rendering algorithm computes the distribution of
light energy at various points in the simulated environment.

This model of rendering naturally leads to some questions, the answers to
which form the subjects of this chapier.

1. What is light and how is it characterized and measured?
2. How is the spatial distribution of light energy described mathematically?
3. How does one characterize the reflection of light from a surface?

4. How does one formulate the conditions for the equilibrium flow of light
in an environment?

In this chapter these questions are answered from both a physical and a
mathematical point of view. Subsequent chapters will address specific IEPIESen-
tations, data structures, and algorithms for performing the required calculations
by computer.
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as it propagates through environments. Geometrical optics is useful to under-
stand shadows, basic optical laws such as the laws of reflection and refraction,
E and the design of classical optical systems such as binoculars and eyeglasses.
- However, geometrical optics is not a complete theory of light. Physical or wave
1 optics is necessary to understand the interaction of light with objects that have
. L . _ ’ sizes comparable to the wavelength of the light. Physical optics allows us to
radio rrulcro 1r||frarecll 1 { ?ltravllolct Ix ralys | gan;ma re:ys ‘ understand the physics behind intgrfcrencc, disgpersion, and technologies such as
- # II | I | ! [ [ I I i > . holograms. Finally, to explain in fult detail the interaction of light with atoms
| -1 1902104 10-% and molecules quantum mechanics must be used. In the quantum mechanical
1012 1010 108 105 10% 102 10 b 107 107210710 model light is assumed to consist of particles, or photons. For the purposes of
this book, geometrical optics will provide a full-enough view of the phenomena
simulated with the radiosity methods.

700 nm light 400 nm

infrared [red orange green blue violet| ultraviolet

Wavelength (nm)

Figure 2.1: Electromagnetic spectrum.

2.3 Radiometry and Photometry

2.2 Basic Optics

) dal . db . ; Radiometry is the science of the physical measurement of electromagnetic en-
H H 3 iati cou- i R . .. . . .
Light is a form of electromagnetic radiation, a Sm:;sm a v\.tavg l(c)l[me Z ) i ergy. Since all forms of energy in principle can be interconverted, a radiometric
H 1 - b . . - R
pled electric and magnetic fields. The electric and magnetic fields are perp k measurement is expressed in the SI units for energy or power, joules and watts,

dicular fo each other and to the direction of propagation. The frequency of
the oscillation determines the wavelength. Electromagnetic radiation can exist
at any wavelength. From long to short, there are radio waves, microwaves, :
infrared, light, ultraviolet, x-rays, and gamma rays (see Figure 2.1).

A pure source of light, such as that produced by a laser, consists of light
at a single frequency. In the natural world, however, light almost always exists
as a mixture of different wavelengths. Laser light is also coherent, that is, the
source is tuned so that the wave stays in phase as it propagates. Natural light,
in contrast, is incoherent.

Electromagnetic radiation can also be polarized. This refers to the preferen-

tial orientation of the electric and magnetic field vectors relative to the direction 1 Pierre Bouguer established the field of photometry in 1760 by asking a hu-

i i : i i aves that are summed ) . .
Of. propagation. Just as 1ncoh.elen:-llﬁht con_smts (;f many\\:’aves that are summed g man observer to compare different light sources [35]. By comparing an unknown
with random phase, unpolarized light consists of many 4 source with a standard source of known brightness—a candle at the time—the

i i i izati incident radiation is an impor- ) . .
with random orlentatllon. The gOIa.nzatl:I;. Ohfttpe 1nr;1 surface. but the discusEion relative brightness of the two sources could be assessed. Bouguer’s experiment
T s o . . .
tant parameter affecting the reflection of light from was quite ingenious. He realized that a human observer could not provide an

will be simplified t_)yhlg_no‘rmg polatl_rlzatlor;. electromagnetic radiation is of great accurate quantitative description of how much brighter one source was than an-
The fact that light is just one form o g other, but could reliably tell whether two sources were equally bright.! Bouguer

ics i ' ' lgorithms from . .
benefit for computer graphics in that it points to theory and algo was also aware of the inverse square law. Just as Kepler and Newton had used it

iscinli i i i ¢ applied disciplines . - .
many other d1sc1p11ne§, n parthl_lla_r, O}I:UCS, butfalsoThmeo; dp Pof optics iI; { to describe the gravitational force from a point mass source, Bouguer reasoned
1 " 0 - . . f . . ) .
such as radar engineering and radiative heat transfer Yy oL 0P YP that it also applied to a point light source. The experiment consisted of the

ically divided into three subareas: geometrical or ray optics, physical or wave
optics, and quantum or photon optics. Geometrical optics is most relevant to
computer graphics since it focuses on calculating macroscopic properties of light

k.l

respectively. The amount of light at each wavelength can be measured with a
spectroradiometer, and the resulting plot of the measurements is the spectrum
T of the source.

Photometry, on the other hand, is the psychophysical measurement of the
visual sensation produced by the electromagnetic spectrum. Our eyes are only
sensitive to the electromagnetic spectrum between the ultraviolet (380 nm) and
the infrared (770 nm). The most prominent difference between two sources of
light with different mixtures of wavelengths is that they appear to have different
colors. However, an equally important feature is that different mixtures of light
also can have different luminosities, or brightnesses.
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"This fact will be used in Chapter 9 when algorithms to select pixel values for display
are examined.
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A relative sensitivity
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Figure 2.2: Spectral luminous relative efficiency curve.

observer moving the standard source until the brightnesses of the two sources
were equal. By recording the relative distances of the two light sources from
the eye, the relative brightnesses can be determined with the inverse square law.

