Lecture Notes

Axiomatic Semantics and Program Verification

Paul Attie

College of Computer Science
Northeastern University

September 2002

Abstract

These lecture notes provide an introduction to the verification of programs correctness using Hoare
logic and weakest preconditions. Chapters 1 and 2 provide some needed backgound on propositional
and first-order logic, respectively.
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Chapter 1

The Propositional Calculus

1.1 Propositions

A proposition is a statement that can be either frue or false. For example:
it rains
I'll stay at home

On the other hand, statements such as:

open the door
why were you late?

are not propositions.

Propositions can be either simple or compound. A simple (or atomic) proposition is a proposition
that contains no other proposition as a part. The two propositions given above are simple. A
compound proposition is a proposition that is built up from two or more simple propositions. For
example, the compound proposition

if it rains then T'll stay at home

is built up from the two simple propositions given above using if...then. Likewise, the compound
proposition

it is Tuesday and the sky is blue
is built up from the two simple propositions “it is Tuesday”, “the sky is blue” using and .

In order to translate such propositions into logical notation, we use symbols to represent proposi-
tions.

it rains: ra

Tl stay at home: 31
it is Tuesday: tu
the sky is blue: bl
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Then, the compound proposition “if it rains then I'll stay at home” can be represented by:
ra = gt

where = is the symbol for if ...then. The compound proposition “it is Tuesday and the sky is
blue” is represented by:

tu A Bl
where A is the symbol for and .

Symbols such as ra, st, tu, bl that represent propositions are called propositional identifiers. When
the context makes it clear, we shall use the abbreviated term identifiers instead.

1.2 Logical Connectives

We saw above that compound propositions are formed from simple propositions using extra words
such as if ...then (or, in symbolic form, the symbol =). These extra words represent logical
connectives or operators. We shall mainly be concerned with the following five logical connectives
(it is possible to define others):

symbol used in lecture notes | symbol used in text
conjunction A and
disjunction A or
negation - not
implication = =
double-implication | & &

All of the connectives take two propositions as input, except for negation, which takes one. con-
junction represents the informal concept of “and”. disjunction represents the informal concept of
“inclusive or” (one or the other or both). negation represents the informal concept of “not,” ie.,
the logical “opposite.” implication represents the informal concept of “if ... then.” This concept is
very important in deducing a conclusion logically from a set of assumptions, or premises. Finally,
double-implication represents the informal concept of logical “sameness.”

1.2.1 Truth-tables

The meaning of the logical connectives can be given using fruth-tables. A truth-table for a logical
connective gives the value of a compound proposition formed using the connective in terms of the
values of the simple propositions that are the inputs. As we said above, propositions can have two
values only: #rue (which will be written as T from now on), and false (which will be written as F
from now on). T and F are called #ruth-values. The truth-table contains a number of rows, one for
each possible combination of values of the inputs.

The meaning of negation is given by the following table:
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P

s

F
T
Truth-table for negation

Since negation takes one proposition p as input, this table has two rows, one for each possible value
of the input p.

The meaning of conjunction is given by the following table:

CECREREs
s
oo ]
=]

q
T
F
T
F

Truth-table for conjunction

Since conjunction takes two propositions p,q as input, this table has four rows. Each of the inputs
p, ¢ has two possible values, and so the number of combinations of values is 2 x 2 = 4.

Likewise, the truth-tables for the remaining connectives are as follows:

Truth-table for disjunction

rPvy

Rl
SRR
CRCRTRE| P

p ¢ |p=>q
T T | T
T F| F
F T| T
F F| T

Truth-table for implication

p q¢|lpe

TTT
T F| F
F T| F
F F| T

Truth-table for double-implication
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1.3 Syntax of Propositions — Propositional Formulae

A proposition in general is written as a propositional formuls. In other words, a propositional
formula is a particular syntactic way of expressing a proposition. Other ways are conceivable, e.g.,
parse tree, truth-table, etc. For our purposes, we can regard “proposition” and “propositional
formula” as synonyms.

Definition 1 (Proposition)
Propositions are formed as follows:

L. T and F are propositions

2. A propositional identifier is a proposition

3. If p is a proposition, then so is (—p)

4. If p and q are propositions, then g0 are (pAg), (pV ), (p=q), (p© q)

You are familiar with arithmetic expressions. We can make an analogy between propositiong and
arithmetic expressions as follows:

1. Any integer constant is an arithmetic expression (e.g., 5, 100)
2. An integer variable is an arithmetic expression

3. If z and y are arithmetic expressions, then so are (z + ). (& xy), (z —y). (@/y)

Example 1 If p,q,r are propositions, then so is ((p A ¢) V r). Figure 1.1 depicts a parse tree for
((pAq) V1), showing how it is built up from p,q,r and (p A ¢). These are called subpropositions of

(pAg) V).

Example 2 If p,q are propositions, then so is ((-p) V ¢).

1.4 Evaluation of Propositions

1.4.1 Evaluation of Constant Propositions
A constant proposition is a proposition that does not contain any identifiers. In other words,

constant propositions are composed entirely of the truth values T, F and the logical connectives.
You evaluate a constant proposition by executing the following steps:

1. The value of T is just T, and the value of F is just F.
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Figure 1.1: Parse tree for the proposition of example 1

2. Evaluate a constant proposition containing exactly one connective by using the truth-tables
given in subsection 1.2.1.

3. Evaluate a constant proposition containing n connectives (for any n > 1) “inductively” as
follows:

(a) Find all the subpropositions that contain exactly one connective and evaluate them using
step 2. Replace each subpropositions by the value obtained for it.

(b) Repeat step 3a until you are left with either T or F.

Example 3 The proposition ((TAF) VF) is evaluated as follows. First, the subproposition (T AF)
is evaluated using the truth table for conjunction (page 7). The result is F. Replacing (T A F) by
F, we obtain (F v F). This is evaluated using the truth table for disjunction (page 7), obtaining the
final result of F. Figure 1.2 shows this evaluation process depicted on the parse tree for ((TAF)VF).

Example 4 The proposition ((—F) < T) is evaluated as follows. First, the subproposition (—F)
is evaluated using the truth table for negation (page 7). The result is T. Replacing (—F) by T, we
obtain (T < T). This is evaluated using the truth table for double-implication (page 7), obtaining
the final result of T.
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NS
v
'
N S
A
T F

Figure 1.2: Parse tree depicting the evaluation of ((T AF) VF)

1.4.2 Evaluation of (General) Propositions

Now a proposition contains identifiers, in general. Hence, the proposition does not have a truth-
value per se. This is because we cannot determine a truth-value for the proposition without knowing
truth-values for all of the identifiers in the proposition first. For example, the proposition p A ¢ is
neither true nor false in itself; it is true if p and ¢ both happen to be true (but we don’t know this
yet), and false otherwise.

Even though propositions do not have truth-values per se, they can be assigned truth-values. We
assign a truth-value to a proposition by assigning truth-values to all of it’s propositional identifiers.
Once this is done, the truth-value of the proposition can be determined by replacing all the iden-
tifiers by their assigned values and then evaluating the resulting constant proposition as shown in
subsection 1.4.1.

Propositional identifiers are assigned truth-values by means of a state:

Definition 2 (State)
A state is a function from identifiers to truth-values.

For example, the state s = {(h,T),(c,F)} assigns T to b and F to ¢. We use the notation s(b)
to denote the value that a state s assigng to an identifier . If 3 assigns no value to b, then s(b)
is undefined. A state is sometimes also called a fruth-value assignment. We use the term state
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because it is more related to the application of logic to programming, which is the focus of this
class. Note that a state is somewhat like a row of a truth-table in that it assigns a value to every
propositional identifier listed in the truth-table.

We say a proposition p is well-defined in state s iff 3 assigns a truth-value to every identifier in
p. For example, the proposition bV ¢ is well-defined in the state s = {(b,T), (¢c, )}, whereas the
proposition b V d is not.

If p is well-defined in s, then we use s(p) to denote the truth-value assigned to p by s. s(p) is
evaluated as follows:

1. Replace every identifier b in p by its value s(b) in state s

2. You now have a constant proposition. Evaluate it as shown above in subsection 1.4.1

Example 5 We evaluate the proposition ((p A ¢) V ) in the state s = {(p, T), (¢, F), (r,F)}. Re-
placing p,q,r by their values T,F,F in state s, we obtain the constant proposition ((T AF) v F).
From example 3, We see that this evaluates to F.

We can construct a truth-table for an arbitrary proposition by evaluating it on all 2™ possible
combinations of its input values (assuming it contains n propositional identifiers).

Example 6 Truth-table for ((p A ¢) vV r). The row within lines corresponds to example 5.

(pAg) | ((PAg VrT)

I I IR
IR e | S ] N
R I R I

I | F
RN PR

Truth-table for ((pAg) Vr)

Example 7 We evaluate the proposition ((-p) < ¢) in the state s = {(p,F),(q, T)}. Replacing
P, ¢ by their values F, T in state s, we obtain the constant proposition ((—F) < T). From example 4,
We see that this evaluates to T.

We formally define the method of evaluating propositions as follows.
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Definition 3 (Evaluation of Propositions)
Let p, q be propositions. Then, we have

1. 3(T) =T, and 3(F) =F
2. 3(=p) =-(s(p))

3. s(pAq) =s(p) Aslg
4. s(pvq) =s(p) vslq
5
6

Note that since s(p), s(g) are truth-values, it is permissible to use them as inputs to logical connec-
tives.

Example 8 We redo example 5 using definition 3 as follows. s((pAq)Vr) =s(pAg) Vv s(r) =
(s As(q)) Vs(r)=(TAF)VF=FVF =F.

1.5 Precedence of Logical Connectives

In definition 1, every logical connective has a pair of associated parentheses. These parentheses are
necessary 8o that a given proposition has a single well-defined meaning. For example, ((pA¢) Vr)
is different from (p A (¢ V 7)); in the state s = {(p,F), (¢,F), (r,T)}, the first proposition evaluates
to T while the second evaluates to F. Note however, that the outer parentheses are redundant in
both cases, e..g, ((p A ¢) V r) is equally well written as (p Ag) V 1.

In general, having one pair of parentheses for each logical connective tends to result in propositions
with many parentheses, which are consequently hard to read.

Precedence rules establish a convention that allows us to omit many of these parentheses. These
rules are:

1. Sequences of the same connective are evaluated left to right

2. The precedence of different connectives is as follows (highest precedence first): -, A, V, =, <

Example 9 ((p=>q) = r) can be writtenas p=> g =>r
(p = (g = r)) can be written as p = (¢ = )
((pArg)Vr) can be written asp AgV r

(pA(gVr)) can be written asp A (g V1)

( ((-p) & (—q)) =) can be written as (—p & —q) = r
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1.6 Satisfiability and Validity, Tautologies

Definition 4 (Satisfiable)
A proposition p is satisfiable iff there exists a state s such that s(p) = T.

We call a proposition that is not satisfiable a contradiction .

Definition 5 (Valid)
A proposition p is valid iff for every state 3 such that s(p) is well-defined, s(p) = T.

We call a proposition that is valid a tautology, and a proposition that is satisfiable but not valid a
contingenci.

Example 10 —p V p is a tautology.
—p A p is a contradiction.
p is a contingency.

Exercise 1 Show that p is valid iff —p is not satisfiable.
Show that p is a contingency iff both p and —p are satisfiable.

1.7 Proving a Conjecture

Suppose we have a proposition p and we conjecture that p is valid. How do we go about actually
proving this? A straightforward way would be to construct the truth-table for p as shown in
example 6 and then check that the column for p containg only T’s. Unfortunately, if p contains n
identifiers, the truth-table for p will have 2" rows, and so this method is not practical except for
propositions containing few identifiers.

We now examine ways of showing that a proposition ig valid without having to write down its entire
truth-table. A central concept here is the notion of equivalence.

