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Abstract

This paper introduces Composable Attribute Grammars

(CAGS), a formalism that extends classical attribute gram-

mars to allow for the modular composition of translation

specifications and of translators. CAGS bring to com-

plex translator writing systems the same benefits of mod-

ularity found in modern programming languages, includ-

ing comprehensibility, reu.abihty, and incremental meta-

compilation.

A CAG is built from several smaller component A Gs,

each of which solves a particular subproblem, such as

name analysis or register allocation. A component AG

is based upon a simplified phrase-structure that reflects

the properties of its subproblem rather than the phrase-

structure of the source language. Different component

phrase-structures for various subproblems are combined by

mapping them into a phrase-structure for the source lan-

guage. Both input and output attributes can be associated

with the terminal symbols of a component AG. Output at-

tributes enable the results of solving a subproblem to be

distributed back to anywhere that originally contributed

part of the subproblem, e.g. tmnsparently distributing the

results of global name analysis back to every symbolic ref-

erence in the source program.

After introducing CAGS by way of an example, we pro-

vide a formal definition of CAGS and their semantics. We

describe a subclass of CAGS, called separable CAGS, that

have favorable implementation properties. We discuss the

novel aspects of CAGS, compare them to other proposals

for inserting modularity into attribute grammars, and re-

late our experience using CAGS in the Linguist translator-

writing system.

1 Introduction

Modern programming practice recognizes the impor-
tance of modularity and composability in the descrip-
tion, implementation, and execution of large programs.
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A programming application should be designed and
implemented as the combination of several compo-

nents, each physically and conceptually separate from
the others. The conceptual separateness of compo-
nents allows most of the information embodied in a
component to be hidden behind narrow, precisely-
defined interfaces. The benefits of such an organization
are well-known and widely discussed in the literature;
they include: (1) ease of specification, (2) clear de-
scription, (3) aid in verification, (4) interchangeabil-
ity between different “plug-compatible” components,
(5) reuse of components across applications, (6) sepa-
rate analysis/compilation of components, and (7) in-
cremental or parallel evaluation. Many programming
language constructs have been introduced to support
program components and their conceptual separate-
ness, including: procedures and functions, modules
and classes, typed imports and exports, and param-
etrized instantiation of components.

Classic AGs [20] are themselves a modular formal-
ism: the components are the pr’oduciions, the interface

to a production consists of the symbols incident on

the production together with the attributes associated

with those, and each production hides from the rest of

the AG the semantic rules that define the attributes

of its interface.

This form of modularity is organized around a

phrase-structure for the source language and it works

well for some applications. However, experience [6, 10]
suggests that for realistic applications it is inadequate.

Symptoms of the inadequacy of this form of modular-

ity include large, complex interfaces whose external de-

scription is nearly as complicated aa the internal imple-

mentation that they are designed to abstract. In con-

crete terms, realistic AGs have too many attributes,

inter-related in such complicated ways that one must

read the whole AG to understand their relationship.

This is a classic indication of a mismatch between the

components of a modularization and the problem at

hand.

We herein introduce a new approach, Composable

AttTibut e GTammaTs (CA Gs), that provides support

for modularity in attribute grammars. This makes it

easier to use AGs to specify programming languages
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semantics and to design compilers and other transla-
tors. A CAG is built from several smaller component

A Gs, each of which solves a particular subproblem,
such as name analysis, checking type-conformance,
register allocation and assignment, etc. A component
AG is based upon a simplified phrase-structure that
reflects the properties of its subproblem rather than
the phrase-structure of the source language. Different
component phrase-structures for various subproblems
are combined by mapping them into a phrase-structure
for the source language via a mechanism that looks
like simple semantic rules attached to productions of
the source language phrase-structure. Both input and
output attributes can be associated with the terminal
symbols of a component AG. Output attributes are
the most significant and novel feature of CAGS. They
enable the results of solving a subproblem to be dis-
tributed back to anywhere that originally contributed
part of that subproblem, e.g. the results of global name
analysis can be transparently distributed back to every
symbolic reference in the source program.

There have been several other approaches for mod-
ularizing AGs, including extended AGs [21, 26],
attribute-coupled grammars (ACGS) [12, 13], higher-
order AGs (H OAGS) [25], cascaded evaluation [10],
and modular AGs [6]. Each of these provides some
modularity, and we have adopted ideas and notation
from several of them, but none provides a uniform and
general mechanism for attaining the flavor and degree
of modularity provided by CAGS.

We introduce CAGS through a brief and familiar
example—a simple compiler for Pascal. After the ma-
jor features of CAGS have been informally presented,
we give a formal definition and a simple semantics.
We describe two different implementation techniques
and define subclasses of CAGS on which those tech-
niques can be used. Next we review how CAGS support
modularity and composability, and compare CAGS
with other proposals (mentioned above) for support-
ing modularity in AGs. We have implemented one of
our subclasses of CAGS in an AG-based translator-
writing-system, and we briefly discuss that implemen-
tation and relate our experience so far in designing and
implementing CAGS. Finally, we present some issues
we have not yet resolved and describe opportunities
for further research.