Bouguer founded the field of photometry well before the mechanisms of
human vision were understood. It is now known that different spectra have
different brightnesses because the pigments in our photoreceptors have different
sensitivities or responses toward different waveiengths. A plot of the relative
sensitivity of the eye across the visible spectrum is shown in Figure 2.2; this
curve 15 called the spectral luminous relative efficiency curve. The observer's
response, R, to a spectrum is then the sum, or integral, of the response to each
spectral band. This in turn is equal to the amount of energy at that wavelength,
A, times its relative luminosity.

770
R= V{X)§(A\)dA (2.1)
380nm
where V is the relative efficiency and S is the spectral energy. Because there
is wide variation between people’s responses to different light sources, V' has
been standardized.

Radiometry is more fundamental than photometry, in that photometric quan-
tittes may be computed from spectreradiometric measurements. For this reason,
it is best to use radiometric quantities for computer graphics and image syn-
thesis. However, photometry preceded radiometry by over a hundred years, so
much of radiometry is merely a modern interpretation of ideas from photometry.

As mentioned, the radiometric units for power and energy are the watt and
joule, respectively. The photometric unit for luminous power is the lumen,
and the photometric unit for luminous energy is the talbot. Our eye is most
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sensitive to yellow-green light with a wavelength of approximately 555 nm that
has a luminosity of 684 lumens per watt. Light of any other wavelength, and
therefore any mixture of light, will yield fewer lumens per watt. The number of
lumens per watt is a rough measure of the effective brightness of a light source.
For example, the garden-variety 40-Watt incandescent light bulb is rated at only
490 lumens — roughly 12 lumens per walt. Of course, the wattage in this case
is not the energy of the light produced, but rather the electrical energy consumed
by the light bulb. It is not possible to convert electrical energy to radiant energy
with 100% efficiency so some energy is lost to heat.

When we talk about light, power and energy usuaily may be used inter-
changeably, because the speed of light is so fast that it immediately attains
equilibrium. Imagine turning on a light switch. The environment immediately
switches from a steady state involving no light to a state in which it is bathed
in light. There are situations, however, where energy must be used instead of
power. For example, the response of a piece of film is proportional to the total
energy received. The integral over time of power is called the exposure. The
concept of exposure is familiar to anyone who has stayed in the sun too long
and gotten a sunburn.

An important principle that must be obeyed by any physical system is the
conservation of energy. This applies at two levels—a macro or global level, and
a micro or local level.

o At the global level, the total power put into the system by the light sources
must equal the power being absorbed by the surfaces. In this situation
energy is being conserved. However, electrical energy is continuing to
flow into the system to power the lights, and heat energy is flowing out
of the system because the surfaces are heated.

» At the local level, the energy flowing into a region of space or onto a
surface element must equal the energy flowing out. Accounting for all
changes in the flow of light locally requires that energy is conserved.
Thaus, the amount of absorbed, reflected, and transmitted light must never
be greater than the amount of incident light. The distribution of light can
also become more concentrated or focused as it propagates. This leads to
the next topic which is how to characterize the flow of light.

2.4 The Light Field
24.1 Transport Theory

The propagation of light in an environment is built around a core of basic ideas
concerning the geometry of flows. In physics the study of how “stuff’ flows
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Figure 2.3: Particles in a differential volume.

is termed transport theory. The “stuff” can be mass, charge, energy, or light.
Flow quantities are differential quantities that can be difficult to appreciate and
marnipulate comfortably. In this section all the important physical quantities
associated with the flow of light in the environment will be introduced along
with their application to computer graphics.

The easiest way to learn transport quantities is to think in terms of particles
(think of photons). Particles are easy to visualize, easy to count, and therefore
easy to track as they flow around the environment. The particle density p(x) is
the number of particles per unit volume at thée point x (see Figure 2.3). Then
the total number of particles, P(x), in a small differential volume 4V is

P(x) = p(x) dV (2.2)

Note that the particle density is an intrinsic or differential quantity, whereas the
total number of particles is an absolute or extrinsic quantity.

Now imagine a stream of particles all moving with the same velocity vector
7, that is, if they are photons, not only are they all moving at the speed of
light, but they are all moving in the same direction. We wish to count the total
number of particles flowing across a small differential surface element dA in
a slice of time dt. The surface element is purely fictitious and introduced for
convenience and may or may not correspond to a real physical surface. In time
dt each particle moves a distance ¥dt. How many particles cross dA? This
can be computed using the following observation: consider the tube formed by
sweeping dA a distance v dt in the direction —%. All particles that cross dA
between ¢ and ¢ + df must have initially been inside this tube at time t. If they
were outside this tube, they would not be moving fast enough to make it to
the surface element dA in the allotted time. This implies that one can compute

the number of particles crossing the surface element by multiplying the particle

volume density times the volume of the tube. The volume of the tube is just
equal to its base (dA) times its height, which is equal to v cos@dt. Therefore,
as depicted in Figure 2.4, the total number of particles crossing the surface is

P(x) = px)dv
= p(x){vdicosf)dA (2.3)

et Al S 2 B e LA A
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v

Figure 2.4: Total particles crossing a surface.

Note that the number of particles flowing through a surface element depends
on both the area of the surface element and its orientation relative to the flow,
Observe that the maximum fow through a surface of a fixed size occurs when
the surface is oriented perpendicular to the direction of flow. Conversely, no
particles flow across a surface when it is oriented parallel to the flow. More
specifically, the above formula says that the flow across a surface depends on the
cosine of the angle of incidence between the surface normal and the direction of
the flow. This fact follows strictly from the geometry of the situation and does
not depend on what is flowing.