1.8 Egquivalence

To show that a proposition is valid, we have to demonstrate that the proposition evaluates to T in
any state that it is well-defined in. Thus, in some sense, the proposition is “equivalent” to T, as it
always has the same truth-value as T (namely just T!). We can make an analogy with arithmetic
expressions. The integer constant 2 is “equivalent” in some sense to the arithmetic expression
(z + #)/z (ignoring the case of x = 0).

To consider that p and ¢ are equivalent, we want them to always have the same truth-value. In
other words, we want s(p) = s(q) for every state s.
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Definition 6 (Eguivalent, =)
Propositions p and ¢ are equivalent if and only if, for every state s such that p and ¢ are both
well-defined in 3, we have s(p) = s(q). We write p = q for “p and ¢ are equivalent”.

Remark 1 = is commutative; p = q and ¢ = p mean the same thing.
= is not a logical-connective. We shall only use = in statements of the form p = q, i.c., statements
that assert the equivalence of two propositions.

Example 11 p A ¢ and ¢ A p are equivalent, as may easily be checked from the truth-table for
conjunction. Similarly, the following pairs of propositions can be checked to be equivalent:
—pVqandp=q

pegand (p=>g Alg=0p)
p=>g=>r) and pAg=>r

Example 12 The value of p = ¢ for propositions p, ¢ does not depend on the state in which
evaluation is taking place. For example, let b, ¢ be identifiers. Then

3(b=5) = T for all states s.
3(b = ¢) = F for all states s. This underlies the difference between = and <, since s(b< ¢) =T
for example, if s = {(h,F), (¢,F)}.

We already have a logical connective whose meaning is “logical sameness,” namely double-implication:
&. p & q is true in some state s if and only if s(p) = s(g) (ie., p and ¢ are assigned the same
truth-value by s). Hence, if s(p) = s(g) in every state s, then p < ¢ is true in every state s,
and vice-versa. But “p < ¢ is true in every state s3” is the same as “p < ¢ is a tautology”, by
definition 5. Hence, we have:

Theorem 1 p = q if and only if p & ¢ i3 a tautology.

Proof: see the preceding discussion.
Finally, we obtain our desired characterization of validity in terms of equivalence.

Theorem 2 p is valid if and only if p="T.

Proof: left as an exercise.

Theorem 2 characterizes validity in terms of equivalence. This still leaves us with the problem of
how to demonstrate equivalence. We do this by means of a deductive system.

1.9 Deductive Systems, Proofs

A deductive system, or ecalculus, is a “symbolic manipulation” system whose purpose is to “prove”
statements that are “universally true” in some sense. It usually has two components:
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1. A set of azioms: these are statements that are assumed to be universally true.

2. A set of rules of inference: these are rules that allow us to conclude that a particular statement
is universally true from previous statements that have been shown to be universally true.
Rules of inference are often written in the form

Ey,....E, E,...,E,
E E,E'

and have the following meaning:

if Fy,..., E, are universally true, then so are  (and E' in the second rule)

Now given that the axioms are universally true, and that the rules of inference preserve universal
truth, it follows that:

1. if we start with the axioms, and

2. conclude new statements only by applying the rules of inference to statements that have
previously been shown to be universally true

then we will never incorrectly conclude that a statement is a universal truth when in fact it is not.
This leads us to the following definition of proof:

Definition 7 (Proof)
A proof is a finite sequence €1, €2,. .., en of statements such that each e; (1 <i < n) is either an
axiom, or follows from earlier statements (e; for 1 < § < i) by application of u rule of inference.

Remark 2 Every statement that occurs in some proof is o universal truth. Every prefix of o proof
is also a proof.

We stress that the concepts of axiom, rule of inference, and proof are completely independent of
the preceding material. None of the previously introduced concepts (proposition, state, evaluation,
etc...) are used in the definitions of this section. A calculus is solely a “symbolic manipulation”
systern.

1.10 A Deductive System for Proving the Validity of Propositions

We now turn to a particular deductive system for showing validity. We stress that many (in fact,
an infinite number of) such systems are possible. However, they are all “equally good” in the sense
that they can all be used to prove exactly the same things, namely the set of tautologies. Since
our approach to proving validity is to show that the proposition in question is equivalent to T, our
particular deductive system has as its axioms the “laws of equivalence” shown in subsection 1.10.1
below. These laws give us a set of basic equivalences that we can use as starting points in our
proofs. The following subsection (1.10.2) presents the rules of inference of our deductive system.
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These rules allows us to substitute one proposition for another equivalent one (thereby allowing us
to use “subproofs”), and to reduce the proof of an equivalence to a proof of several “intermediate”
equivalences that are (presumably) easier to establish. Both rules facilitate the decomposition of a
proof problem into several simpler “subproblems”.

1.10.1 The Axioms: Laws of Equivalence

1. Commutative Laws:
erg)=(gAp)
evea)=(gVvp)
Peg=(gep

2. Associative Laws:
PAWGAT)I=(PAQ AT
pVgVvr)=(pvgyvr

3. Distributive Laws:
pVgAT)=(pVgArlpyr)
pAlgvr)=@AgVvipAar)

4. De Morgans Laws:
“(pAg) =0V ¢
~(pVg)=-pA—qg

. Law of Negation: —(-p)=p
. Law of The Excluded Middle: pv—-p=T

5

6

7. Law of Contradiction: pA —p=F
8. Law of Implication: p=g¢=-pVvyg
9

. Law of Double-implication: (p < q)=(p=>¢) Alg=p)

10. Laws of or-simplification:
pPVDP=p
pvT=T
pvF=p
pY(pAg)=p

11. Laws of and-simplification:
PADP=D
pAT=p
pAF=F
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pA(pVg =p

12. Law of Identity: p=p

1.10.2 The Rules of Inference: the rules of Substitution and Transitivity

The rule of substitution allows us to substitute one proposition for another if they have been pre-
viously shown to be equivalent.

Rule of Substitution
Let p = q and let £(b) be a proposition, written as a function of one of its identifiers 5. Then
E(p) = E(q) and E(q) = E(p).

Expressed formally, this is:
P=4q
E(p) = E(q), E(q) = E(p)

Example 13 Let E(b) = bvr. Now p = ¢ = —pV ¢ by the law of implication. Hence (p = ¢) vr =
(=pV ¢) V r by the rule of substitution.

The rule of trangitivity allows us to “string together” two equivalences that have a common propo-
sition.

Rule of Transitivity

Ifp=qgand g=r, then p=r.

Expressed formally, this is:
P=gqg g=¥
p=r

Example 14 p = ¢ = —p V ¢ by the law of negation. Also, -pV ¢ = ¢ V —p by the law of
commutativity. Hence p = ¢ = ¢ vV —p by the rule of transitivity.

Both of these rules facilitate the decomposition of a proof problem into several simpler “subprob-
lems”.

1.11 Example Proofs, and the Simplified Proof Format

Our first example is a proof of p = ¢ = —¢ = —p.
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1. p=>qg=-pVyg implication
2. —pVg=gqV-p commutativity
3. ——q=gq negation
4, gvV-p=-—qV-p (8), substitution with E(h) = bV —p
9. qg=>-p=-—gV-p implication
6. ——gV-p=-g=-p (5), substitution with E(b) = b
7. p=>qg=qV-p (1), (2), transitivity
8. p=>g=-—gV-p (4), (7), transitivity
9. p=>qg=-qg=>-p (6), (8), transitivity

Proofofp=>g=-qg= —p

Note our proof format. On the left, we number each line. In the middle, we write down the
statement that is used to build up the sequence of statements that will constitute the proof (see
definition 7). On the right, we include a comment that explains the reason we are able to append
the associated statement to the proof. Typically, this will contain a number (or numbers) that
refer(s) to previous statements, as well as the names of the axioms (i.e., laws of equivalence) and
rules of inference (i.e., rules of substitution and transitivity) that are used.

We make several remarks. First, the rule of substitution is used very often. S0 much so, that we
will, in general, use it implicitly and omit reference to it. Second, there is a lot of repetition in
the above proof. For example, every statement has a part “= p = ¢” that is never manipulated.
If we use the above format, this will often be the case. Hence we use the more economical format
illustrated by the following proof of the same statement:

p=q
= -pVyg implication
= gvV-p commutativity
= --¢V -p negation, substitution
= -g=>-p imp]ication

Proofofp=>g=—-gq=-p

Here, every statement is equivalent to the immediately preceding statement (using various axioms
and rules). Hence we do not need to number the statements, but merely ingert an = sign between
each succeeding pair to indicate that succeeding pairs of statements are equivalent. This format
can be used because, in the previous proof, every statement follows from the immediately preceding
statement (using various axioms and rules). Note also that the rule of transitivity is being used
implicitly in this proof format, as the final desired statement, namely p = ¢ = —~q = —p, follows
from all the intermediate equivalences using repeated applications of the rule of transitivity.

We define this simplified proof format as follows.

Definition 8 (Simplified Proof Format)

A proof in simplified proof format of the statement e1 = e, is a finite seguence e1,€9,...,e, of
statements such that, for all i such that (1 <i < n—1), ¢; = e;+1 can be proven using azioms and
laws of equivalence.
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We give another example of use of this proof format.

p=(g=r)

-pV (g =r) implication
-pV (-¢gVr) implication
(-pV-g) Vr associative
-(pAg)vr  DeMorgan
(pAg) =>r  implication

Proofofp=> (g=>r)=(pAg =

1.12 Soundness of the Deductive System

We now show that every statement that is “proven” by our deductive system is in fact true. This
very important property of our deductive system is called soundness.

Theorem 3 (Soundness)
If there exists a proof for e (in the sense of definition 7}, then e is true.

Proof: Each law of equivalence can be shown to be true by writing down the truth tables of both
of its sides, and verifying that these have the same result column.

For the rule of substitution: suppose p = ¢ is true. Let 3 be any state whatsoever (we usually
say: let 3 be an arbitrary state). By definition of how a proposition is evaluated (subsection 1.4.2),
3(E(p)) and (F(g)) are computed by replacing all occurrences of p, ¢ in E(p), E(q) by s(p), s(g)
respectively. But s(p) = s(g) since p = ¢q. Hence s(#(p)) must have the same value as s(E(q)).
Thus E(p) = E(q) is true. A similar argument shows that E(g) = E(p) is true.

For the rule of transitivity: suppose p = ¢ and ¢ = r are true. Let s be any state whatsoever. Then
from p = ¢, we have 3(p) = s(g), and from ¢ = r we have 3(g) = s(r). Hence s(p) = s(r). Since s
was any state whatsoever, we conclude s(p) = s(r) in every state s. Hence p =r is true.

We have shown that the axioms of our deductive system (namely the laws of equivalence) are true,
and the rules of inference (namely the rules of substitution and transitivity) preserve truth. Hence,
any statement proven by our deductive system must be a true statement.

(end of proof)

1.13 Propositions as Sets of States

Suppose we have four states s,4, u, v where:

8= {(p?T)? (QaT)}
1= {(p?T)? (‘%F)}
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u={(»F),(¢;T)}
v = {(p?F)? (Q1F)}

Consider the proposition p. Since s(p) = T and #(p) = T, we cannot distinguish between states s
and t by evaluating p (s(p) = #(p)). Similarly, we cannot distinguish between states v and v by
evaluating p, as u(p) = v(p). We can, however, distinguish between any state in the set {s,1} and
any state in the set {u,v} by evaluating p, since in the first case we get T, and in the second case
we get F.

We associate the set {3, £} with the proposition p, since {3, } is the set of states in which p evaluates
to T. Similarly, we associate:

{u,v} with —p since u(—p) =v(-p) =-F =T
{s,u} with ¢ since s(q) = u(g) =
{t,v} with —q since #(—g) =v(—¢g) =-F =T

Figure 1.3 shows the states s, £, u, v as points, and the sets of states corresponding to the propositions
P, —p, 4, —q as ovals surrounding the appropriate states. !