2 An Example

2.1 Component grammars

In a compiler, semantic processing often involves sev-
eral phases, each of which performs a distinct task. For
example, consider the phase commonly called ideniijie~
resolution. This phase identifies the distinct scopes in
a program, builds a symbol table containing the decla-

rations of the program, and associates with each iden-
tifier reference in the program a symbol table entry.
An AG AR.. for identifier resolution in Pascal is given
in Figure 1. 1

Certain points are apparent. Perhaps the most sig-
nificant is the simplicity of the underlying CFG and
of the AG rules. There are only three sorts of en-
tities: declarations, new scopes, and identifier refer-
ences. This allows one to use an extremely sparse ab-
stract syntax for the grammar. Second, the AG ex-
presses the semantics of identifier resolution not just
for Pascal, but for a number of different languages. Fi-
nally, alternative semantics for identifier resolution, for
example, the semantics of Algol or Ada, could be im-
plemented with different semantic rules for the same
abstract grammar, since it does not obscure the se-
mantics of identifier resolution with the syntactic or
other semantic details of a particular language.

Another distinct aspect of semantic processing is
type checking. Once again, we can isolate the seman-
tics of type-checking into a small AG, ATYP,, given in
Figure 2. For ease of presentation, and to save space,
we provide this grammar only for a very restricted set
of Pascal.2 The resulting grammar is comparatively
small, natural to the task at hand, and unobscured
by irrelevant syntax/semantics. Moreover, it can be
extended to handle most Pascal types and operators
without losing its clarity or simplicity. It can even
be used for any language whose (abstract) type sys-
tem and operator type signatures are compatible with
Pascal’s—since the grammar uses an abstract syntax,
the symbols used for operators, and even operator as-
sociativity and precedence, are immaterial.

Given an expression in which the types of the leaves
are known, ATYPe will determine the type of the ex-
pression, as well as the type of each overloaded opera-
tor, and generate error messages where appropriate. If
a particular type is expected for the expression (for ex-

1 The notation is a slight extension of ordinary AG nota-

tion. Productions of a CFG have the (slightly modified) BNF

form: <label> : XO : := XI . . . Xk where label is a sym-

bolic name for the production. Semantic (attribute grammar)

rules are attached to productions in the usual way. Attributes

for grsrnmar symbols are declared using the following syntax:
<syrsbolnme> : <syrsbol_type> [ : <attribute_decls> ]

where syrsbolaame is a context-free gr— ar symbol and

swbol-type is either t (terminal) or n (non-terminal). Each
attribute declaration for a symbol has the form <at t rib_nsme >:
<direction> : <type> where attri.bnme and type are the
name and the type of the symbol’s attributes. The direction
of non-terminal symbol attribute is either inherited (h) or syn-
thesized (s); the direction of a t errninal symbol attribute is ei-
ther in or out. It is useful to think of the former as input
parameters supplied to the grammar and the latter as output
parameters exported by the grammar. The semsntic rules re-

semble assignment statements that may define more than one

target attribute

2Types are real, integer, or boolean. Operators include

only the relational operators (<, >, . . .), arithmetic operators

(+, -, *, . . .), and the boolean operator. AED, OR.
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-- grammar symbols

envREF : t NAMli:in:tp_NTX,

envDCL : t NAME:in:tp_NTX,

envgoal : n;

envitems : n ENVin:h: symbol_table,

-- productions

env_goal : envGoal : := envitems.

envitems.ENVin = emptyENV;

env_empty : envitems : := .

envi.tems.ENVout = envitems.ENVin;

env.list : envitems : := envitemsl envitems2

envitemsl.ENVin = envitems.ENVin,

envitems2.ENVin = envitemsl,ENVout,

envi.tems,ENVout = envitems2.ENVout;

-- this production introduces a new scope

env_nest : envitems ::= envitemsl.

envitemsl.ENVin = envitems.ENVin,

envitems.ENVout = envi.tems.ENVin;

OBJ:out:entry, MSGS:out:tp-msgs;

OBJ:in:entry;

ENVout:s :symbol_table;

-- this introduces a variable reference

env_ref : envitems : := envREF.

envREF.OBJ = envl.ookup(envitems .ENVin,

envREF.NAME) ,

envREF.MSGS = if envREF.OBJ = nullObj

then “invalid reference”

else ““ fi,

envitems.ENVout = envitems.ENVin;

-- this introduces a variable declaration
env-dcl : envitems ::= envDCL.

envitems.ENVout =
envUpdate(envitems .ENVin,

envDCL.NAME, envDCL.OBJ);

Figure 1: Specification of AR,.

ample, for the right side of an assignment statement),
the expected type is comparedto the actual type, and
appropriate error messages generated.

Many other semantic aspects can be isolated and ex-
pressed in concise abstract grammars. These include
overloaded operator resolution, memory allocation and
address assignment, register allocation, instruct ion se-
lection, as well as local optimization and data flow
analysis. One could build libraries ofreusable compo-
nent AGs ifthere were only a wayto take such gram-
mars and embed them in the semantic specification
ofa compiler for a particular language. In the next
section, we show how this can be done.

2.2 The Glue Grammar

In the grammars given above:

The context-free phrase structures are different,
and neither is closely related to (and both are sim-
plerthan) the phrase structure for Pascal.

Each grammar requires inputs and produces out-
puts. These outputs maybe needed for other corn-
ponent grammars. For example, information from
AR., is used in AType.

Thus, to be able to use a set of these small corn-
ponent AGs as modules, we need to provide a means

to:

●

●

Buildthephrase structure foreach component AG
from the phrase structure in Pascal.

Provide inputsto each component AG , anddirect
(and possibly transform) th_eoutputs of a compo-
nent AG to appropriate destinations, typically to
the inputs ofother components.

Instead of writing code to handle these require-
ments, we can embed these actions ina “master” AG.
We call this AG the glue, since it pastes together indi-
vidual component AGsinto aunified semantic specifi-
cation.