The number of particles flowing is proportional both to the differential area
of the surface element and to the interval of time used to tally the particle count.
If either the area or the time interval is zero, the number of particles flowing
is also zero and not of much interest. However, we can divide through by the
time interval d¢ and the surface area dA and take the limit as these quantities
go to zero. This quantity is called the flux,

More generally all the particles through a point will not be flowing with
the same speed and in the same direction. Fortunately, the above calculation is
fairly easy to generalize to account for a distribution of particles with different
velocities moving in different directions. The particle density is now a function
of two independent variables, position x and direction &. Then, just as before, the
number of particles flowing across a differential surface element in the direction
& equals

P(x,&) = p(x,&) cos 0 dwdA (2.4)

Here the notation dw is introduced for the differential solid angle. The direction
of this vector is in the direction of the flow, and its length is equal to the small
differential solid angle of directions aboul &. For those unfamiliar with solid
angles and differential solid angles, please refer to the box.

2.4.2 Radiance and Luminance

The above theory can be immediately applied to light transport by considering
light as photons. However, rendering systems almost never need consider (or at
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Angles and Solid Angles

A direction is indicated by the vector . Since this is a unit vector, it can be
represented by a point on the unit sphere. Positions on a sphere in turn can
be represented by two angles: the number of degrees from the North Pole
or zenith, &, and the number of degrees about the equator or azimuth, .
Directions & and spherical coordinates (8, ¢) can be used interchangeably.

A
rsin @

G U N dA=2sin6dedp

4

A big advantage of thinking of directions as points on a sphere comes when
considering differential distributions of directions. A differential distribution
of directions can be represented by a small region on the unit sphere.

least have not considered up to this point) the quantum nature of light. Instead,
when discussing light transport, the stuff that flows, or flux, is the radiant energy
per unit time, or radiant power @, rather than the number of patticles. The radiant
energy per unit volume is simply the photon volume density times the energy of
a single photon h ¢/ A, where h is Planck’s constant and ¢ is the speed of light.
The radiometric term for this quantity is radiance.

he

L(%, &) = fp(x,ff),)\) = dx (2.6)

Radiance is arguably the most important quantity in image synthesis. Defined
precisely, radiance is power per unit projected area perpendicular to the ray per
unit solid angle in the direction of the ray (see Figure 2.5). The definition in
equation 2.6 js that proposed by Nicodemus [174], who was one of the first
authors to recognize its fundamental nature.

The radiance distribution completely characterizes the distribution of light

e el S e L

ot
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The area of a small differential surface element on a sphere of radius r is
dA = (rdf) (rsinfdo) = r?sinfdode

Here r d# is the length of the longitudinal arc generated as 8 goes to 8 - df.
Similarly rsin 8d¢ is the length of the latitudinal arc generated as ¢ goes
to ¢ + d¢. The product of these two lengths is the differential area of that
patch on the sphere.

This derivation uses the definition of angle in radians: the angle subtended
by a circular arc of length ! is equal to {/r. The circle itself subtends an
angle of 27 radians because the circumference of the circle is 2zr. By using
a similar idea we can define a solid angle. The solid angle subtended by a
spherical area a is equal to ¢/r?. This quantity is the measure of the angle
in steradians (radians squared), denoted sr. A sphere has a total area of
4mr?, so there are 4 steradians in a sphere.

A differential solid angle, indicated as dw, is then

dA
dw = — =sin#df do (2.5)
r
It is very convenient to think of the differential solid angle as a vector,
dii. The direction of ddJ is in the direction of the point on the sphere, and
the length of dij is equal to the size of the differential solid angle in that
direction.

d
dA

L(x,0)

Figure 2.5: The radiance is the power per unit projected area perpendicular to
the ray per unit solid angle in the direction of the ray.




Seanned using the SolarSys DocSean Pro OCR free evaluation license. For licensing details please visit www solarsys.co.uk

DocScan Pro free trial

22 CHAPTER 2. RENDERING CONCEPTS

Ly (@) do;

Lo(w)

dwy

dAs

Figure 2.6. Equality of flux leaving the first surface and flux arriving on the
second surface.

in a scene. Note that it is a function of five independent va_lriable._s, three _t}llat
specify position and two that specify direction. All ot}}er radm_metnc quantities
can be computed from it. For example, the differential ﬂu:_t in a small beam
with cross-sectional area dA and differential solid angle dw is

d® = L{x,d) cosf dwdA (2.7)
This follows immediately from the earlier discussion of particle transpoFt.
To emphasize further the importance of radiance, consider the following two
properties:
1. The radiance in the direction of a light ray remains consiant as it.prop—
agates along the ray (assuming there are no losses due to absorption or

scattering). This law follows from the conservation of energy within a
thin pencil of light, as shown in Figure 2.6.
The total flux leaving the first surface must equal the flux arriving on the
second surface.

Ly dwi dAy = Lo dwg dAs (2.8)
but duwy = dAg/r? and dwy = dAy /72, thus,

dAy dAz
2

T = dun dA; = dws dA; = (2.9)

2.4. THE LIGHT FIELD 23,

Sensor

Figure 2.7: A simple exposure meter.

This quantity T is called the throughput of the beam; the larger the
throughput, the bigger the beam. This immediately leads to the conclusion
that

Ly =1, (2.10)

and hence, the invariance of radiance along the direction of propagation.
As a consequence of this law, radiance is the numeric quantity that should
be associated with a ray in a ray tracer.

2. The response of a sensor is proportional 1o the radiance of the surface
visible to the sensor.

To prove this law, consider the simple exposure meter in Figure 2.7. This
meter has a small sensor with area g and an aperture with area A. The
response of the sensor is proportional to the total integrated flux falling

on it.
R=//Lcos€dwdA=LT
AJ0

Thus, assuming the radiance is constant in the field of view, the Tesponse
is proportional to the radiance. The comstant of proportionality is the
throughput, which is only a function of the geometry of the sensor. The
fact that the radiance at the sensor is the same as the radiance at the surface
follows from the invariance of radiance along a ray.