In general, we associate with a proposition p the set of all states in which p is true:

Definition 9 (truestates)
truestates(p) = {s | s(p) =T}

We can also go the other way — start with a set A of states and derive a proposition p such that
3(p) = T if and only if s € A. In other words, we can associate with a set of states A a proposition
p that is true in every state in A, and false in every state not in A. In other words, we want a
function prop from sets of states to propositions that is the “inverse” of the truestates function:
p = prop(4) iff A= truestates(p).

First let us consider the case where A contains a single state, say s. Hence, we want prop(4) to be
a proposition that is true in state s and false in every other state. Let b, ¢, d,... be all the identifiers
that are assigned T by s, and ¥,¢',d',... be all the identifiers that are assigned F by s. Then, we
define:

prop(s) = (bAcAdA. A (D A-C A-d AL

If p = prop(s), then we have:

8(p) =

8(?5/\c/\d/\...)/\(ﬂb’A—'c’A—'d’/\...)) =

(s As(e)As( A..)A(ms(B)A—s(d)A-s(d)A..) =
(TATATA..)A(-FA-FA-FA...)=

TAT =

T

On the other hand, if ¢ differs from s in its assignment to at least one proposition, then #(p) = F
as we now demonstrate There are two cases.

“This notation is basically that of Venn disgruma.
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[ A/
A [P
AL\ -p

q g

Figure 1.3: Sets of states corresponding to p,—p, ¢, ~¢q
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Case 1: t assigns F to at least one identifier of b,c,d,.. ..

t(p) =
t(bAcAdA )NV A= A-d AL =

(B Atlc) At AL )AL ) A (YA )AL L) =
(TATATA...AFA.LJA(-FA-FA-FA...)=
FAT=

F

Case 2: ¢ assigns T to at least one identifier of ¥, ¢/, d',...

t(p) =
tbAcAdA )N A A-d A L)) =

(t(B) Atlc) At(d) AL )AL ) A () A -Hd)ALL) =
(TATATA..JA(FFA-FA-FA...A-TA...) =
TAF =

F

Lemma 4 Let 3,1t be unequal states. Then

1. s(prop(s))
2. t(prop(s)) =

T
F

Proof: see preceding discussion.
Now we consider the general cage, where A = {s.%,u,...}. We define:
prop(4) = prop(s) V prop(t) V prop(u) v
To see that this definition works, let p = prop(A) and consider v(p) for some state v. If v € A, then
u(p) =

v(prop(s) V prop(t) Vprop(u) V... Vprop(v) V...) =

v(prop(s)) v ﬂ(prop( )) Vﬂ(p?‘op(u)) V...Vo(prop(v)) v...) = (by lemma 4)
FYFVFV...vyTV.

T.
On the other hand, if v ¢ A, then

v(p) =

v(prop(s) V prop(t) V prop(u) v...) =
v(prop(s)) Vv(wop( )) Vo(prop(u)) v...) =
FVFVFV

F.

We summarize the above discussion as follows.

Definition 10 (prop)
prop(s) = (bAcAdA )N (A= A-d AL
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where b,c,d,. .. are all the identifiers that are assigned T by s, and V', ', d',. .. are oll the identifiers
that are assigned F by s.

prop(A) = prop(s) V prop(t) v prop(u) v ...
where A= {s,t,u,...}.

Theorem 5 Let s be u state and A be a set of states. Then
s(prop(A)) =T ifand only if s € A

Proof: Left as an exercise.

Exercise 2 If A=, i.e., A is empty, what is prop(4)?

1.14 Normal Forms

It is occasionally very useful to be able to convert a proposition into an equivalent proposition that
has a particular syntactic form. Two forms in particular shall concern us — disjunctive normal
form and conjunctive normal form.

Definition 11 (Literal)
A literal is either a propositional identifier or the negation of a propositional identifier.

Definition 12 (Disfunctive Normal Form)
A proposition is in disjunctive normal form iff it is ¢ disjunction of conjunctions of literals.

Definition 13 (Conjunctive Normal Form)
A proposition is in conjunctive normal form iff it i ¢ conjunction of disjunctions of literals.

Theorem 6 For every proposition p, there i3 an equivalent proposition in disjunctive normal form.
Proof: Left as an exercise.
Theorem 7 For every proposition p, there i3 an equivalent proposition in conjunctive normal form.
Proof: Left as an exercise.

Example 15 The proposition p < ¢ can be expressed in disjunctive normal form as (pAg) v (-pA
—q). It can be expressed in conjunctive normal form as (—p V q) A (p V —¢).



Chapter 2

The Predicate Calculus

2.1 Predicates

A predicate is like a proposition, except that propositional identifiers may be replaced by any
expression that has value T or F, e.g.:

1. Arithmetic inequalities: =,#, <, <, >, >

2. Logical quantifiers: These allow you to express “for all” and “there exists” in formal logic.
These expressions are called atomic predicates. Atomic predicates play an analogous role in pred-
icates that propositional identifiers do in propositions. They provide the expressions that are

evaluated in a given state to provide truth-values. These truth-values are combined using the
logical connectives to produce the final truth-value of a predicate.

The syntax of atomic predicates is defined as follows.

Definition 14 (Atomic Predicate)
Atomic Predicates are formed as follows:

1. T and F are atomic predicates.
2. A propositional identifier is an atomic predicate.

3. exp op exp’ i3 an atomic predicate, where exp, exp’ are arithmetic expressions, and op is one
Of {:& :I'éa <GS > Z}
4. LQ(i : range : quantified — expression), where LQ is a logical quantifier, i is an integer

variable, and range, quantified — expression are both predicates.

The syntax of predicates is defined as follows.

24
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Definition 15 (Predicate)
Predicates are formed as follows:

1. An atomic predicate is a predicate.
2. If p is a predicate, then 30 is (—p).
3. If p and q are predicates, then so are (pAq), (V Q). (p=¢), (p< q).

Example 16 If i, § are integer variables and r is a proposition, then ((¢ < 7) Vr) is a predicate.

i j
Parse tree for ((i < ) Vr)

2.1.1 Precedence of Operators in a Predicate

The operators, such as <, =, used in atomic predicates have higher precedence than logical connec-
tives.

Example 17 ((i < §) Vr) can be rewritten as i < jV r.

2.1.2 Arithmetic Inequalities

We assume all the familiar properties of arithmetic inequalities. These can be used in proofs by
giving “arithmetic” as the “law” used. Some typical properties that you might use are:
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si<iAj<k=>i<k
i<inj<k=>i<k
e i<iAF<i=i=7

e i< i=>it+k <tk
1 <f=>i+hk<i+k

¢ hk>O0NI<i=>hri<hk*j
E>O0AI<f=>hei<hkxj

e h<OAi<i=>hni>k+j
k<OAI<f=>hei>kxj

2.2 Quantifiers

2.2.1 Logical Quantifiers — The Universal Quantifier V
V(i : (@) : p(i)) means:
For every value v of i such that v(v) is true, p(v) is also true.

Example 18 Let a[0..(n — 1)] be an array of integer.
V(i:0 <4 < n:afi] > 0) means that every element of array a is positive.
V(i:0<i<n—1:a[i] <af[i +1]) means that 4 is sorted in nondecreasing order.

2.2.2 Logical Quantifiers — The Existential Quantifier 3
(i : r(3) : p(¢)) means:
There exists a value v of i such that r(v) is true and p(v) is also true.

Example 19 Let o[0..(r» — 1)] be an array of integer.
(i:0 <& < n: i >0) means that some element of array a is positive.
3(¢: 0 £ i < n:afi] = z) means that some element of array ¢ is equal to z.

2.2.3 Free and Bound Variables
We use LQ to stand for either ¥ or 3. In LQ(3 : r(3) : p(s)):

¢ i is the bound variable. i is said to be bound fo LQ.

e (i) is the range of quantification (or simply range)
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e p() is the guantified predicate.

A variable that is not bound to some quantifier is said to be free. In LQ(i : v(3) : p(4)), the bound
variable ¢ is a “place holder” that can be replaced by another variable j provided that this does
not cause capture:

I(d 2 & = y=+d) and I(m : £ = y * m) mean the same thing, namely z is a multiple of y, but
(& :: & =y+x) means T (Le., it is valid), since the quantified predicate & = y* z is true for z = 0.

2.2.4 Arithmetic Expressions and Quantifiers

Arithmetic expressions are built up from inequalities, the arithmetic operators (+,*, —, /, etc.),
and the following:

1. AQ(é : range : quantified —expression), where AQ is an arithmetic quantifier, ¢ is an integer
variable, range is a predicate, and quantified — expression is an arithmetic expression.
2. N(i : range : quantified — expression) where i is an integer valued variable, and range,

quantified — expression are both predicates.

Arithmetic quantifiers usually generalize a binary arithmetic operation to a set of operands. Ex-
amples are:

¥ (sum) generalizes +: B(5:0<i<n:{)=0+1+...+n—1
II (product) generalizes * : TI(i: 1 <§<m:4) =1+2x...%n
MIN generalizes min(z,y) : MIN(i:1<i<n:i)=1

MAX generalizes maz(z,y) : MAX(i:1<i<n:i) =n

The Counting Quantifier N

N(i : r(4) : p(§)) is the number of values for ¢ within the range r(¢) for which p(i) is true.

i.e., N counts the number of times that p(i) is true within the range r(¢{). N can be defined in
terms of 2:

NGE:r(@@):p())) =G :r(d) Ap(E): 1)

Example 20 N(i: 0 < i < n: even(a[i])) where even(x) = 3(d :: 2 * d = z) gives the number of
even elements in array a.

2.3 Properties of Quantifiers

We use Q@ for any quantifier except N. Every @ generalizes an associative and commutative binary
operator q to a set of operands given by the range. There are many laws that can be used to
manipulate quantifiers.
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2.3.1 Quantifying Over an Empty Range

If the range of quantification is empty, then the result is the identity element of the associated
binary operator:

V(i :F:p(i)) = T
3 F :p(i) = F
N(i: F : p(i) = 0
(i F: (i) = 0
T(:F : () =1

MIN(i: F: f(i)) = o0
MAX(i:F: f(i)) = —o0

2.3.2 Quantifiers — Bound Variable Laws

a) Change of variable

QG:r(i): £() = Qlk:r(k): F(8)

where £ is not free in r(i), f(i)

Example 21 V(i:0<i<n:aff] <ali+1)=V(E:0<k <n:alk] <alk+1])
Bi:0<i<n:afi]) =2k:0<k <n:alk])

b) Cartesian Product

[QUisj : r(i) A (i) : £ 5) = QUi:r(i): QU : (i) : £ix )]

Example 22 Let afi, ] be an » x m array of integer.

6, 7:0<i<nAO<Li<m:ali,f]l=2)=3(,7:0<i<n:3f:0<j<m:ali,fl=2)

2.3.3 Quantifiers — Range Laws

a) Range Translation

1QG:r(): F() = Qi:r(9(®) : Fl9())]

where g is a 1-to-1 function
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Example 23 X(i:1<i<n:{)=3({:0<i<n—-1:i+1)

where r(i) =1 < i < n, g(i) =i + 1. Hence the range on the right hand side is: 1 <{i+1 < n, Le.,
0<i<n-—1

b) Singleton Range

c¢) Range Splitting

Qi : r(9) : £() = QUi r(d) AbG) : f(3) @ QE: r(i) A —b() : f(4))

Example 24 MIN(i: 0 <éi<j+1:4a[i]) =
MIN(G:0<i<j+1IAi<j:ali]) min MIN((:0<i<j+1Ai>F:afi]) =
MIN(G:0<i<j:qfi]) min MIN(i:{ =3+ 1:q[i]) =
MIN(:0<i<7:ali]) minalj+1]

d) Identity Element (Empty Range)

‘Q(?} : F: f(i)) is the identity element of q

Note that range splitting works correctly when quantification over an empty range is defined this
way: Q(i:r(d): f(i)) = QUi:r(): f(i) q Q(i: F: f(i)).
f) Range Disjunction

Qi:r(d) V(i) : F() = QU:r(i): £()) q Q(: 8(d) : £(3))

provided q is idempotent: xz ¢ x = .