An Example Consider the Pascal production corre-
spending to an assignment statement, variable ASGN
expression. In A~e$, this involves updating the en-

vironment with the references in expression plus a

reference to variable. In ATyPe, this involves check-
ing that the result type of expressionis compatible
with the type ofvariable retrieved from the environ-
ment. The glue rules for this production are given in
Figure 3.

The semantic rules of the glue production specify
parts of the phrase structure for each component, as
well as values for in attributes of component terminals
in this phrase structure. The phrase structure for each
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-- grammar symbols

typRESULT: t MSGS:out:tp_msgs, TYPEIN:in:tp-type TYPEOUT:out :tp_type;

typoP : t MSGS:out:tp_msgs, TYPE:out:tp_type, OP:in:operator_class;

typARG :t TYPE: in:tp_type;

typegoal : n;

typexp :n TYPE: s :tp_type;

-- productions

type_check : typgoal ::= typRESULT typexp. -- check expected type with computed type

typRESULT.TYPEOUT = typexp.TYPE,

typRESULT.MSGS = if typRESULT.TYPEIN != typRESULT.TYPEOUT

and NotCoercible(typRESULT.TYPEOUT, typRESULT.TYPEIN)

and typRESULT.TYPEIN != univ_type and typRESULT.TYPEOUT != univ_type

then “Cannot assign incompatible types” else ““ fi;

typ_leaf : typexp ::= typARG. –- leaf of expression tree

typexp.TYPE = typARG.TYPE;

typ_relop : typexp ::= typexpl typOP typexp2, -- operator is relational

. . . -- semantics elided for brevity

1

typ_sign : typexp ::= typOP typexpl. -- unary arithmetic operator
. . . –- semantics elided for brevity

;

typ_bool : typexp ::= typexpl typOP typexp2. -- a boolean binary operator

. . . -- semantics elided for brevity

;

typ_arith : typexp ::= typexpl typOP typexp2. –- an arithmetic binary operator

typexp.TYPE = typOP.TYPE,

typOP.MSGS, typOP.TYPE =

if TypeIsArithmetic(typexpl .TYPE) and TypeIsArithmetic(typexp2.TYPE)

then ““, CoerceToHigherType(typexpl. TYPE, typexp2.TYPE)

else “operands to arithmetic operator must be arithmetic”, univ-type fi;

Figure 2: Specification Of ATYP,

component is obtained by identifying attributes in the
glue with nonterminals in the component and pasting
these syntactic attributes together (with some terminal
symbols as well) using production const?’ucto?’s.

For instance, the glue nonterminal asgn.stmt has
attributes envitems and typegoal corresponding to
nonterminalsin the resolution and typechecking gramm-
ars, respectively. The constructor env~ist builds
a production in A~e$ whose left-hand side (LHS) is
an envitems nonterminal, and whose right-hand side
(RHS)is two envitems nonterminals.3 Similarly, the
constructor type_check builds a production in AType
whose LHS is the typegoal nonterminal and whose
RHS is atypRESULT terminal followed by a typEXP

3 Note that the fist nont,etind envit ems is produced by

aPplying the env~ef const~ctor to an envREF terminsl.

nonterminal.

The REFterminal symbol used in the envref con-
structor is introduced by a local declaration in the glue
that declares REF to be oftype envREF and also de-
fines the only in attribute required for REF, defining
REF,name to have the same value as variable.name.
Also, inARe8, every envREFterminal produces an out
attribute OBJ, the symbol table entry for the variable
referred to by envREF. The value of REF.OBJ is used
in the glue production to define the input attribute
RESULT.TYPEIN in ATYP,.

This illustrates some of the power of GAGs. In

the glue, we need only build the phrase structure for

AR,$ and supply thename ofeach variable referenced,

and we automatically get back symbol table entries

for these variables. We can then use these outputs as
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asgn.stmt : := variable ASGN expression -- Pascal grammar production

-– rules for constructing the phrase structure for i.d-resoluti.on

asgn_stmt. envitems = env_list(env_ref(REF) ,expression.envitems),

REF:envREF = {NAME => variable.name},

-- rules for constructing the phrase structure for typechecking

asgn_stmt.typegoal = type_check(RESULT,expression.typexp) ,

RESULT:typRESULT = { TYPEIN => TypeOf(REF.OBJ) },

asgn_st@.MSGS = concat(REF.MSGS, concat(RESULT.MSGS, expression.MSGS));

Figure3: Component Phrase Structures for Assignment Statement

inputs to other component grammars.

Although AR,. and AType interact via input and

output attributes of terminals, the grammars do not

need to “know” ofone another, as all their interactions

occur via the glue. Hence, we preserve modularity. In-

deed, we could change the data structures used bythe

identifier resolution grammar, or even its semant its,

without changing ATYPe. If the phrase structure and
interface of the changed component remain the same,
we would not even need to chlange the glue. Thus we
could have interchangeable component AGs having the
same phrase structure but expressing different identi-
fier resolution rules, e.g., those of Pascal versus those
ofAlgol.

3

3.1

Composable AGs and Their

Semantics

A formal definition of CAGS

A composable attribute grammar consists of a set of

components, a glue, and an interface between them.4

Component grammars are classical attribute gram-

mars [20] enriched by allowing input and output at-
tributes for terminals. (In general, terminals in ab-

stract grammars will exist only as carriers for input

or output attributes.) The glue grammar is a classical
AG enriched with syntactic attributes and production
constructors. The interface establishes the correspon-
dence between the glue and the components. More
formally:

AComposable Attribute C,rammar component con-
sists of

1. A context-free grammar given by the 4-tuple
Gi = (Ni, Ti, Si, Pi), where each production has

4There exist many possible denotations for CAGS. For the

p~osesofthis paper,interfaces meimplicitwithin thecompo-

nent end glue grammars, However, it is likely that implemen-

tations will &d it convenient to explicitly declare interfaces,

especially in the glue grammar.