(2.11)

This law has a fairly intuitive explanation. Bach sensor element sees that
part of the environment inside the beam defined by the aperture and the
receptive area of the sensor. If a surface is far away from the sensor, the
sensor sees more of it. Paradoxically, one might conclude that the surface
appears brighter because more energy arrives on the sensor. However, the
sensor is also far from the surface, which means that the sensor subtends a
smaller angle with respect to the surface. The increase in energy resulting
from integrating over a larger surface area is exactly counterbalanced by
the decrease in percentage of light that makes it to the sensor, This
property of radiance explains why a large uniformly illuminated painted
wall appears equally bright over a wide range of viewing distances.
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Figure 2.8: Projection of differential area,

As a consequence, the radiance from a surface to the eye is the guantity
that should be output to the display device.

2.4.3 Irradiance and Illuminance

The two properties of radiance described in the previous section were derived
by considering the total flux within a small beam of radiation. Another very
impertant quantity is the total energy per unit area incident onto a surface with a
fixed orientation. This can be computed by integrating the incident, or incoming
radiance, L;, over a hemisphere, (.

o = U L. cosBdw] dA (2.12)
Q

The irradiance, E, is the radiant energy per unit area falling on a surface
{the corresponding photometric quantity is the illuminance).

dd
= 2.13
B dA (2.13)
or
E=/ L cosfdw (2.14)
Q

The quantity cos @ dw 15 often referred to as the projected solid angle. It can be
thought of as the projection of a differential area on a sphere onto the base of
the sphere, as shown in Figure 2.8.

This geometric construction shows that the integral of the projected solid
angle over the hemisphere is just 7, the area of the base of a hemisphere with

2.4, THE LIGHT FIELD 25

unit radius. This result can also be derived directly by computing the following

integral:
27 1
/cosﬁdw ] / cos 6 sin 6 dé dg
o o Jo

27 T
= —f f cos 8 dcos b de
o Jo

w2

cos? @
2

= =2

]
= T

(2.15)
Note that if all rays of light are parallel, which occurs if a single distant
source irradiates a surface, then the integral reduces to the simple formula

E = Ejcost (2.16)

where Ey is the energy per unit perpendicular area amiving from the distant
source,

244 Radiosity and Luminosity

As the title of this book suggests, radiosity is another important quantity in
image synthesis. Radiosity, B, is very similar to irradiance. Whereas irradiance
is the energy per unit area incident onto a surface, radiosity is the energy per
unit area that leaves a surface. It equals

B =/Lg cos @ dw (2.17)
o

where L, is the outgoing radiance.

The official term for radiosity is radiant exitance. Because of the wide-
spread nse of the term radiosity in the computer graphics literature, it will be
used in this book. The photometric equivalent is luminosity.

24.5 Radiant and Luminous Intensity

Radiance is a very useful way of characterizing light transport between surface
elements. Unfortunately, it is difficult to describe the energy distribution of a
point light source with radiance because of the point singularity at the source.
Fortunately, it is very easy to characterize the energy distribution by introducing
another quantity—the radiant or luminous intensiry.
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Note that this use of “intensity” is very different from that typically used
by the computer graphics community. Even more confusion results because
intensity 1s often used to indicate radiance-like transport quantities in the physics
community. The radiant intensity is quite similar to that used in the geometric
optics community.

The energy distribution from a point light source expands outward from the
center. A small beam is defined by a differential solid angle in a given direction.
The flux in a small beam dw is defined to be equal to

d® = I(3) dw (2.18)

[ is the radiant intensity of the point light source with units of power per unit
solid angle. The equivalent photometric quantity is the luminous intensity.

The radiant intensity in a given direction is equal to the irradiance at a
point on the unit sphere centered at the source. In the geometric optics literature
intensity is defined to be the power per unit area (rather than per unit solid angle).
In the case of a spherical wavefront emanating from a point source, the geometric
optics definition is basically the same as the radiometric definition. However,
in general, the wavefront emanating from a point source will be distorted after
it reflects or refracts from other surfaces and so the definition in terms of solid
angles is less general.

For an isotropic point light source,

i}
I=— 2.19
4 ( )

Of course, a point source may act like a spotlight and radiate different amounts
of light in different directions. The total energy emitted is then

@:fnr(a)dw

The irradiance on a differential surface due to a single point light source can
be computed by calculating the solid angle subtended by the surface element
from the point of view of the light source.

dw ®  cosé
iy Sl ey

(2.20)

(2.21)

where |x — x;| is the distance from the point to the surface element. Note the
1/72 fall-off: this is the origin of the inverse square law.

The distribution of trradiance on a surface is often drawn using a contour
plot or iso-lux diagram, while the directional distribution of the intensity from
a point light source is expressed with a goniometric or iso-candela diagram.?
This is a contour plot of equal candela levels as a function of the (8, ¢).

2See Chapter 10 for details of lighting specifications.

24. THE LIGHT FIELD

Physics Radiometry Radiometric Units
Radiant energy joules [J = kgm?/s?]
Flux Radiant power watts [W = joules/s)

Angular flux density Radiance (W/m? sr]

Flux density Irradiance [W/m?]

Flux density Radiosity [W/m?]
Radiant intensity [(W/sr]

Physics Photometry Photometric Units
Luminous energy talbot

Flux Luminous power lumens [talbots/second)

Angular flux density
Flux density
Flux density

Luminance
INluminance
Luminosity

Luminous intensity

Nit [lumens/m? sr]

Lux [lumens/m2 sr]
Lux [lumens/m? sr]
Candela [lumens/sr]

Table 2.1: Radiometric and photometric quantities.