Example 256 MIN(i: 0 <¢{ <m:aff]) = MIN( : ¢ € @ : afi]) méin MIN(i : i € ¢ : a[i])

provided ¢ U4 = {0,1,...,n — 1}. This is useful, for example, when the a[i] are distributed over
a network. The minimum can then be computed by “probes” that may possibly overlap.

2.3.4 Quantifiers — Function Laws

a) Generalized Associativity

Qli:r(e): f(i) q g6d)) = Q(i:r(): f5)) q QGE: r(d) : g(3))
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Example 26 V(i : 0 < i < n:afi] > 0Aeven(afi])) =
Vi:0<i<n:all] >0 AV(i:0<i<n:even(ali]))

b) Generalized Commutativity

1QG: (i) : QU : s(7) : £(:9)) = QU : () : Qi : r(d) : £(4,9))) |

Example 27 V(i : 0 <i<n:¥([{i:0<j<m:qli,j] > 0)) =
V(j:0<j<m:V(i:0<i<n:a[i,j]>0)

Bi:0<i<n:B([{:0<i<m:ai,§])) =B({:0<j<m:BE:0<i<n:ali,j]))

2.3.5 Quantifiers — Range and Function Interchange

a) Y-rule

V(i :r(i) As(d) : p(i)) = Y0 : (i) : s(d) = p(2))

Example 28 Y(i: TAO0<i<n:alf] =0)=V(i: T:0<i<n=afi]=0)

When the range is T, it can be omitted: ¥(5:: 0 < i < »n=> q[i] =0)
b) J-rule

A :r(@) As(@):p(d) = 36 :r(E): s(i) Ap(d)

Example 20 J(i : TAO<i<n:ail=2)=3(:T:0<i<nAgfi] =2z)

2.4 States

States must now assign appropriate values to all variables (depending on the type of the variables).

Example 30 If i, § are integer variables and r is a propositional identifier, then

8= {(?::2): (.?: 3)? (T=F)}'

is an example of a state.

Variable types will either be declared, or will be easily inferable from context.
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2.5 Ewvaluation of Predicates

2.5.1 Ewvaluation of Constant Predicates

A constant predicate is a predicate that does not contain any propositional identifiers or free vari-
ables. A constant predicate is evaluated as follows.

1. The value of T, F is T, F respectively. The value of an integer constant = is n.

2. If there is only one quantifier, arithmetic operator, or logical connective, then evaluate it
according to the definitions of quantifiers, arithmetic operators, and logical connectives.

3. If there are n (n > 1) quantifiers, arithmetic operators, or logical connectives, then

(a) Evaluate all subpredicates that contain exactly one quantifier, arithmetic operator, or
logical connective, and replace them by their values.

(b) Repeat the previous step until you are left with either T or F.

2.5.2 Evaluation of (General) Predicates

This is similar to the evaluation of general propositions (see chapter 1):

1. Replace all identifiers by their values in the state.

2. You now have a constant predicate. Evaluate as shown previously.

Definition 16 (Evaluation of Predicates)
Let p be a predicate and s be a state. Then the value of p in s is denoted by s(p), and is defined as
follows:

1. 3(T) =T, and 3(F) =F

2. 3(-p) =~ (3(»)),
s(pAg) =s(p) As(q),
s(pvgq) =s(p) vs(g),
s(p = q) = 3(p) = s(q),
s(p & q) = s(p) & s(q)

3. s(n) =n for any integer constant n
4. s(exp op exp’) = s(exp) op s(exp’) for any arithmetic operator op

5. 3(Q(i : v(4) : p(1))) = Q(i : 8(r(4)) : 8(p(4))) for any quantifier Q
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Example 31 5 = {(a[0],1), (a[1],5), (a[2], 3), (a[3], 10), (4, 2)}
s(VE:0<i<j:ali] <ali+1])) =
V(i:s(0) <4 < s(j): slald]) < slali +1])) =

V(i:0<i<2:3(afi]) £s(ali +1])) =
s(al0]) < s(all]) A s(a[l]) < s(af2]) =
1< A L=

T AF=

F

2.6 Notation for Functions, Sets, and Predicates

We use “functional notation.” The type is determined from the definition (we use = for functions
and sets, = for predicates) and context.

Example 32 children(i) ={j:2+i+ 1< j €2+4i+ 2} is a set which gives the children of node
i in a binary heap.

divides(g,z) = 3(d :: & = q * d) is a predicate which is true iff ¢ divides x

Example 33 Nonredundant copy.

a : array[0..m — 1] of integer;
b : array[0..n — 1] of integer;

array b is a copy of @ with duplicates removed:
1) Every element of g occurs in b: ¥(i: 0 <déi<m:3(j:0 <7 < n:b[j]=ali])
2) b contains no duplicates: V(i,7:0 <4,§ < nAi# §:b[i] # b))

We can write the predicate nonredundant — copy(b,a) as the conjunction of the above two predi-
cates.

Example 34 Longest plateau.
allequal(f,len) =V(i,k:§ —len <i,k < j—1:a[i] =alk])
plateau(len,n) = (£ : 0 <len < £ < n: allequal(f,len))

longest — plateau — length(n) = MAX(len : platecu(len, n) : len)

Example 35 All equal values adjacent.
No two equal array values are separated by an unequal array value:
adjacent — equal — values(n) =
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Vi, j:0<i<j<n:ai]l=alf]=>Vk:i<k <j:a[k] =ali])

Example 36 Sorting.

o results from sorting b in nondecreasing order:

is — sorted(a, b) = perm(a, b) A ordered — nondec(a)
ordered — nondec(a) =V(i:0<i<n—1:qf] <afi +1])
perm(a,b) =

Vi:0<i<n:
num(a, ali]) = num(b, ali]) A
num(a, bfi]) = num(b, b))

)

num(c,z) =N@{E:0<i < n:c[i] =)

33



Chapter 3

Verification of Program Correctness

3.1 Our Programming Language

We shall use a simplified programming language that consists of assignment statements, if state-
ments, while statements, and sequential composition of statements (denoted by a semicolon).
begin and end are used to bracket statements. The syntax of our programming language is as
follows.

assignment statement:
<variable> := <expression>

if statement:
if <predicate> then <statement> else <statement> endif |
if <predicate> then <statement> endif

while statement:
while <predicate> do <statement>> endwhile

3.2 Conditional Correctness of Programs: The Hoare Triple No-
tation {P}S {Q}

In the notation {P} S {Q}:

P is a predicate, called the precondition.
S is a statement.
J is a predicate, called the postcondition.

{P} S {Q} is shorthand notation for the following:

If execution of § is started in a state satisfying P, then:
if execution of S terminates, the final state is guaranteed to satisfy Q.

34
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Because termination is assumed, this is called condifional correctness.

3.2.1 Validity of {P}S{@}
For {P} S {Q} to have the meaning given above, we define the validity of {P} S{Q} as follows.

Definition 17 (Validity of {P} S {Q})

(P} S {QYés valid iff

For every state s such that s(P) =T:
If execution of S is started in 3, then:
if the exzecution terminates, it does
50 in some state t such that £(Q) =T

3.3 Program Specification
We specify what a program should do by giving a precondition and postcondition for the program.

Example 37 Search a sorted array C[0: n — 1] for an existing value X.
Precondition: ¥(i: 0 <i<n—1:CH <Cli+1]) AT(E:0<i < n:Cfi]=X).
Postcondition: Clpos] = X.

Example 38 Sort an array a.

Precondition: A = a.

Postcondition: is — sorted(a, A), where is — sorted is defined as follows:
is — sorted(a, b) = perm(a, b) A ordered — nondec(a)

ordered — nondec(a) = V(@ :0<i<n—1:afi] <afi +1)])

perm(a,b) =
Vi:0<i<n:

numla, afi]) = num(b, afi]) A
) num(a, bf§]) = num(b, b))

num(c,z) =N({i: 0 <i <n:cli]=2)

Here a, b, ¢ are all arrays of integer with index range 0 to n — 1 inclusive.

Note how, in the last example, the array A is used to store the initial value of array 4. In general,
when writing a specification for a program, we will often need to relate the initial values of program
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variables to their final values. We shall usually do this as follows:

1. We use the precondition to make a “copy” of the initial values of the variables, e.g., A =a in
example 38 copies the initial value of array ¢ into array A.

2. We use the postcondition to relate the final values of the variables to the initial values, e.g.,
is — sorted(a, A) in example 38 states that the final value of ¢ must be the result of sorting
the initial value of a4 (which is now given by A).

We shall therefore make the following convention
Convention: Upper-case variables are unchanged by the program.

This convention allows us to use upper-case variables to record initial values.

3.4 A Deductive System for Proving the Validity of Hoare Triples

Just as for propositions, we demonstrate the validity of Hoare triples by using a deductive system.
Our deductive system has one proof rule for each type of program statement, together with two
proof rules called the rules of consequence. Hence, to prove a given Hoare triple valid, there is
usually only one proof rule that can be applied at any time. Qur proof rules are presented as rules
of inference: if the hypotheses (the part above the line) have been proven to be valid, then the
conclusion (the part below the line) is also valid. The only exception is the assignment aziom,
which has no hypothesis. In other words, any instance of the assignment axiom can be taken to be
valid without first having to prove a hypothesis valid. We now discuss each proof rule in turmn.

3.4.1 The Assignment Axiom

{Q(e)} z := e {Q(x)} is valid.
x has the value after execution that e has before, so @Q(x) is true after iff Q(e) is true before.

Example 39 {r +1< 5}z :=z+1{z < 5}.

This reduces to: {z < 4}z := x + 1{z < 5}. In other words, if we want x < 5 to be true after
executing x := & + 1, then & < 4 must be true before executing x := z + 1. This conforms to our
intuition about the meaning of  := x + 1.

Example 40 {10 = 10} z := 10 {z = 10}.
This reduces to {T}z := 10{z = 10}. In other words, z = 10 is always guaranteed to be true after
executing z := 10, since the precondition is just T, which is always true by definition.

Example 41 {10 =11}z :=10{z = 11}.
This reduces to {F}x := 10{x = 10}. In other words, & = 11 is never true after executing z := 10,
since the precondition is F, which is never true by definition.
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3.4.2 The two-way-if Rule

{P A B} S {Q} {P A -B} 52 {Q}
{P} if B then Sl else 52 {Q}

The hypotheses of the rule require a proof of correctness for both possible cases of execution:

¢ B evaluates to true and 5; is executed, or

¢ B evaluates to false and S- is executed.

We don’t know in advance which path will be taken, since this depends on the values of the program
variables at run time, which cannot be predicted. Hence, we have to account for both possibilities,
i.e., both paths. The rule works as follows.

Asgsume that the hypotheses of the rule, namely {P A B} 51 {@} and {P A —B} S2{Q}, are both
valid. Assume also that precondition P is true immediately before executing the if-statement. If
the first case of execution occurs, i.e., B evaluates to true and 5y is executed, then we know that P is
true immediately before execution of Si (by our assumption), and that B is true immediately before
execution of 51 (otherwise 51 would not be executed, by definition of the if-statement). Hence we
know that P A B is true immediately before execution of Si. Therefore, from {P A B} 51 {@}, we
know that @ is true immediately after execution of §;. On the other hand, assume that the second
case of execution occurs, i.e., B evaluates to false and S5 is executed. Then, we know that P is true
immediately before execution of Ss (by our assumption), and that B is false immediately before
execution of So (otherwise S2 would not be executed, by definition of the if-statement). Hence we
know that P A —B is true immediately before execution of S2. Therefore, from {P A —B} S2{Q},
we know that @ is true immediately after execution of Ss.