2.

a unique label.

An attribute grammar Ai associating a set of in-
heritedand/orsynthesized attributes toeach non-
terminal, and a set of input and/or output at-
tributes to each terminal, and a set of attribute-
defining rules to each production. Each output
attribute, but no input attributes, are defined in
Aio The interface ofacomponent Ci consists of
its context-free grammar Gi and its association of
typed inputs and outputs to terminals.

A glue attribute g?ammar for a Composable At-

tribute Grammar is an attribute grammar Agl with

underlying context-free grammar Gq; , where

●

●

●

●

The glue uses two special sets of types: nonteT-

minaland te?minal. IEach terminal type has a set
of associated typed input and output parameters.
A nonterminal type may also be designated as a
TOOt.

The attributes of the glue include syntactic at-
tributes, each of a particular nonterminal type.
Syntactic attributes are defined either by copy
rules or by p?’oductzon const?’uctom, also referred
to as syntactic Tules. A production construc-
tor takes as parameters nonterminal and terminal
types and returns a,particular nonterminal type.
The actual argument for a nonterminal parameter
in a production constructor can either be a syntac-
tic attribute (ofthe appropriate type) or another
production constructor (returning the appropri-
ate type). The actual argument supplied for a
terminal parameter is a constant of that type.

If a terminal constant is used in a syntactic rule of
a glue production, then it must define the input
parameters of that terminal. Other rules of the
glue production can reference the output param-
eters of that terminal.

Definitions of syntactic attributes must obey the
single syntactic use ?equiTement: each instance of

+Q-
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a syntactic attribute, except those whose nonter-
minal type is designated as a root, is used ex-
actly once in defining some other syntactic at-
tribute [13]. A syntactic attribute whose nonter-
minal type is designated as a root is not used
to define any other syntactic attribute. (Thus
the glue constructs parse trees in the components
rather than DAGs, and there are no dangling
trees—no trees are rooted at a symbol other than
a component root. )

A Composable Attribute Grammar consists of a set
C of components Ci, and a glue attribute grammar,
Agl, with a consistent interface. Namely,

1.

2.

3.

The glue has an implicit interface for each com-
ponent it uses, determined by the nonterminal
and terminal types, the designated root type,
the production constructors, and the typed in-
put /out put parameters associated wit h terminals
for that component.

For each component, there must be a 1-1 map-
ping between nonterminal/terminal types and
production constructors in the glue and termi-
nals/nonterminals and productions in the compo-
nent. These mappings must be consistent in the
usual way; e.g., if the glue production constructor
p maps to the component production q, then the
nonterminal type returned by p must map to the
nonterminal on the left-hand side of q. The desig-
nated root must map to the start nonterminal in
the component.

Additionally, the input/output parameters for
each terminal used in the glue must have the same
types as the input/output attributes for the cor-
responding terminal of the component.

In this paper, the mapping between the glue and com-
ponent interfaces is made explicit by using the same
names for matching items; e.g., production construc-
tors in the glue are given the same name as production
labels in the components, and so on.

3.2 The Semantics of CAGS

We give a semantics for CAGS by defining a transfor-
mation that turns any CAG into a classical monolithic
AG. The semantics of a CAG is the semantics of its
induced monolithic AG, if the latter is non-circular;
if the induced AG is circular, then the CAG has no
well-defined semantics.

The transformation we use is an extension of a tech-
nique called descriptional composition, first proposed
by Giegerich and Ganzinger [12]. In descriptional com-
position, each syntactic attribute of the glue corre-
sponding to a non-terminal X of a component is re-
placed by a collection of new induced glue attributes

corresponding to the attributes of X in the compo-
nent grammar. These new attributes are defined by
copy rules, or by semantic rules “pulled back” from
the component, or by compositions of such rules, de-
pending upon whether the syntactic attribute was de-
fined by a copy rule, a production constructor, or a
composition of production constructors. We extend
descriptional composition so that we “pull back” the
semantics from each component into the glue simulta-
neously. Secondly, we include semantic rules for com-
puting input/output attributes. We illustrate descrip-
tional composition in our setting by way of an example.

Consider the assignment statement given in the
previous section for a glue grammar (Figure 3).
In Figure 4 we show what this production would
look like after performing the transformation. Since
asgn.stmt has an associated syntactic attribute from
AR.,, namely envit ems, the transformed grammar in-
duces two new attributes for asgn-stmt, namely ENVin
and ENVout. The same is true of the expression
nonterminal of the glue. Similarly, express ion ac-
quires the attribute TYPE from AType. When the se-
mantic rules for production constructors env~ist,
env_ref and type_check are “pulled backed” into
the transformed grammar, we need to introduce lo-
cal variables into the production to hold values that,
in the untransformed grammar, were held by in-
put/output attributes of component grammar ter-
minal symbols. Hence the local variables REFname,
REFobj, and REFmsgs replace the input/output at-
tributes REF. NAME, REF. OBJ, and REF. MSGS. Com-
position of production constructors can also intro-
duce local variables for missing attributes associated
with implicit nonterminals. Hence the local variables
envit emslENVi.n and envit emslENVout replace ARe8
attributes envit ems1. ENVin and envit ems1. ENVout.
Of course, many of these temporaries can be automat-
ically opt imized away by the AG met a-compiler.