24.6 Summary of Radiometric and Photometric Quantities

27

In most computer graphics systems, optical quantities are simply celors denoted
by red, green, and blue triplets. These triplets are used to specify many quanti-
ties including light sources, material properties, and intermediate calculations.?
As noted, there is a small but finite number (six to be exact) of radiometric
{photometric) quantities that characterize the distribution of light in the environ-
ment. They are the radiant energy (luminous energy), radiant power (Juminous
power), radiance (luminance), irradiance (illuminance), radiosity (luminosity),
and radiant intensity (luminous intensity). These quantities and their units are
summarized in Table 2.1,

®A more complete treatment of color specification is given in Chapter 9.
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Figure 2.9: Bidirectional reflection distribution function.

2.5 Reflection Functions

The next question is how to characterize the reflection of light from a surface.
Reflection is defined as the process by which light incident on a surface leaves
that surface from the same side. Transmission, absorption, spectral and polariza-
tion effects, fluorescence, and phosphorescence are also important to consider in
developing an accurate model of the interaction of light with materials, but will
not be treated in detail here. Instead, this section will concentrate on nomencla-
ture and the general properties that are satisfied by all reflection functions.

2.5.1 The Bidirectional Reflection Distribution Function

Consider the light incident on a surface from 4 small differential solid angle
in the direction ;. The amount of reflected light in another direction Wy 18
proportional to the incident irradiance from &; (see Figure 2.9). That is,
dL.(G;) x dE(&;) (2.22)
Equation 2.22 simply states that an increase in the incident light energy per unit
area results in a corresponding increase in the reflected light energy. The incident
irradiance can be increased by increasing either the solid angle subtended by the
source or the energy density in the beam.
The constant of proportionality is termed the badzrecuonal reflection distri-
bution function, or BRDF.

L-r (Qr)

i A S 2.23
L;(&;) cos8; dw; ( )

fr(d"'i - Gj‘r) =
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s
fE fifEy

Figure 2.19: Helmholiz reciprocity principle.

More precisely, the BRDF is defined to be the ratio of the reflected radiance in
the direction @, to the differential irradiance from the incident direction @; that
produces it. The BRDF is bidirectional because it depends on two directions.
Often, the dependence on the four angles is made explicit by writing the BRDF
as fr(0;, ¢4;6r,ér). The BRDF is a distribution function because it is strictly
positive. Since it gives the concentration of flux per steradian, it may take on
any value between zero and infinity. The BRDF has units of inverse steradians.
The BRDF has several interesting properties:

1. If the BRDF is based on physical laws, then it will remain unchanged if
the incident and reflected directions are interchanged. That is,
fel@r - &) = fr(d; — &p) (2.24)
This Helmholtz reciprocity principle is equivalent to saying that if a photon
moves along a path, it will follow the same path if its direction is reversed
(see Figure 2.10).

2. The BRDF is, in general, anisotropic. That is, if the incident and reflected
directions are fixed and the underlying surface is rotated about the surface
normal, the percentage of light reflected may change (see Figure 2.11).
Examples of anisotropic materials are brushed aluminum or cloth [134].

Many materials, however, are smooth and their reflectivity does not depend
on the surface’s orientation. Thus, their reflection functions do not change
if the surface 1s rotated, and

fr((giy ¢’i + ¢) - (97‘; Qbr + ¢)) = fr((gi, QSI) - (91“; ¢1‘))

This implies that the reflection function has only three degrees of freedom
instead of four.

(2.25)
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Figure 2.11: The reflection may change with rotations of the surface due to
anisotropy.

Notice that adding light from another incident direction has no influence
on the amount of light reflected from other incident directions. Thus, reflection
behaves linearly, and hence the total amount of light reflected by a surface in a
specific direction is given by a hemispherical integral over all possible incident
directions. This leads to the reflectance equation:

LT(LUT) = -/n fr(l‘:ji — U—J,) Li(@) COS 91' deJi (226)

Put another way, the reflected radiance in a particular direction is due to the
radiance arriving from all directions weighted by the BRDF relating the incoming
and reflected directions and by the projected solid angle.

2.5.2 Mirror Reflection

As an example of a BRDF, consider a perfect mirror and the geometry of the
reflection. For a mirror, the angle of reflectance is equal to the angle of incidence,
and the reflected vector is in the plane determined by the incident ray and surface
normal vector. This implies that

91‘ = 92'
d)r ¢’i t

Ii

@27)

Second, consider the radiometry of reflection. For a mirmor, the reflected
radiance is exactly equal to the incident radiance.

L8, ¢r) = Li(grs Or £ )

(2.28)
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This physical fact can be mathematically expressed with a BRDF involving delta
functions.

_ 6(cosb; — cosb,)
fr,m - €08 91: 6(¢I - (¢T + W))
Recall that the delta function has the following three properties:

1. 8(z) =0 ifx#0

2. [ §(z)ydz =1

3. [2o 8z — y)f(2) dz = f(y)

It can be verified that this leads to the correct reflected radiance by performing
the hemispherical integral.

(2.29)

_ 6(cosf; —cosfr) ..,
Lo(br,¢r) = fﬂ B 8(s — (¢ £ 71))

-Li(é',-, (ﬁl) COos 95 d91- dqﬁi
= L6y, ¢, £7) (2.30)

2.5.3 The Reflectance

Recall that the delta function can be interpreted as an infinitesimally thin, in-
finitely high spike with unit area. This implies that the BRDF, although always
positive, may be infinite. Often it is more intuitive to work with a quantity that
is bounded between 0 and 1. This quantity is called the biconical reflectance,
or simply reflectance.