Therefore, in both cases, we have shown that ¢} is true after execution of the if-statement. Our
assumptions were: 1) the hypotheses {PAB} S1 {Q} and {PA-B} S2 {Q}, and 2) that precondition
P is true immediately before execution of the if-statement. In other words, given the hypotheses
{PAB} S {Q} and {PA—-B} S; {Q}, then if P is true before execution of the if-statement, Q will
be true after execution of the if-statement.

Another way of saying this is that given the hypotheses {P A B} S1 {@} and {P A -~B} 52 {@}, we
have proven {P}if B then §; else S> {Q}. This is exactly the two-way-if rule.

Example 42 computing the max of two integers.
Prove:

{true}

ifzx>ythenz:=zxelse z:=y

{z = maxz(z,y)}-

Using the two-way-if rule, this reduces to:

1) {z 2y} z:= 2 {2 = maz(z,y)}, and
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2) {z <y} 2=y {2 = maz(=z,y)}.
3.4.3 The one-way-if Rule

{P A B} S {Q} (PA-B)=>Q
{P}if B then S, {Q}

The hypotheses of the rule require a proof of correctness for both possible cases of execution:

¢ B evaluates to true and 5; is executed, or

¢ B evaluates to false and no statement is executed.

We don’t know in advance which path will be taken, since this depends on the values of the program
variables at run time, which cannot be predicted. Hence, we have to account for both possibilities,
i.e., both paths. The rule works as follows.

Assume that the hypotheses of the rule, namely {P A B} 51 {@} and (PA-B) = @, are both valid.
Assume also that precondition P is true immediately before executing the if-statement. If the first
case of execution occurs, i.e., B evaluates to true and 5; is executed, then we know that P is true
immediately before execution of Sy (by our assumption), and that B is true immediately before
execution of §; (otherwise S§; would not be executed, by definition of the if-statement). Hence
we know that P A B is true immediately before execution of S;. Therefore, from {P A B} S; {Q},
we know that @ is true immediately after execution of §;. On the other hand, assume that the
second case of execution occurs, i.e., B evaluates to false and no statement is executed. Then, we
know that P is true immediately before the if-statement (by our assumption), and that B is false
immediately before the if-statement (otherwise S1 would have been executed, by definition of the
if-statement). Hence we know that P A— B is true immediately before the if-statement. Therefore,
from (P A —B) = @, we know that @ is true immediately before the if-statement. Since execution
of the if-statement involves no change of state, i.e., “no statement is executed,” @ will also be true
immediately after the if-statement.

Therefore, in both cases, we have shown that  is true immediately after execution of the if-
statement. Qur assumptions were: 1) the hypotheses {P A B} 51 {@} and (P A -B) = @, and
2) that precondition P is true immediately before execution of the if-statement. In other words,
given the hypotheses {P A B} 51 {Q} and (P A —-B) = @, then if P ig true before execution of the
if-statement, @} will be true after execution of the if-gtatement.

Another way of saying this is that given the hypotheses {P A B} S1 {Q} and (P A -B) = Q, we
have proven {P}if B then §; {Q}. This is exactly the one-way-if rule.

Example 43 Computing the absolute value.
Prove:

{z =y} if z <Otheny:=—z {y=abs(z)}.
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Using the one-way-if rule, this reduces to:
) {x=yrz <0} y:=—z{y=o0bs(z)}, and
2) (zx=yArz20)=>y=abs(z).

3.4.4 The Rules of Consequence — the left consequence-rule

P=Q {Q} S{R}
(P} S{R}

If ) guarantees that terminating executions of S end in a state satisfying R, and P implies (7, then
P also guarantees that terminating executions of § end in a state satisfying R.

This rule works in the following way. Assume that the hypotheses P = @ and {Q} S {R} are both
valid. {Q} S{R} says that if @ is true when execution of S begins, then R will be true when (and
if) execution of § ends. P = @ says that whenever P is true, then @ will also be true. Hence, we
can conclude, that if P is true when execution of § beging, then @) will also be true at that point
(by validity of P = @), and so R will be true when (and if) execution of S ends (by validity of
{Q} S{R}). In other words, if P is true when execution of S begins, then R will be true when
(and if) execution of S ends. But this is exactly {P}.S {R}. Hence, by assuming that P = @ and
{@Q} S {R} are both valid, we have shown that {P} S {R} is also valid. This is exactly what the
left consequence-rule states.

Example 44 Prove:

{z 29} 2:= 7 {2 = maz(z, y)} (*)
By the assignment axiom:
{z = max(z,y)} 2 := 2 {2 = maz(z,y)}

x > y = & = max(x,y) is valid by the properties of maz.
We conclude (*) by applying the left consequence-rule:

z>y=>z=max(z,y)
{z = maz(z,y)} 2 := 3 {z = maz(z,y)}

{z 2y} 2:== {2 = maz(z,y)}
3.4.5 The Rules of Consequence — the right consequence-rule

{P} S{Q} Q=R
(P} S{R}

If P guarantees that terminating executions of S end in a state satisfying @, and (J implies R, then
P also guarantees that terminating executions of § end in a state satisfying R.
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This rule works in the following way. Assume that the hypotheses {P} S {Q} and @ = R are both
valid. {P} S {Q} says that if P is true when execution of S begins, then @ will be true when (and
if) execution of S ends. @ = R says that whenever @ is true, then R will also be true. Hence,
we can conclude, that if P is true when execution of S begins, then @ will be true when (and if)
execution of § ends (by validity of {P} S {@}), and so R will also be true at that point (by validity
of @ = R). In other words, if P is true when execution of S begins, then R will be true when (and
if) execution of S ends. But this is exactly {P} S {R}. Hence, by assuming that {P}S{Q} and
@ = R are both valid, we have shown that {P} .S {R} is also valid. This is exactly what the right
consequence-rule states.

3.4.6 The Rule of Sequential Composition

{P} S {R} {R} S2{Q}
{P} 51; 5 {@Q}

If P guarantees that R is true after execution of 51, and R guarantees that () is true after execution
of Sa, then P guarantees that € is true after execution of 51 followed by execution of So.

This rule works in the following way. Assume that the hypotheses {P} Si {R} and {R} S2 {Q} are
both valid. Assume also that precondition P is true immediately before executing S1; So. {P} S {R}
says that if P is true when execution of S; begins, then R will be true when (and if) execution of
S1 ends. Hence we know that R will in fact be true after execution of S;, since we assume P is true
before. Since S; follows S; sequentially, we conclude that R is true immediately before execution
of So. {R} S5 {Q} says that if R is true when execution of S5 begins, then @ will be true when
(and if) execution of S5 ends. Hence we know that @ will in fact be true after execution of Ss,
since we have shown that R is true before.

Qur assumptions were: 1) the hypotheses {P} 51 {R} and {R} S2 {@}. and 2) that precondition P
is true immediately before execution of Si; So. In other words, given the hypotheses {P} S1 {R}
and {R} Sz {Q}, then if P is true before execution of Si; .52, @ will be true after execution of Si; Ss.

Another way of saying this is that given the hypotheses {P} S1 {R} and {R} 52 {@}, we have proven
{P} S1; So {Q}. This is exactly the rule of sequential composition.

Example 46 Prove

Ik, sum): {sum=2(:0<i<k:ali])}
Sa: sum := sum + alk];

Sy ki=k+1

I(k,sum): {sum=3({:0<i<k:af])}

Work backwards from the last assignment:
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{I(k +1, sum)} Ss {I(k, sum)}
by assignment axiom.

Also,

{I(k +1,sum +a[k])} S5 {I(k+1,s5um)}
by assignment axiom.

Hence

{I(k +1, sum + a[k]) } Sa; S4 {I(k, sum)}
by sequential composition rule.

Now

Ik +1, sum +alk])
sum—+tak]=2(i:0<i<k+1:afi])
sumtalk] =2(:0<i<k:ali]) +ak]
sum=3(:0<i<k:afi])

I(k, sum).

Hence we finally obtain:

{I(k, sum)} Sa;84 {I(k, sum)}

as desired.

3.4.7 The while Rule

{{ A B} S{I}
{1} while B do S {I A -B}

If the truth of I is preserved by any iteration of the loop, then, if I is true initially, it will still
be true upon termination of the while-loop. Also, the looping condition B will be false upon
termination of the loop. The predicate I is called the invariant of the while-loop.

This rule works as follows. Assume that the hypothesis of the while-rule, namely {7 A B} S {1},
is valid. Assume also that I is true immediately before executing the while-loop. {I A B} § {1}
means that if 7 A B is true before any execution of S (i.e., any iteration of the while-loop), then T
will be true upon termination of §. Since we assume that { is true immediately before executing
the while-loop, we conclude, by validity of {I A B} .S {I}, that I will be true after the first iteration
of the loop, if first iteration is actually executed, since I A B will be true before the first iteration
(B must be true, otherwise the first iteration would not be executed by definition of the while-
loop). Since the end of the first iteration is also the start of the second iteration, we can also
conclude that I will be true before the second iteration of the loop. Hence, if the second iteration
is executed, then by validity of {I A B} S{i}, I will be true at the end of the second iteration.
Proceeding in this way, we can show that, no matter how many iterations of the loop are actually
executed, 1 will always be true at the beginning and the end of any iteration. Now when (and if)
the loop terminates, the resulting state will be the state after some iteration. Hence I will be true
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upon termination of the loop. Also, we kmow that —B is true upon termination of the loop, since
otherwise the loop would not have terminated.

Qur assumptions were: 1) the hypothesis {I A B} S {1}, and 2) that [ is true immediately before
execution of the while-loop. In other words, given the hypothesis {7 A B} S {1}, then if I is true
before execution of the while-loop, I A —B will be true after execution of the while-loop.

Another way of saying this is that given the hypothesis {I A B} § {1}, we have proven
{I} while B do S {I A —B}. This is exactly the while rule.

Example 46 Summing array a0 : n — 1].

P(k, sum): {k =0 A sum =0}

Sy while B2 : k £ n do
So : sum = sum+alkl;ki=k+1
endwhile

Q(sum): {sum=2(E:0<i<n:afi)}

Boisk #mn, S2 i8 sum :=sum +alk; k:=k + L

Invariant I(k, sum) is: sum =2(i: 0 < i < %k : af]).

{I} S2 {1} proven previously. Hence {I A Ba} So {I} by left consequence-rule.
Hence {1} S1 {1 A =Bz} by while rule.

P

k=0Asum=0
k=0Asum=0A0=3(:0<4{<0:afi])
k=0Asum=0Asum=2(i:0<i<k:af)
sum =30 :0<i < k:ali])

I

Hence P = I. Hence {P} S1 {I A —Bo} by left consequence-rule.

IA-B,
sum =X2(:0<i<k:qali) Nk=n
sum=2({:0<i<n:ali)rk=n
sum =2(:0<i<n:ali])

Q.
Hence I A =By = Q. So, {P} 51 {Q} by right consequence-rule.

I e nem

mJ4

3.5 Proof Tableaux

A proof tableau is a way of summarizing a proof of correctness in a single compagct form, rather than
as a large number of applications of the proof rules given above. Given a program S together with
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its specification, expressed as a precondition P and postcondition ¢}, we construct a proof tableau
for {P} S{Q} as follows:

1. Write down the program S together with its precondition P and postcondition
2. For each while-statement while B do S’ endwhile that occurs in -

Find an invariant I for the while-statement

Write {/} immediately before the while-statement

Write {I A =B} immediately after the while-statement

Write {I A B} at the top of the body of the while-statement (i.e., immediately before
SN

(e) Write {1} at the bottom of the body of the while-statement (i.e, immediately after S*)

(a
(b
(c
(d

P Al i Sl

3. For each assignment statement x := e with postcondition R(z), apply the assignment axiom
t0 obtain a precondition R(e)

4. For each if-statement if B then S; else S2 endif with precondition P and postcondition
Qr: 1

(a) Write down (' as the postcondition of both S; and S
(b) Write down P' A B as the precondition of S1, and P! A =B as the precondition of S

5. Repeat steps 3 through 4 until the tableau is complete (see definition 18 below).
6. For each pair of predicates P', P" such that P"” immediately follows P’ in the tableau (i.e.,

with no statement in between them), extract the verification condition P' = P".