3.3 Modular Analysis and Evaluation

One evaluation strategy for CAGS is to transform a
CAG into a monolithic AG by using descriptional com-
position and then to apply classical AG evaluation
techniques [16, 18]. However, for reasons discussed be-
low, this approach has some drawbacks. Thus the bulk
of this section is devoted to presenting another evalu-
ations strategy for CAGS, sepa?’aied evaluation, which
avoids descriptional composition. This approach can
only be used for a restricted class of CAGS, but it
permits a greater degree of modularity when it is ap-
plicable.

Applying descriptional composition and then build-
ing an AG evaluator does not support the separate
analysis and meta-compilation of AG components and
glue such as that supported by separate compila-
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asgn_stmt : := variable M3GN expression –- Pascal grammar production

envltemslENVin: symbol_table = asgn_stmt.ENVin,

envltemslENVout :symbol_table = envi.temslENVin,

expression.ENVin = envi.temslENVout,

asgn_stmt.ENVout = expression.ENVout,

REFname:tp_NTX = variable.name,

REFobj:entry = envLookup(envitemslENVin, REFname),

REFmsgs:MSGS = if REFobj = nullObj then “invalid reference” else ““ fi,

RESULTtypeln:tp_type = TypeOf(REFobj),

RESULTtypeout :tp_type = expression.TYPE,

RESULTmsgs:MSGS = if RESULTtypein != RESULTtypeout

and NotCoercible(RESULTtypeout, RESULTtypeln)

and RESIJLTtypein != uni.v.type and RESULTtypeout != Unlv-type

then “Cannot assign incompatible types” else ““ fi.,

asgn_stmt.MSGS = concat(REFmsgs, concat(RESULTmsgs, expression.MSGS));

Figure 4: An Example of Descriptional Composition

tionfeatures ofprogramming languages. Furthermore,

one would like to be able to reason about the well-

formednessofCAGs byreasoning only about thecom-

ponents and the glue individually. In general, this is

not possible, as stated by the following theorem:

Theoreml Let Gbea CAG. Even ifeach component

and the glue of G are noncimular, the induced mono-

lithic A G const?wcted f?om G may still be ci?cular.

What this meansis that for arbitrary CAGS, analy-
sis and meta-compilation must take into account the
entire CAG, since local properties on the component
and glue AGs do not translate into global properties
on the CAG.

To overcome these problems, we have formulated a
restricted class of CAGS, called sepa?’abze CAGS. Sep-
arable CAGS bound the potential indirect interaction

among different components so that each particular

component instance can either (indirectly) contribute

information to another component instance, or (indi-

rectly) receive information from that component in-

stance, but not both. The restrictions are stated solely

in terms ofinformation flow in the glue AG,and they

induce apartial order on the component instances con-

structed by the glueAG.

Definition 1 A CA G G is separable if (1) each com-

ponent AG is nonci?culaT, and (2) the glue is non-
ciTcula? even uncle? the assumption that every output

pa?ameier’ depends upon ever’yinpui pa?’ameter’in any

component t?ee constructed in the glue.

In contrast to Theorem l, separable CAGs areguar-

anteed to induce only a well-defined monolithic AG:

Theorem2 If Gisasepa?able CAGthen the induced

monolithic AG constructed f?om G is nonciTculaT.

The definitionof separability depends solely onlocal

properties of the glue and component AGs. It requires

that each component be noncircular and that the glue,

transformed to meet the requirements of the defini-

tion, also be noncircular. The purpose of this transfor-

mation is to guarantee that any circularity that may

arise in the induced monolithic AG, when the com-

ponents and glue by themselves are noncircular, can

be detected by analyzing the glue alone. The trans-

formation forces the glue to assume that all input at-

tributes ofacomponent are used to define each output

attribute ofthat component. Hence any transitive de-

pendences that may arise when instantiating theCAG

with a particular component will have already been

taken into account in the analysisof the glue.

This glue transformation can be done by replacing

each syntactic attribute with a pair of “dummy” at-

tributes, one inherited and one synthesized. Thesyn-

thesized attributes of these pairs are then made to

depend on one another, and the inherited attributes

are made to depend on each other both based on the

original dependencies of their corresponding syntac-

tic attributes. The result is to cause every input at-

tribute to be a dependency of a “dummy” attribute

of the component AG’s goal symbol through a chain

of “dummy” synthesized attributes, and to cause ev-

ery output attribute to depend on this goal symbol’s

“dummy” attribute through a chain of “dummy” in-

herited attributes. Thedetails ofthis construction are

a little more involved than this, but they are straight-

forward; for the sake of brevity they are left to the

imagination of the reader.

Separable CAGS are useful for detecting circular-

ity by testing each component and glue grammar sep-

arately. More importantly, if a CAG is separable,

we can build a static evaluators modularly, building
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evaluators for each component and for the glue sepa-
rately. As we discuss in Section 7, we have actually
constructed a system for evaluating separable CAGS.

One example of a static modular evaluation strat-
egy for CAGS is an adaptation of the ordered eval-
uation strategy for classical AGs [16]. We say that
a C!AG G is orde~ed separable if (1) G is is separa-

ble, (2) each component grammar is ordered , and (3)

transform(g~) is ordered, where gi is the glue of the
CAG and transform is the glue transformation de-
scribed above. If a CAG is ordered separable than an
“ordered” evaluator can be built for the glue and for
each component separately.