Consider the ratio of reflected flux to incident flux. Since the reflected flux
must always be less than the incident flux giving rise to it, the reflectance must
always be less than 1.

d®.. fﬂr L.(&,) cos b, dw,
d‘I’i - fﬂi Lz' (tz)',;) COs 91' dwi
Ja, Ja, 1r(@: = &) Li(3:) cosb; duw; cos b, dw,

) Jo, Li(@:) cosf; duw; (2.31)

Unfortunately, the reflectance depends on the distribution of incoming light, L.
If it is assumed that L; is uniform and isotropic, then L; can be taken out from
the integral in both the numerator and the denominator. This results in the
relaionship between the reflectance and the BRDF which forms the definition
of the reflectance:

er fg‘_ fr(&; — &y) cos 8, dw; cosf, dw,

Pl = Or) = I, cos 8; dw;
Q, COS Ui dw;

(2.32)
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The reflectance involves a double integral over the incident and reflected
directions for which the limits of integration have not yet been set. Three
choices for the limits are a differential solid angle, a finite solid angle, or the
entire hemisphere. Since this choice can be made for both the incident and the
reflected directions, there are nine different reflectances. These are shown in
table 2.2.

[ Aw 2m
W p(&; — &) p(&; ~ Dw:) P — 2m)
Aw | p(Aw; = &) plAw; — Aw,)  p(Aw; — 2)
27 p(2r — &} p(w — Aw,)  p(2m — 27)

Table 2.2: The nine biconical reflectances.

The names of these reflectances are formed by combining the following
words: directional (for differential solid angle), conical (for finite solid angle),
and hemispherical (for a solid angle equal to the entire hemisphere). Thus,
pld; — &), p(Aw; — Aw,), and p(2m — 2m) are refered to as the bidi-
rectional, biconical, and bihemispherical reflectances, respectively. Perhaps the
most interesting reflectance function is the directional-hemispherical reflectance,
p(@; — 2m). This is the amount of light scattered into the entire hemisphere
from a single incident direction. Since this quantity is the ratio of fluxes, it must
be less than 1. However, be aware that this quantity can change with the angle
of incidence.

2.5.4 Lambertian Diffuse Reflection

To illustrate the relationship between the BRDF and reflectance, consider the case
of Lambertian diffuse reflectance. Diffuse reflectance is modeled by assuming
that light is equally likely to be scattered in any direction, regardless of the
incident direction. In other words, the BRDF is constant. Thus,

L,-,d(ujr) = /Q fr,d L;‘ (51) COs 91' d,wi

= fr,d/ Li{w;) cos6; duy
95
= fraE (2.33)
This leads to two conclusions:

1. The value of the reflected radiance is proportional to the incident irradi-
ance.
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2, The reflected radiance is a constant and hence the same in all directions,
since neither fr 4 nor E depends on &,. This is true independent of the
distribution of incoming light.

The fact that energy is conserved can be ensured by forcing the hemispherical-
hemispherical reflectance to be less than 1.

pa(2m — 27) = Sra _ Jo, Lra{@:) cos b, dwr
(I’I' fﬂ-e L,‘,(Q’i) COS 91' dw,-
Lya fq, cosfr dw,

E

WLr,d
E

= Wf'r,d

{2.34)

It thus immediately follows that if the BRDF is a constant, then the reflectance is
also a constant. More importantly, this relationship can be used to paramelterize
the BRDF in terms of the reflectance: f,. 4 = pa/n. Often, it is more intuitive
to describe materials using their reflectances because they are constrained to lie
between 0 and 1. Whenever a p is used in this text, it can safely be assumed to
lie between O and 1.

Since the outgoing radiance is constant, the radiosity

B=nl,q4 (2.35)
is related to the irradiance by the following equation:
Pi= % (2.36)

Equation 2.36 states that for diffuse reflection, the reflectance is equal to the
radiosity divided by the irradiance.

2.5.5 Glossy Reflection

In practice it is often convenient to treal the general BRDF as the sum of
three qualitatively different components: mirror (or ideal) specular reflection,
Lambertian (or ideal) diffuse reflection, and glossy reflection (see Figure 2.12).
The diffuse and mirror reflection laws, Lambert’s law, and the law of reflection,
were discussed in the previous sections.

However, real materials are not perfectly diffuse or perfect mirror specular.
This is to be expected since these models of reflection are the simplest math-
ematical abstractions of the properties of surfaces and materials. Real surfaces



Seanned using the SolarSys DocSean Pro OCR free evaluation license. For licensing details please visit www solarsys.co.uk

DocScan Pro free trial

34 CHAPTER 2. RENDERING CONCEPTS
BRDF Diffuse Mirror Glossy

Figure 2,12; Reflectance components.

Figure 2.13: Complex reflection distributions arise from rough surface and sub-
surface phenomena.

are not planar and perfectly smooth and thus would not be expected to reflect
light in just one direction. A real BRDF will thus contain a component between
these limiting cases in which light hitting the surface from a certain direction is
reflected into a complex distribution of outgoing directions.

The terminology for the various components is highly variable in the image
synthesis literature. In particular, the intermediate component that we cali glossy
reflection is variously called specular, rough specular, wide and narrow diffuse,
and directional diffuse. The term glossy has also been used in the surface reflec-
tion literature and has been selected instead for this work because its common
usage is suggestive of the intended technical meaning.