Definition 18 (Complete Proof Tubleau)
A proof tableau s complete iff:

1. The tableau contuing a precondition and postcondition for every statement.
2. The precondition for every assignment statement in the tebleay 19 derived from the posteon-

dition by applying the assignment aziom.

Definition 19 ( Valid Proof Tableau)
A proof tableau is valid iff:

1. Bvery Hoare-triple in the tablean i3 valid.

2. Ewvery verification condition extracted from the tableau is valid.

'We assume, for the time being, that any proof tablesu we construct will supply a precondition for every if-
statement. Hence gur only problem is to provide & postcondition for each if-statement.
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We can interpret a valid proof tableau as follows:

If execution is started in a state that satisfies the precondition of the program, then, when
program control is “at” the location of a particular predicate in the tableau, that predicate
is guaranteed to be true in that program state.

Interpretation of Valid Proof Tableau

In particular, if and when execution of the program terminates, then control will be “at” the
postcondition, and so the postcondition will be true at that point. This is exactly what correctness
of the program requires: that the postcondition be true upon termination.

3.5.1 Extended Example: Summing an Array

We shall prove that the following program is correct with respect to the precondition P(&, sum)
and postcondition Q(sum). Here a[0..(n—1)] is an array of integer. As our first step (step 1 above),
we write down the program below, together with the precondition and postcondition.

P(k, sum):

Q(sum):

{k=0As3um=0An>0}
while B: k £ n do
sum = sum + a[k];
ki=k+1
endwhile
{sum=2(i:0 < i< n:dali])}

The next step is to write the invariant in each of the four places, as given in step 2 above. We use
the invariant I(k,sum) : sum = 2(i: 0 €4 < k: a[]). This results in the following tableau.

Pk, sum):

Q(sum):

{k=0Asum=0An>0}
{invariant T(k,sum) : sum =20 : 0 < i < k: ali])}
while B: k £ n do

{{(k,sum) A B}

sum = sum + alk];

k=k—+1
{I(k,sum)}
endwhile

{I(k, sum) A =B}
{sum = 2(i:0 < i <n: dli])}

We now apply the assignment axiom to the assignment statement %k := &k 4 1 and its postcondition
I(k,sum), resulting in the following tableau:
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Pk, sum): {k=0Asum=0An>0}
{invariant I(k,sum) : sum =2(i : 0 < i < k: ali]) }
while B: k £ n do
{I(k,sum) A B}
sum = sum + alk];
{I(k +1,sum)}
ki=k+1
{I(k,sum)}

endwhile

{I(k, sum) A =B}

Q(sum): {sum=2(i:0 < i< n:dali])}

This gives us the postcondition I(k + 1, sum) for the assignment statement sum := sum + a[k].
Hence we apply the assignment axiom again, this time to sum := sum + o[k] and its postcondition
Ik + 1, sum).

Pk, sum): {k=0Asum=0An>0}
{invariant T(k,sum) : sum =2 : 0 <{ < k:ali])}
while B: k£ n do
{{(k,sum) A B}
{{(k + 1,3um + ofk]) }
sum = sum + a[k];
{I(k +1,3um)}
ki=Fk+1
{I(k, sum)}

endwhile

{I(k, sum) A =B}

Q(sum.): {sum=2(i:0 <i < n:ali])}

The tableau is now complete. We now extract the following verification conditions (step 6 above):
) k=0Asum=0An2>0= I(ksum)

2) I(k, sum) A B = I(k + 1,sum + o[k])

3) Ik, sum)A—-B =>sum=2(1:0<i<n:al)

We prove that the verification conditions are valid predicates using the laws of equivalence and the
rules of substitution and transitivity. For condition 1, we proceed as follows.
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k=0Asum=0An>0 = Ik sum)

/* replace I(k, sum) by its definition */

k=0Asum=0An>0 = sum=2(:0<i < k:qfi])

/* replace k, sum on the RHS by their values given in the LHS */
k=0Asum=0An>0 = 0=2(:0<i<0:af])

/* summation over an empty range gives 0 */
k=0Asum=0An>20 = 0=0

k=0Asum=0An>0 =T
/* any predicate of the form p = T is valid */
T

Note that we write our comments (indicated by /* ...*/) in between successive predicates. This
is because they are too long to be written next to the predicates, like in our proof format for
propositional tautologies.

For condition 2:

I(k, sum) AB = I(k+ 1,sum + alk])

/* replace I(k,sum) and B by their definitions */
sum=X({:0<i<k:a[i)Ak#n = sum+talk]|=2({:0<i<k+1:af])
EG:0<i<k+1l:af])=2(E:0<i<k:ali]) +alk] */
sum=2{:0<i<k:ali)Ak#£n = sum+ak]l =20G:0<i<k:ali])+ alk]
/* subtract a[k] from both sides of the equation on the RHS*/
sum=X{0:0<i<k:ali)Ak#£n = sum=2((:0L{ <k afi])

/* any predicate of the form pAg¢ = pis valid */

T

For condition 3:

Ik, sum) A—-B = sum =% :0<i< n:ali])

/* replace I(k,sum) and B by their definitions */
sum=2(:0<i<k:ali)]A-(k#£n) = sum=2(i:0<i < n:qfi])
J* simplify =(k #n) to k=n */

sum=X{:0<i<k:afi)Ak=n => sum=2((:0<{<n:af)
/* replace k& on the LHS by its value given in the LHS */
sum=X{:0<i<n:afiAk=n => sum=2(:0<{i<n:af)
/* any predicate of the form pA g = pis valid */

T

This proof does not deal with one particular type of program error: violation of array bounds. To
deal with this, we use the invariant I(k,sum): sum =B : 0 <i < k:ali) A0 <k <m, Le., we
have added 0 < k < n as a conjunct. The tableaux used in the proof remain essentially the same
(the only difference is that the definition of the invariant changes), but the proofs of the verification
conditions are a little different, so we give them below. It is instructive to compare these proofs to
the ones above.

For condition 1:
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k=0Asum=0An>0 = Ik sum)

/* replace I(k, sum) by its definition */

k=0Asum=0An>0 = sum=2({:0<i<k:qiA0<k<n
/* replace k, sum on the RHS by their values given in the LHS */
k=0Asum=0An>0 = 0=3(1:0<i<0:afidpAO<0<n
/* summation over an empty range gives 0 */
k=0Asum=0An2>20 = 0=0A0<n

/* and-simplification, substitution */

k=0Asum=0An>20 =>n2>0

/* any predicate of the form pA ¢ = p is valid */

T

For condition 2:

I(k, sum) AB = I(k+ 1,sum+ alk])

/* replace I(k,sum) and B by their definitions */

sum=X({:0<i<k:a[i)AO<k<nAk#n = sum+tak]=2(:0<i<k+1:a[i) A
0<k+1<n

J*EE:0<i<k+1:a[i])=2(:0<i<k:afi]) +alk] */

sum=X({:0<i<k:ali)AO<k<n = sum+ak]=2({:0<i<k:afi]) +ok]A-1<k<n—

/* subtract a[k] from both sides of the equation on the RHS*/

sum=2{0:0<i<k:ai)A0<k<n => sum=2{:0<i<k:afi)A-1<k<n

J* sum =2(i: 0 <i < k:ali]) implies itself, and 0 < k < n implies -1 <k <n*/

T

For condition 3:

I(k,sum) A—-B = sum =3(i:0<i< n:afi])

/* replace I(k, sum) and B by their definitions */
sum=2{(:0<i<k:af)AO<k<nA-(k#£n) = sum=2({:0<i<n:al)
/* simplify —=(k £n) tok=n*/

sum=X{0:0<i<k:ali)AOLk<nAk=n = sum=2(:0<i<n:af)
/* replace k on the LHS by its value given in the LHS */
sum=2{:0<i<n:af)A0<k<nAk=n => sum=2(:0<i<n:al])
/* any predicate of the form pA ¢ = pis valid */

T

3.5.2 Another Extended Example: Finding the Minimum Element of an Array

The following program assigns to m (upon termination) the smallest value that occurs in array
a. Here g[0..(rn — 1)] is an array of integer. The precondition is n > 1, which means that array
contains at least one element (a[0]). The postcondition is m = MIN(i : 0 € ¢ < n : g[f]), which
states that m has the minimum value that occurs in array a.

P: {n > 1}
j=1
m := a[0];
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while By : § #n do
if By : m > a[j] then
m = a[f]
else
skip
endif;
ji=3+1
endwhile
{m=MIN(@E:0<i<n:ali])}

Here skip is a statement which has no effect (it’s like a “no op”). We can think of skip as being
the same as the statement x := z (where x is any variable of the program under consideration).
For z := z, the assignment axiom tells us that {Q(z)}x := 2 {Q(x)} is valid. In other words,
the precondition of skip is the same as its postcondition. We shall use this from now on, in effect
treating skip as an assignment statement that leaves the variable it assigns to unchanged.

The next step is to write the invariant in each of the four places, as given in step 2 above. We use
the invariant I(j,m) : m = MIN(i : 0 <4 < j : g[é]). This results in the following tableau.

P

Q(m):

{n21}
j=1
m := a[0)];

{invariant I(j,m) :m =MIN(i: 0 <i < j:a[i])}
while By : § #n do
{I(j1 m) A Bl}
if By :m > a[f] then
m := a[f]
else
skip
endif;
ji=7+1
{1(,m)
endwhile
{I(J‘:& m) A _'Bl}
{m=MINGE:0<i<n:afi])}

Next, we apply the assignment axiom to the assignment statement § := § 4 1 and its postcondition
I(4,m), resulting in the following tableau:

P

{n2z1}
j=1
m := a[0];

{invariant I(f,m) :m =MIN(i: 0 <i < §:a[i])}
while By : § £#n do
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{I(j: m) A Bl}
if By : m > a[j] then
m = a[f]
else
skip
endif;
{17 +1,m)}
ji=7+1
{Z(5,m)}
endwhile
{I(je m) A _'Bl}
Q(m): {m =MIN@E:0<i<n:ali])}

Since the if-statement now has a precondition (namely I(§, m) A By) and a postcondition (namely
I(7 + 1,m)), we can apply step 4 of our procedure above. This results in the following tableau.

P: {n > 1}
j=1
m := a[0];

{invariant I(j,m) :m =MIN(i: 0 <i < j:a[i])}
while By : § #n do
{I(j1 m) A Bl}
if By :m > a[j] then
{I(7,m) A B1 A Ba}
m := a[f]
(G +1,m)}
else
{I(j& m) ABi A _'B2}
skip
{I(G +1,m)}
endif;
{17 +1,m)}
ji=7+1
{I(5,m)}
endwhile
{I(je m) A _'Bl}
Q(m): {m =MIN@E:0<i<n:ali])}

We now apply the assignment axiom to the assignment statement m := 4[] and its postcondition
I(§+1,m). We also write down the precondition for the skip, which is the same as its postcondition.

P: {n > 1}
j=1
m := a[0];
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{invariant I(f,m) :m =MIN(i: 0 <i < §:a[i])}
while By : § #n do
{I(j& m) A Bl}
if By : m > a[j] then
{1(4,m) A By A Bs}
{I(G + LaliD)}
m = a[f]
{IG +1,m)}
else
{I(j, m) A Bl A —'B2}
{1 +1,m)}
skip
{I(i+1,m)}
endif;
{I(j +1,m)}
ji=7+1
{I(5,m)}
endwhile
{I(j,m) A —Bi}
Q(m): {m=MIN@E:0<i<n:ali)}

Next, we apply the assignment axiom to the assignment statement m := a[0] and its postcondition
I(j,m).