An ordered evaluator for an AG associates, at meta-
compilation time, a sequence of instructions for each
production in the AG. Each instruction is either an
EVAL X.b instruction, indicating the evaluation of
the attribute X.b of the production, or a VISIT k
instruction, indicating a descent into the kth (k > O)
child of X or an ascent to the parent of X (k = O). An
ordered separable evaluator can have one additional
instruction: CALL X.root, where root is a syntactic
attribute of nonterminal type X representing the root
of a component parse tree. This instruction passes
the tree rooted at X.root (with instantiated input at-
tributes) to the evaluator for the component grammar
and returns the tree with the instantiated output val-
ues. 5 One can show that:

Theorem 3 If a CA G is ordered separable, then the
translation produced by an ordeTed sepaTab~e evaluator

(for a syntactically legal input stTing) is comect,

By correct we mean that the results of the

translation—the synthesized attributes of the root of

the semantic tree—are the same as specified by the

induced monolithic AG.

The chief advantage of separable evaluation strate-

gies (such as ordered separable) over building an eval-

uator for the monolithic AG induced by the CAG is

compi!aiional modu~aTity. Unlike classical AG sys-

tems [8, 17, 22], where a single change can render

the entire generated evaluator invalid, in a separa-

ble evaluator, a change to a single component or glue

AG only renders the evaluator for that component in-

valid. Other advantages to separable evaluation are

likely as well, such as speedier evaluators (since each

component evaluates over a typically smaller tree),

more storage-efficient evaluators (since once a com-

ponent evaluator finishes it can discard its semantic

tree), and more flexible evaluators (since each compo-

nent AG evaluator can use a different evaluation strat-

egy if desired).

KRecall that if a GAG is separable, then there is an evaluation
order that computes all input attributes of a component before
any of its output attributes are referenced. Thus the GALL
instruction can be scheduledafter all input attributes havebeen
computedbut before any output attributes are referenced.

We have described two strategies for implementing
CAGS: descriptional composition and separated evalu-
ation. Each of these determines a (sub-) class of CAGS:
all well-defined CAGS and separable CAGS, respec-
tively. These strategies/subclasses can be viewed as
the endpoints of a continuum. We believe that there
other intermediate points on this continuum which will
prove valuable for their combination of descriptional
power and efficient implementation. We have infor-
mally identified one such class, which we call the k-
separable CAGS. These are CAGS whose components
can be evaluated in k different “passes” over their
structure-trees, where output attributes of one pass
can be used to define input attributes of a later pass.

4 Properties of CAGS

The previous section presented a formal definition of
CAGS and a simple semantics for them, descriptional
composition, as well as two implementation strategies,
descriptional composition at meta-compile time and
separated evaluation. This section highlights what we
consider the most important features and properties
of CAGS and discusses how they support modularity
and composability in AGs. The next section further
analyzes features of CAGS in the process of comparing
them with other proposals for supporting modularity
in AGs.

Modularity, Abstraction, and Information Hid-

ing Each component grammar of a CAG describes a
separate subproblem and its solution. The component
production-constructors used in the rules of the glue
AG serve to abstract a component subproblem from
the original, larger problem described by the glue AG.
The details of solving this subproblem are hidden be-
hind the interface of the component. Its solution can
be derived, analyzed, and verified without regard for
the particular context in which the subproblem was
originally embedded. Conversely, the glue AG can be
designed, understood, and verified without having to
know how component subproblems are solved. The
glue AG is responsible only for abstracting a relevant
and well-formed instance of the component subprob-
lem, and it can then depend on the accuracy of the
solution to that subproblem.

Output Attributes The most important and novel
aspect of CAGS is the ability to associate output at-
tributes with terminal symbols of a component AG.
This feature allows the semantics of the component AG
to specify the outputs of a component with the same
granularity as inputs were specified to it. Without
output attributes, component phrase structure is used
only for construction of the component tree and ini-
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tialization of input attributes; with output attributes,

it is also used to anticipate outputs.

In the sample Pascal front-end of Section 2, the out-

put attribute envREF. OBJ (of Figure 1) is crucial to the

brevity of the component A(2 for identifier resolution,

as well as to the succinct description of its instantia-

tion in the glue AG.

Our example Pascal CAG shows another example of

the utility of output attributes in the way error mes-

sages are generated. The order of error messages in

Figure 3 agrees with code order, even though the mes-

sages are created in the component AGs, not the glue

AG. If error messages were not returned via output

attributes this would be much more complicated; e.g.,

if identifier errors and type errors were collected sepa-

rately, and then had to be interleaved.

The usual alternative to output attributes is to pro-

duce a single, complexly-structured (root) value as the

unique output value of a component and then decom-

pose that structured value into its constituents via se-

mant ic rules in the glue AG. This expands the interface

between the glue AG and a component to include both

the structure of the output aggregate and the rules for

decomposing it into constituents. It also expands the

attribution rules of the glue AG to include appropri-

ate instances of those rules for decomposing the com-

ponent’s output aggregate value. Out put attributes

allow us to move this work into the component

or just eliminate it altogether, thus substantially

rowing the interface between component and the

AG,

nar-

glue

AG.

Hierarchical Structure We have so far described

a CAG as a “bush”: a glue AG and a set of sibling

components. However a component AG can itself be

a nested CAG consisting of a glue AG and a num-

ber of nested components. Thus, an arbitrarily deep

hierarchy of CAGS can be assembled in which every

component AG except the leaves are glue AGs with

their own components. Such interior component AGs

would have input and output attributes for communi-

cating with their parents in the hierarchy, and would

define/reference the input/output attributes of their

children.