Lord Rayleigh was the first to explain the effects of surface finish on the
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Figure 2.14. Vectors for glossy reflection models.

reflective properties of materials. He reasoned that a surface would become
shinier if it were perfectly flat, or at least fiat relative to the wavelength of the
incident radiation. His theory is relatively easy to test because the wavelengths
of common sources of radiation range from the macroscopic to the microscopic,
and it can be verified that long wavelength radiation is more easily reflected from
a surface. As shorter and shorter wavelengths are directed toward the surface,
the ideal specular component decreases and the reflection becomes less focused.
This transition occurs roughly when the wavelength of light becomes equal to
the relative height changes in the surface. Thus, glossy reflection arises from
the scattering of light from rough surfaces, an idea first proposed by Bouguer.
The mirror specular term is considered to arise from perfectly smooth surfaces,
while the Lambertian diffuse term arises from multiple surface reflections from
very rough surfaces and from subsurface scattering (see Figure 2.13).

Another important optical effect is that glossy reflection increases at glancing
angles of incidences and reflection. This is predicted by the Fresnel formula,
which gives the relative percentage of light that is reflected or refracted across a
planar boundary as a function of the angles of incidence and index of refraction.

In computer graphics glossy reflection from rough surfaces is typically mod-
eled using the microfacet theory, This theory assumes the surface is made of
little reflective facets, each behaving as a small mirror; that is, each reflecting
light perfectly. This model predicts that the amount of light reflected from a light
source toward the eye is equal to the relative number of microfacets oriented
halfway between the eye and the light source. This model has been enhanced
by many researchers [30, 65] and in its modern form consists of several terms

_ DGF
" dcosf, cosb;

£ (2.37)
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o D is the microfacet distribution. This distribution function gives the num-
ber of microfacets oriented in a particular direction. This function is
typically modeled with the following formula (see Figure 2.14):

D(H,N,k) = (N - H) (2.38)

Note that this distribution is maximal when 5 equals N, implying that
the maximum number of microfacets are oriented parallel to the surface.
Note also that & controls the rate at which the distribution of microfacets
falls off, and is related to the roughness of the surface.

e (7 is a geometric attery;(ation term accounting for self-shadowing. This
arises because a rough’surface ié actually a height field, and facets in the
valleys are less visibl(a at glancing angles as facets at the peaks. This is
an important effect, bﬁt\gggy/cﬁnfﬁcult to model precisely with a simple
formula.

e F'is the Fresnel reflection term related to a material’s index of refraction,

The modeling of reflection of light from real materials is an interesting and
important subject; however, space does not permit us to cover it in detail in
this book. Models that can be found in the literature range from Phong’s simple
empirical model [181], to models of the form given above [30, 65, 236] that differ
primarily in the details of the D function, to more recent (and complex) models
such as that proposed by He er al [118]. A good summary and description of
the earlier models is given by Hali[114]. Subsurface reflection (see Figure 2.13)
that has typically been modeled as part of the Lambertian diffuse component has
also been reexamined to provide a more physically based model for biological
materials such as skin and leaves [115].

2.6 The Rendering Equation

The reflectance equation makes it possible to compute the reflected light distri-
bution from the incident light distribution and the BRDF of the material. The
important remaining task is to specify, or preferably to compule, the incident
light distribution. This is typically referred to as the illumination model.

The first and easiest case to consider is one with no occlusion and direct
illumination from simple light sources. In this case there is typically a small
number of point or distant lights, and it can be assumed that all light arrives at
the surface; that is, there is no shadowing. Since this model does not consider
the environment as a whole and only depends on the individual properties of the
light sources and the surface being shaded, it is often called a local illumination
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model. Shadows can be added by testing whether a point on the surface is visible
to the light source. This is what is done in a ray tracer, but it requires access
to the entire environment and is therefore an example of a global illumination
model,

. The second and considerably more difficult case is indirect illumination. In
_thls case light may come from any surface in the environment, and it is very
Important to consider shadowing,

In the following sections, the interrefiection of light between surfaces will
be taken into account, and the rendering equation is derived from the reflectance
equation. The radiosity equation, a simplified form of the rendering equation,
that results by assuming all surfaces are Lambertian reflectors is also derived.

2.6.1 Local or Direct Hlumination

It is easy to incorporate direct lighting from point light sources into the previous
reflection models. Recall the reflectance equation

L,-(u")',.) = /ﬂ fr(!ﬁi - Uj,-) Li(ﬁi) COSs 92' dwi (2.39)
Recall also that the irradiance from a single point light source was derived,
® cosd
E=———
prg P (2.40)

If the direction to the light source is given by &, then the radiance from a point
light source can be expressed with a delta function.
Li(w) =

P
A7 X — x,|2 &(cos 8; — cos8,} 6(¢: — ¢5) (2.41)

Substituting equation 2.41 into the reflectance equation yields

L&) = /fr(ﬁi — &) Li(&;) cosb; duw,

&

47TJX _xs|2fr(ﬁr’68) COSQS (242)

If there are n light sources, then the hemispherical integral collapses to a sum
over the n sources. This is the lighting model used by 3D graphics workstations.

It is easy to extend this model to light sources with arbitrary directional
distributions, as well as distant light sources. The above formulae are changed
to use the radiant intensity in the direction of the surface. In principle, linear
and area light sources can also be used, although this involves integrating the
reflectance function over the range of possible directions incident from the light
source. Nishita and Nakamae [175] and Amanatides (7] discuss this possibility.
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Figure 2.15: Two point transport geometry.

2.6.2 Global or Indirect Illumination

The first step in using a global illumination model is to relate the illumination on
one surface to the reflected light distribution from another surface. This requires
that the spatial dependence of radiance is made explicit and that occlusion is

considered. o .
Using the fact that radiance is invariant along a ray, the incident radiance

at x* due to the radiance from x is
Li(x', &) = Lo(x,00)V (x,x) (2.43)

where &J; is a direction vector from X’ to X, and &, is in the opposite direction.

x—x'
[x — x'|

— —

Wy = —g =

(2.44)

The function V(x,x’) is a visibility function. It is 1, if x and x" are mutually
visible; otherwise it is 0.