P {n > 1}
j=1
{1(, a0])}
m := a[0];
{invariant I(j,m) :m =MIN(:0 <i < §: afi])}
while B : § #n do
{I(je m) A Bl}
if By : m > a[j] then
{1 (4, m) A By A Ba}
{I(7+LallD}
m = a[f]
{7 +1,m)}
else
{1(4,m) A By A—Bo}
{I(j +1,m)}
skip
{I(j +1,m)}
endif;
{7 +1,m)}
ji=7i+1

{1(5,m)}
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endwhile
{I(j1 m) A _'Bl}
Q(m): {m=MIN@E:0<i<n:ali])}

Finally, we apply the assignment axiom to the assignment statement § := 1 and its postcondition
I(4,a[0]). The tableau is now complete:

P: {n 21}
{1(1,4[0])}
j=1
{Z(7,a0])}
m := a[0];
{invariant I(j,m) :m =MIN(i: 0 <i < j:a[i])}
while By : § #n do
{I(j: m) A Bl}
if By : m > a[j] then
{1(4,m) A B1 A Bz}
{I(7 +Lal/]}
m = a[j]
{I(F +1,m)}
else
{(j,m) A By A—Bs}
{I(F +1,m)}
skip
{I(j +1,m)}
endif;
{I(7 +1,m)}
j=i+l
{1(4,m)}
endwhile
{I(ja m) A _'Bl}
Q(m): {m=MIN(@E:0 <i<n:ali])}

From the complete tableau, we extract the following verification conditions:
1) n>1=I(1,0[0])

2) I(j,m) ABy A By = I(j+ 1,a[f])

3) IGm)ABLA-By = I(j+1,m)

N If,m)A-Br=>m=MIN(GE:0<i<n:afi])

These are proven valid as follows.

Proof of verification condition 1.
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n>1 = I(1,a[0])

/* law of implication, —=(n > 1) =n < 1*/
n < 1V I(1,a[0])

/* replace I(j,m) by its definition */
n<1val0] =MIN(:0<i<1:afi])

/* singleton range rule for quantification */
n < 1V a[0] = a[0]

n<lvT
/* commutativity and or-simplification */
T

Proof of verification condition 2.

I(j,m)/\Bl ANBy = I(j‘+1,ﬂ.[_]])
/* replace I(j,m), By, and Bs by their definitions */
m=MIN@G:0<i<j:a[i)AjEnAMm>alf] = af]=MIN(@E:0<i<j+1:al])
/* oplit therange 0 <i<j+1linto0<i<jandi=3%*/
m=MINGE:0<i<j:a[i)Aj#EnAm>a[j] = a[f]=(a)flminMIN(GE:0 <i < j:ali)
/* from LHS, we have a[j] < MIN(i: 0 < i < j: afi]), hence

alf] min MIN(i : 0 < ¢ < j : a[i]) = a[f] by definition of min */
m=MIN(G:0<i<j:a[i) Aj£nAm>a[j] = a[f] =al]]

m=MING:0<i<j:a[i)Aj#nAm>a[j] = T
/*p = Tisvalid for any p */
T

Proof of verification condition 3.

I(jjm)ABiA-By = I(j+1,m)

/* replace I(j,m), Bi, and Be by their definitions */
m=MIN@:0<i<j:afifAj#nAm<alf] = m=MIN{E:0<i<j+1:af)

/* oplit therange 0 <i<j+1linto0<i<jandi=3%*/
m=MINGE:0<i<j:a[i)Aj#nAm<a[f] = m=(a[f]lmin MIN(G:0<i<j:a[i))
/* from LHS, we have m = MIN(i: 0 <i < 7 : a[i]) */

m=MIN@E:0<i<f:a[i) Af£nAmLa]f] = m=qa[f]minm

/* From LHS, we have m < a[j], hence a[f]min m = m by definition of min */
m=MIN(G:0<i<j:a[i)Aj#EnAm<a[j] = m=m

m=MIN{:0<i<j:afi)AjEnAm<Lalj] = T
/*p = T isvalid for any p */
T

Proof of verification condition 4.
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IGm)A-B) = m=MIN(E:0<i<n:afi)

/* replace I(j,m) and By by their definitions */
m=MINGE:0<i<j:a[i)A-(j#n) = m=MIN(GE:0<3i<n:aql])
/* simplify =(j # n) to j =n */

m=MIN(GE:0<i<j:a[i)Aj=n > m=MIN(:0<i<n:af)
/* replace j on the LHS by its value given in the LHS */
m=MIN(G:0<i<n:afiJAj=n => m=MIN(E:0<i<n:ai)
/* any predicate of the form pA g = pis valid */

T

Note that we did not prove that all array references are within the array bounds. This proof
is exactly analogous to the proof for the previous example, i.e., use the invariant I(j,m) : m =
MIN@G: 0 <i<j:ali]) Al <7 < n and show that the verification conditions are valid for this
invariant.

3.6 Total Correctness of Programs: The Notation (P} S (Q)

So far, we have concerned ourselves with conditional correctness only: if a program terminates,
then the final state will satisfy the postcondition. It is also crucial to prove that the program does
in fact terminate. Towards this end we define the notation {P) S (@) to have the following meaning:

If execution of § is started in a state satisfying P, then
execution of S does in fact terminate, and the final state is guaranteed to satisfy Q.

Because termination is guaranteed, this is called total correctness. For (P) S (@) to have the meaning
given above, we define the validity of (P} S (@) as follows.

Definition 20 (Validity of (P) S (Q))
(P) S{Q) is valid iff

For every state 3 such that s(P) = T:
If execution of S is started in 3, then:
the execution terminates in some state t such that #(Q) =T

3.6.1 Specifying Termination Only

Total correctness requires two things: 1) the program terminates, and 2) the final state satisfies the
postcondition. It is usually easier to prove each of these properties separately. We already know
how to express (2), it is just conditional correctness (see definition 17).

To express (1), we use (P) S (T), which states that:

If execution of S is started in a state sutisfiying P, then execution of S terminates in o
final state that is guaranteed to satisfy T.
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In other words, no constraint is made on the final state, (since any state whatsoever satisfies T).
Hence, the only requirement is termination.

3.6.2 Relating Total Correctness, Conditional Correctness, and Termination

There is an important relationship between total correctness, conditional correctness, and termi-
nation. To see it, we first restate these as follows:

Conditional Correctness: If execution of § is started in a state satisfying P, then if execution of
S terminates, the final state is guaranteed to satisfy Q.

Termination: If execution of S is started in a state satisfying P, then execution of § terminates.

Conditional Correctness + Termination: If execution of S is started in a state satisfying P, then
execution of S terminates in a final state that is guaranteed to satisfy @.

Comparing the statement of “conditional correctness + termination” above with that of total
correctness (definition 20), we see that they are the same. We summarize this as the mnemonic
equation:

total correctness = conditional correctness + termination

In terms of Hoare triples, we can write this as follows:

(PYS(Q) = (P)S(T) A {P}S{G}

3.6.3 Proving Termination: The Proof Rule for Termination of while-loops

From our informal understanding of how our programs are executed, we easily see that the only
source of non-termination is the while-loop. That is, if a program fails to terminate, the only
possible reason is that some while-loop in the program is “stuck™ and is being executed forever.
Hence, to prove termination, we only need to introduce one more proof rule, which is the following:

{1 A B} S{I},
IANB=¢ >0,
{IABAe=C)S{lp < C)
(I} while B do § (T)

¢ is an integer-valued function of the program variables, called the variant function. {I AB} S{I}
states that I is an invariant of the loop (see subsection 3.4.7 for a detailed discussion of this). Given
that 7 is in fact an invariant of the loop, I A B = ¢ > 0 states that ¢ is always positive at the
beginning of each loop iteration, and (I A B A ¢ = C) §{p < C) states that each iteration of the
loop terminates and decreases ¢.
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This rule works as follows. From I A B = ¢ > 0, we know that ¢ must be positive at the beginning
of every loop iteration. From (I A BA ¢ =C) S {p < C), we know that every iteration terminates
and decreases the value of ¢. Now suppose the loop does not terminate. Then ¢ must be decreased
infinitely often. Any integer quantity that is decreased infinitely often must eventually become
negative. Hence ¢ eventually becomes negative. But this contradicts 7 A B = ¢ > 0. Hence, we
conclude that the loop must terminate.

3.6.4 Proof Tableaux for Termination

To prove that a program terminates, we construct a proof tableau similar to tableaux for conditional
correctness, but we use (P) instead of { P} for the predicates that are inserted into the tableau.
We can interpret a valid proof tableau for termination as follows:

Interpretation of Valid Proof Tableau for Termination

If execution is started in a state that satisfies the precondition of the program, then, when
program control is “at” the location of a particular predicate in the tableau, that predicate
is guaranteed to be true in that program state.

Also, for every Hoare triple (P) S (Q) in the tableau, if control reaches P, then control is
guaranteed to eventually reach @. (This guarantees termination.)

Example 47 Termination of factorial program.

P(n): (n=0)
(1(0))

Sz k= 0;
(k)

So: f:i=1
 im

arla,ntf(k): 0<k<n
/* variant @(k): n— k& */
Sa: while B: k #n do
(I(k) A #nAp(k)=C)
{(I(k+1) Ap(k+1) < CAp(k) >0)
ki=k+1,;
{(I(k) A p(R) < C)
fi=7F+k
(I(k) A p(k) < C)
endwhile
()

Verification conditions:



96 CHAPTER 3. VERIFICATION OF PROGRAM CORRECTNESS

1) n>0=1(0)
Q) IK)ABApR)=C=>Ik+DApk+1) <CApk) >0

Proving (2) establishes {I(k) A B}S{I(k)} and {I(kK) A BA ¢k) = C)S{p(k) < C) and
IAB= k) >0 (where S = “k:=k+1; f:= f k" is the loop body).

Once (2) is proven, we can apply the proof rule for termination of while-loops, and conclude
(I(k)) Sa (T). Together with (1), this gives us (n > 0) S1;.92; 53 (T).

Proof of (1):

n > 0= I(0)

n>0=>0<0<n [*replace I(0) by its definition */

n>20=>0<n
T

Proof of (2):

IR)ABApR)=C = Ik+1)Aplk+1) <CApk)20
/* replace I, by their definitions */
0<k<nAk#nAn—k=C = 0<k+1<nAn—-(k+1)<CAn—-%k>0

O<k<nAn—k=C = -1<k<n—1ArR—-k)-1<CAR-k>0

O<k<nAn—k=C = -1<k<nAC-1<CArn-k=>0

T

The procedure to construct a proof tableau for termination is the same as that for conditional
correctness (section 8.5), except that step 2 is replaced by the following:

2. For each while-statement while B do S’ endwhile that occurs in §:

(a) Find an invariant I for the while-statement

(b) Write {I) immediately before the while-statement

(c) Write {I A —B) immediately after the while-statement
)

(d) Write (I AB A @ =C) at the top of the body of the while-statement (i.e., immediately
before S*)

(e) Include ¢ > 0 as a conjunct of the predicate occurring immediately below (IABAp = C)

(f) Write (I A < C) at the bottom of the body of the while-statement (i.e, immediately
after S')

3.7 Procedures

QOur programming language (see section 3.1) so far lacks the facility of defining procedures. We
now remedy this deficiency by extending our programming language with procedures.
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The syntax of procedure declaration and invocation is as follows:

Procedure declaration: o o
procedure pname(value fv; value—resultfr) : phody

Procedure invocation:
call prame(ave, ar)

fu, fr,ar are variable lists
QUE is an expression list

Procedures take two types of parameters: value parameters (denoted by the keyword value), and
value-result parameters (denoted by the keyword value—result). Value parameters are treated as
constants within the procedure body, i.e., they cannot be changed. They are used only to pass
values into the procedure. Value-result paramenters can be changed in the procedure body. They
are used both to pass values into the procedure and to return values computed by the procedure
to the invoking program.