For example, one component of a CAG for Pascal

might describe code generation using nested compo-

nent AGs that separately specify optimization, storage

allocation, register assignment, and instruct ion selec-

tion. The optimization component could be imple-

mented by further expanding it into several data-flow

analysis components, a local optimization component,

and a global optimization component.

Our descriptional composition semantics (see Sec-

tion 3) for hierarchical CAGS is valid only so long as a

CAG may not (even indirectly) instantiate another in-

stance of itself. A more sophisticated semantic model

is required if we allow such recuntive CAGS. Such a

model is beyond the scope of this paper; this is an

area in which we are continuing research.

Reusability of Components One of the most

promising benefits of CAGS is in reusing component

grammars in several different translators. For in-
stance, a component AG such as ATYPC, if parametri-

zed by standard types and operators and rules for im-

plicit coercion, could be instantiated in different glue

AGs for Pascal and C. Such a “standard” CAG for

type-conformance would capture the common traits of

the two languages—that overloaded operator disam-

biguation and operator/operand conformance is deter-

mined by examining the actual types of operands and

the expected types of operators in a single bottom-up

pass over an expression tree. Such differences between

the two languages as statement syntax, operator prece-

dence and associativity, and visibility rules are irrele-

vant to type-conformance and would be handled within

the separate glue AGs or other component AGs. At

the end of section 6 we discuss some preliminary expe-

rience in this direction and propose using hierarchical

components to delineate common aspects of transla-

tions.

This opens the door to creating libraries of com-

ponents, both for standard language semantics and

for common compiler tasks like identifier resolution or

overloaded operator identification. We envision com-

bining such standard components with a specialized

glue AG and a few special-purpose components to ob-

tain complete translators for a particular language. Li-

braries of components for different language semantics,

code generation schemes, and optimization strategies

would enable a much higher level of ezpeTimental re-

search in the corresponding fields of programming lan-

guage and compiler design. Such libraries could also

be powerful tools for teaching, e.g., compiler design

and comparative programming languages.

5 Related Work

There have been a number of prior attempts to intro-

duce modularity in attribute grammar specification.

Of those, this work is most closely related to Attribute

Coupled Grammars [12, 13], Cascaded Evaluation [10],

Higher-order Attribute Grammars [25], and Modular

Attribute Grammars [6].

Attribute Coupled Grammars decompose complex

translations into a sequence of steps, each of which

(conceptually) constructs parse trees for the next step

via syntactic attributes and rules. However, (1) the

flow is strictly linear and unidirectional, (2) as a con-

sequence, flow to non-immediate successors must be

passed through a sequence of copy rules, or compo-

nents must be combined, (3) as another consequence,
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it is only meaningful to construct a single tree in the

target, and (4) each component has to know the syntax

and interface of its successor, severely limiting compo-

nent reuse.

Cascaded Evaluation also passes syntactic and se-

mantic information between grammars: a stream of

terminals, with initial attribute values, is produced in

one grammar, which, when consumed in the other, pro-

duces a parse and a subtranslation. In Cascaded Eval-

uation information is returned only at the root of a

subtree. Because only the yield of the parse in the tar-

get grammar is produced, Cascaded Evaluation cannot

use ambiguous component grammars; also, it is recur-

sively unsolvable to determine at (meta-)compile-time

whether an AG expressed via Cascaded Evaluation is

well-formed.

Higher-order Attribute Grammars [25] allow for con-

struction of multiple instances of “component” parse

trees during evaluation of a global AG. However, there

is no descriptional modularity in the syntax: the

“glue” grammar must be enriched with the produc-

tions and grammar symbols of each “component.”

Like cascaded evaluation, information computed by

HOAGS is available only at the root of the component

tree. This mechanism does not support modularity

particularly well, and that was not its main goal.

With Modular Attribute Grammars (MAGs) one

can create AGs from a central AG and components,

similar to the monolithic AGs built by descriptional

composition from a glue AG and set of component

AGs. However, MAG “components” are instantiated

through pattern matching and templates rather than

explicitly. Multiple instances of a given component

may be built at different positions in the original tree.

All attributes of “matched” symbols are available to a

component instance for reference in or definition by a

semantic rule of the component. This mechanism al-

lows the “outputs” of a component to be distributed

around the tree in a manner similar to the facility

provided by CAG output attributes. However, MAGs

provide no well-defined separation of components from

main grammar; there is no hard interface analogous to

the component phrase-structure of a CAG. Thus, a

component only has meaning, and can only be under-

stood, as a part of the larger monolithic AG.

Other general approaches including descriptional
modularity [15, 21, 23, 24, 26] and pattern matching [7]

are orthogonal to our own and could easily be included

in a CAG system.

Approaches to decomposition and structured com-

munication, some reminiscent of features in CAGS,

have been included in ad hoc AG systems for parallel or

incremental compilers or AG evaluators [1, 2, 11, 19].

Such approaches to parallelization and incrementality

are mostly orthogonal to CAGS and we expect that

they can be used with CAGS without major modifica-

t ion

6 Implementation and Experi-

ence

We have been experimenting with CAGS for several

months now and have some preliminary results in two

areas: (1) the use of CAGS for design and documenta-

tion of particular programming languages and compil-

ers for them, and (2) an implementation of separated

evaluation and its applicability.