Returning to the reflectance equation, the next step is to switch the hemi-
spherical integral over all incident directions to an area integral over all the
other surfaces in the environment. This is easily done by relating the solid angle
subtended by the source to its projected surface area.

du! = &8 8, dA (2.45)
o x—=%?
Dotting this to form the projected solid angle results in
dwicosl,dA = G(x,x'}dA (2.48)
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where
cos & cos 8,

=P

Gx,x"y =G ,x) = (2.47)
Substituting Gi(x,x) into the reflectance equation leads to the following
integral equation over the surfaces, S:

L, &) = f £0(%) Lix, &) G(x, X} V(x, ') dA (2.48)
s

Since this equation only involves outgoing radiances and directions, the sub-

scripts denoting incoming and outgoing directions can safely be dropped (except

from f.).

Equation 2.48 was first introduced to the computer graphics literature by
Kajiya [135], who appropriately named it the rendering equation. Actually, his
notation (and development) is slightly different than that used in equation 2.48.
He introduced a new intensity quantity, J(x — x')~—the two point transport
intensity from x to x’ (see Figure 2.15), This intensity quantity is a function of
surface position only and does not involve solid angles. The two point transport
intensity is defined by the following equation:

dP =I(x = x')dAdA = L(x,&) G(x,x") dAdA’ (2.49)

This is the flux flowing in the beam connecting d4 to dA’. Equation 2.48 can
be put in this form by multiplying both sides by G(x', x") dA’ dA” which leads
to the following equation:

Ix' = x") = G(x',x") fsf,.(x —x = x")V(xx)(x - x')dA (2.50)

Equation 2.50 defines the amount of light flowing from x to x’ and reflected to
x", Thus, it is sometimes referred to as the multipoint transport equation (see
Figure 2.16). The quantity

frx—=x =x") = f(x,d] - &) (2.51)

Is just a reparameterization of the BRDF.,

There is one final step required to arrive at the full rendering equation, and
that is to account for all modes of light transport at a surface. In an environment
consisting only of opaque surfaces, the only other source of light is due to
emission from the surface.

L(x, &) = Lo(¢, &) + /S R LD G x) Vi, X)dA  (252)

where L, is the two point intensity of emitted light,
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Figure 2.16: Three point transport geometry.

2.6.3 The Radiosity Equation

Finally, the rendering equation can be simplified given the radiosity assumption.

In radiosity, it is assumed that all surfaces in the environment are Lambertian

diffuse reflectors. Thus, the BRDF is independent of the incoming and outgoing

directions and can be taken out from under the integral.

L(x' = x") = Le(x = x") + fr(x) [ L(x = X) G(x,x) V(x,x) dA
= Lo(x — x") + 250 [ L(x = X) G(%,x) V(x,X') dA

(2.53)

More importantly, the outgoing radiance from a Lambertian surface is the same

in all directions and in fact equals the radiosity B divided by w. This leads to
even more dramatic simplifications*
/ V 7
) = B+ ) [ 500 SN 4y (o
s

The rendering equation expresses the conservation of light energy at all

points in space. The key feature of such an integral equation is that the quantity

to be computed—in this case, the radiance or radiosity—appears on the left-hand
side as well as under an integral on the right-hand side. For this reason, integral
equations are notoriously difficult to solve. They very rarely have closed-form
analytic solutions, and numerical methods must be used.

*Note the switch in notation: F is the energy per unit area emitted by the surface,
or %ﬂ In addition, for clarity in the following chapters, the geometric term G(x,x') will
absorb the visibility term and the 7 in the denominator.

T e L DN

Chapter 3

Discretizing the Radiosity
Equation

3.1 The Radiosity Equation

The radiosity equation was derived at the end of Chapter 2 from the render-
ing equation under the assumption that all surfaces {and light sources) exhibit
Lambertian diffuse reflection (emission). Repeating the radiosity equation 2.54:

B(x) = E(x) + p(x) fs B(x') G(x, %) dA’ (3.1)

where the geometric term, G(x,x'), now includes the visibility term, V(x,x’),
and division by 7. (A complete table of the mathematical terms used in this
chapter is provided in Tables 3.1 and 3.2.)

The radiosity, B(x), describes an arbitrary scalar function across the sur-
faces (i.e., the radiosity function defines a single value at each location on a
surface).! The potential complexity of the radiosity function is suggested by
Figure 3.1, where the radiosity function across a partiaily shadowed polygon is
plotied as a surface. The radiosity function is piecewise smooth, that is, it is
continuous in all derivatives within regions bounded by discontinuities in value
or derivatives. These characteristics will be discussed in much greater detail in
chapters 6 and 8.

The dimension of the function space of the radiosity function, B(x), is
infinite (for a discussion of function spaces, refer to the box on page 45). This
means that solving the radiosity equation for a peint x on a surface does not

A full solution to the radiosity problem must also take into account the distribution of
energy across the visible spectrum (i.c., the eolor of the light). Assuming that the wave-
length of light is not changed by interaction with surfaces (i.e., ignoring fluorescence),
independent radiosity equations differing only in the reflectivities, p, can be formed and
solved for each of a small number of wavelengths or color bands. The selection of these
sample wavelengths and the reconstruction of colors suitable for display are discussed in
Chapter 9. Elsewhere in the book, the radiosity problem will be discussed in terms of an
achromatic (i.e., black, gray, white) world,