Although we have not emphasized it in this abstract,

CAGS are just as useful in designing and documenting

programming languages and other translations as they

are in implementing compilers and translators. Re-

cently one of the authors faced the problem of making

major changes to an AG-based compiler for the hard-

ware description language VHDL [10], a large and com-

plex language that is an extension of Ada. In partic-

ular, the identifier resolution mechanism for this com-

piler was to be changed to make it more efficient, but

we sought to preserve the correctness of the existing

implementation. Our strategy was to write a compo-

nent AG for identifier resolution in VHDL and to then

modify the existing monolithic AG for VHDL to make

it a glue AG that instantiates an instance of this com-

ponent.

This strategy worked without any difficulty and the

improved identifier resolution implementation was en-

capsulated entirely within the component AG. Fur-

thermore, the component AG is quite useful as a train-

ing tool and as documentation of how identifiers are

resolved in this language. It is much briefer and more

precise than the VHDL Language Reference Man-

ual [27].

We have implemented separated evaluation of CAGS

within the Linguist translator-writing-system [4]. We

used this separately-evaluating version of Linguist to

generate a Pascal compiler out of the glue and com-

ponent AGs that were described in Section 2. This

experience taught us several lessons,

First, the component AG for identifier resolution in

Pascal is not separable within our Pascal glue AG. On

learning this we carefully analyzed the corresponding

component for VHDL and found that it was also not
separable. Briefly put, the reason for this is that some

visible declarations (e.g. a variable) depend on other

visible declarations (e.g. a type). Thus, the result of

looking up a type’s name, an output of the component

AG, is used to build the dictionary entry for a vari-

able which, because it is the object visible under the

variables’ name, must be an input of the component

AG. However, for a separable CAG, all inputs must be

available before any outputs are available,

Our Pascal compiler’s other component AGs, e.g.
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for type analysis and PCO.DE generation, were sep-

arable and the separately-evaluating Linguist success-

fully generated a compiler from them. The identifier

resolution component had to be evaluated via descrip-

t ional composition, which was implemented (some-

what awkwardly) using macros.

Another lesson we have learned is that for a compo-

nent AG to be reusable across several different CAGS,

its phrase structure must be as general as possible.

The instantiation of a component AG via construc-

tors used in the rules of the glue AG is essentially

a mapping of a portion of the glue AG’s phrase-

structure onto the phrase-structure of the component.

If many different phrase-structures are to map easily

onto a given component’s phrase-structure, then the

latter should impose a milmimum of restrictions. A

good example of this is how lists are expanded. We

have found that lists of elements should be described

through a tree-structured derivation rather than as

left-recursive or right-recursive list derivations. Use

L ::= L L I E.rather than either L ::= E I L Em

L :: = E I E L. The example makes strong use of the

possible ambiguity of component phrase structure; this

is acceptable because the semantics in the component

are resolved by the induced phrase structure, and are

not derived from a parse by the component AG.

We have most recently begun to design components

that specify semantic processing for the C and C++

programming languages. This has given us some in-

sight into the reusability of c.>mponent AGs and how

to design CAGS for reuse. Our preliminary conclu-

sions are that CAGS that are directly instantiated in

a glue AG for language A typically can not be di-

rectly reused in language B unless A and B are closely

related. However, subproblems such as name reso-

lution, type conformance, and disambiguating over-

loaded functions/operators do have very deep similar-

ities that can be exploited.

The trick is to set up a (shallow) hierarchy of com-

ponent AGs and to reuse the leaves of that hierarchy.

Consider name resolution in C and Pascal. If a single

CAG for name resolution were directly instantiated in

glue AGs for both languages then either the compo-

nent would have to be complicated and contorted, or

the semantic rules in the glue AGs would have to spec-

ify much of the name resolution semantics, or both.

Nonetheless the name resolution semantics of both

languages do have much in common, such as: nested

block structure, inheritance of visibilit y from one block

to another nested within it,, the ability to override a

global declaration with a local one, etc. Such broad

similarities can be captured. in a single, reusable CAG

which can then be instantiated in separate CAGS that

describe the peculiarities of name resolution in C or

Pascal.

7 Conclusions and Directions

for Further Research

We have developed CAGS as an approach to modular-

ity in attribute grammars. CAGS are fully general, al-

low nearly arbitrary combinations of components and

exchanges of information, and express many standard

attribute grammar problems elegantly and concisely.

Moreover, CAGS possess descriptional and organiza-

tional simplicity: they are easy to understand, and

facilitate specification and explanation of complicated

semantic and translation tasks. Finally, and most im-

portantly, CAGS are highly modular, allowing reuse or

modification of components, and providing for modu-

lar meta-compilation.

CAGS appear extremely fruitful for further research.

Among the issues and opportunities are:

●

●

b

●

●

Is there a natural modular way to define CAG

semantics? Is there a reasonable way to pro-

vide a (fixed-point?) semantics for self-referential

CAGS?

Are there other useful evaluation strategies for

CAGS?

Instances of component AGs whose interface at-

tributes do not depend on one another offer clear

opportunities for parallel evaluation. There is po-

tential here for some “coarse-grained” parallelism

among different component AG instances as op-

posed to the “fine-grained” parallelism among in-

dividual semantic rules that AGs have tradition-

ally offered. How can useful opportunities be de-

tected? What are the best strategies for exploit-

ing these opportunities? How much speedup in

translation will result?

Similarly, CAGS should expose opportuni-

ties for “coarse-grained” incremental evaluation

that would complement the traditional “fine-

grained” attribute-by-attribute incremental eval-

uation strategies. We envision a scheme in which

individual instances of component AGs are re-

evaluated or not depending on whether any of

their input attributes have changed.

Can one construct libraries of separately compi-

lable component AGs to facilitate the reuse of

translator design?
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