The parameters that are used to write the procedure declaration are called formal parameters.
Formal parameters can be further subdivided into formal value parameters (given by the list fv of
variables) and formal value-result parameters (given by the list fr of variables). The parameters
that are passed to the procedure in a procedure invocation are called actual parameters. Actual
parameters can be further subdivided into actual value parameters (given by the list Gue of expres-
sions) and actual value-result parameters (given by the list ar of variables). Note that since the
formal value parameters do not return a value to the invoking program, the actual value parameters
can be expressions instead of variables, since we do not need a variable to return the changed value.

3.7.1 Proving Conditional Correctness of Procedures

The basic principle in proving conditional correctness of procedures is as follows:

¢ Prove conditional correctness of the procedure body (in terms of the formal parameters).

¢ Replace the formal parameters by the actual parameters to conclude the conditional correct-
ness of procedure invocations.

Effectively, this just “simulates” what happens when a procedure is invoked — the formals get
replaced by the actuals. Although this strategy works in general, problems can arise in certain
peculiar situations:

Example 48 Actual parameters are not distinct (aliasing).

procedure incl(value z;value—result y):
{T}
y=x+1
{ly==z+1}



58 CHAPTER 3. VERIFICATION OF PROGRAM CORRECTNESS

Replacing the formalg by the actuals, we conclude {T}call incl(n,n){n = n+1}. Obviously this
is invalid, since (n =n+ 1) =F.

Another problematic situation is:
Example 49 Formal parameters are not distinct.

procedure copy (value z, x; value—result y):

{T}
Yi=x
{y=2a}

Replacing the formals by the actuals, we conclude {T}call copy(s,b.c) {¢ =?}. Should ? be ¢ or
b. We don’t kmow — the final value of y is not well-defined.

To avoid problems such as those illustrated above, we make the following assumptions:

¢ The formal and actual parameters match with respect to number and type.

e The formal parameters are pairwise distinct (and hence the formal parameters have well-
defined initial values).

e The actual parameters are pairwise distinct (no aliasing).
¢ The value parameters are not changed in pbody.
¢ All variables other than formal parameters are local to the procedure (i.e., no global variables).

e No mutual recursion (although simple recursion, where a procedure invokes itself, will be
dealt with).

Conditional Correctness of Nonrecursive Procedures

The rule for proving conditional correctness of nonrecursive procedures is as follows.

{P(fv, fr)} pbody {Q(fv, fr)}
{P(ave,ar) } call prame(ave, ar) {Q(ave, ar) }

This states that if pbody is conditionally correct with respect to precondition P(fv, fr) and postcon-
dition Q(fv, fr), then the procedure invocation call pname(ave,ar) is conditionally correct with
respect to precondition P(ave,ar) and postcondition Q(ave,ar) (ie., P and @ with the formal
parameters replaced by actual parameters).

Example 50 Add 1 to a given value.
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procedure incl(value z; value —result y):
P: {T}

yi=x+1
Qv {y—o+1)

Applying the proof rule, we conclude {P}call incl(m,n) {@(m,.n)}.
Replacing P, @ by their definitions, we get {T} call incl(m,n) {n =m + 1}.

Example 51 Find the minimum of two values.

procedure min(value z,y; value—result 2):
P {T}

if # < y then z := 7 else z := y endif
Q(m,y,z): {z = mﬁn(m, y)}

Applying the proof rule, we conclude {P}call min(a,b,c) {Q(a,b,¢)}
Replacing P, @ by their definitions, we get {T} call min(a, b, ¢) {¢ = min(a,b)}

Example 52 Compute the factorial.

procedure fact(value n; value —result f):
P(n): {n > 0}
{1(0,1)}
k:=0;
{1(k. 1)}
f=1
{invariant I(k, f): f = kl}
while & # n do
{1(k, f) Nk # n}
{Ik+1,f % (k+ 1))}
k:=k+1;
{Z(k, f* k)}
fi=Ff=k
{1k, 1)}
endwhile
(f=KAk=n)
Q(n, f):  {f =nl}

Applying the proof rule, we conclude {P(a)}call fact(a,b) {Q(a,b)}.
Replacing P, @ by their definitions, we get {a > 0} call fact(a,d) {b = al}.
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Dealing with Initial Values of Parameters

Value parameters cannot be changed — their value is always the initial value. Value-result param-
eters can be changed, and so their value at some point in the procedure body is not necessarily
the initial value. In many situations (e.g., incrementing a variable, sorting an array) we need to
be able to relate the final value of a value-result parameter to its initial value in order to specify
correctness as a precondition and postcondition. We shall do this by recording the initial value of
the value-result parameter in an “upper case” variable (that is not changed). This variable is then
passed to the procedure as a value parameter.

Example 53 Increment a variable.

procedure inc2(value Y; value —result y):
PY,y): {y =7}

yi=y+1
QY.y): {y=Y+1}

Applying the proof rule, we conclude {P(Y,y)}call inc2(Y,y) {Q(Y,v)}
Replacing P, @ by their definitions, we get {y =Y }call inc2(Y,y){y =Y + 1}.

These extra value parameters are never referenced in code, (see above example) i.e., they don’t
affect execution. In the actual program, they can be omitted. Since these variables are used only
to carry out the proof, and not to affect program execution, they are called ghost, or auziliary
variables.

Conditional Correctness of Recursive Procedures

The rule for proving conditional correcthess of recursive procedures is as follows.

iP(Wg ar’)} call pname(ave’, ar’) {Q(ave’, ar’) }
{P(fv, fr)} pbody {Q(fv, fr)}
{P(ave,ar) } call prame(ave, ar) {Q(ave, ar) }

H1t H2 means H2 can be proven assuming H1 (H1, H2 are Hoare triples)

This states that if we can prove that pbody is conditionally correct with respect to precondition
P(fv, fr) and postcondition Q(fv,fr) by assuming that all recursive invocations in pbody are
conditionally correct, then we can conclude that the invocation call pname(ave,ar) is conditionally
correct with respect to precondition P(ave, ar) and postcondition Q(ave,ar) (i.e., P and @ with
the formal parameters replaced by actual parameters).

In effect, we are doing induction on the “tree” of procedure invocations.
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Example 54 Compute the factorial recursively.

procedure r fact(value n; value—result f):
P(n): {n>0}

S: if n =0 then
{n>0An=0}
{1 =nl}
f=1
1 =)
else
{n2>20An#£0}
(n—1>0)
call rfact(n — 1, f);
(f = (-1
{f *n=nl}
fi=f=*n
{f =nl}
endif
Qn, £): {f = nl}

From the above tableau, we conclude:

{a > 0} call r fact(a, b) {b = al}
|_

{n 20} S{f =nl}
Here, the recursive invocation (shown indented) is with actual parameters a =n —1, b= f.

Hence, applying the proof rule, we conclude {c¢ > 0} call rfact(c,d) {c = dl}.
Example 55 Conditional correctness of procedure msort (mergesort).

procedure msort(value A, n; value—result q):
/* sort array a[0..(n — 1)] */
n: integer;
A, 6 : array[0..n — 1] of integer
PlAn,a){a=AAn >0}
S': if n =0V n=1then skip
{sorted(a, A, n)}
else
{n =2}
mid == [n/2];
{1 <mid<n-1}
b:= a[0..(mid — 1)];

61
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B:=1
(b = B Amid >0}
call msort(B,mid, b);
{sorted(b, B,mid)}
¢ := a[mid..(n — 1))
=g
{c=CAn—mid >0}
call msort(C,n — mid, ¢);
{sorted(c, C,n — mid)}
{sorted(b, B, mid) A sorted(c, C,n — mid) Amerged(B,C, A, mid,n — mid,n)}
call merge(B, C, A,mid,n — mid, n, b, ¢, a);
{sorted(a, A, n)}
endif
{sorted(a, A,n)}

where

sorted(a,b,n) = perm(a,b,n) A ordered — nondec(a,n)

ordered — nondec(a,n) = V(E:0<i<n—1:qf] <afi +1])
perm(a,.b,n) = V(i:0 <i < n:num(e,afi],n) = num(b,ali],n))
num(c,z,n) =N({E:0<i<n:cfi] =2)

merged(b, ¢, a, £,m,n) =
/* €. m,n are the sizes of b, ¢,a respectively */
V(i : 0 <i < n:numle,ali],n) = num(b,afi],£) + num(c,ali], m)

merge(B, C, A, mid,n — mid,n,b,c,a) is a procedure that takes two arrays b, ¢ that are sorted in
non-decreasing order and merges them into an array o that is also sorted in non-decreasing order.

3.7.2 Proving Termination of Procedures

In proving termination of procedures, we follow a similar strategy to proving conditional correctness
of procedures, ie.:

e Prove termination of the procedure body (in terms of the formal parameters).

¢ Replace the formal parameters by the actual parameters to conclude termination of the pro-
cedure invocation.

There are two main differences from the method for proving conditional correctness. First, the
postcondition is simply T, since we do not care about the actual final state. Second, we construct
a tableau for termination rather than a tableau for partial correctness (the tableau is constructed
for the procedure body and its pre/post-conditions).
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Proving Termination of Nonrecursive Procedures

The rule for proving termination of nonrecursive procedures is as follows.

(P(fu, fr)) pbody (T)
{ P(ave,ar)) call pname(ave, ar) (T)

This states that if pbody terminates with respect to precondition P(fv, fr), then the procedure
invocation call pname(ave, ar) terminates with respect to precondition P(ave,ar) (i.e., P with the
formal parameters replaced by actual parameters).

Example 56 Procedure to compute the factorial.

procedure fact(value n; value —result f):
P(n): (n>0)

{
/* variant @(k): n— %k */
while B : k #n do
(T(R) A K £ 1A p() = C)
{Tk+1)Apk+1) <CAplk) > 0)
ki=k+1,
(I(k) A p(k) < C)
fi=Ff=k
(k) A p(k) < C)
endwhile
(™)

Verification conditions:
1) n>0=1(0)
2)IR)ABApk)=C=>Tk+D)Apk+1) <CApk) >0

Proving (2) establishes {I(k) A B}S{I(k)} and {J(k)ABA @k) = CyS{pk) < C) and
IR)AB = ¢(k) >0 (where § = “k:= k+1; f := f+ k" is the loop body). Once these are proven,
we can apply the proof rule for termination of while-loops, and conclude (I(k))while B do S (T).
Together with (1), this gives us (n > 0) fact—body (T) (where fact—body is the body of procedure
fact). Given that {(n > 0) fact—body {T) is valid, we then apply the proof rule for termination of
nonrecursive procedures, and conclude {¢ > 0) call fact(a, b) {T), ie., all invocations with actual
parameter ¢ non-negative terminate.
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Proving Termination of Recursive Procedures

The rule for proving termination of recursive procedures is as follows.

{0 < plave',ar?) < C) call pname(ave!, ar’) (T}
l_

(0 < ¢(fv, fr) = C) phody (T)

0 < ¢(awe, ar)) call prame(ave, aT) (T)

—

H1 I+ H2 means H2 can be proven assuming H1 (H1, H2 are Hoare triples). ¢ is a “variant
function” over the parameters of the procedure.

This states that if we can prove that pbody terminates by assuming that all recursive invocations in
phody with a smaller non-negative variant ¢ terminate, then we can conclude that all invocations
with non-negative variant ¢ terminate.

In effect, we are doing induction on the “tree” of procedure invocations.
Example 57 Termination of procedure r fact.

procedure r fact(value n; value—result f):
/* variant p(n): n */
P(n): (0<n=¢pn)=0C)
S: if n =0 then
fi=1
()
else
n>0An#0)
0<n—-1=pnr-1)<C)
call rfact(n — 1, f);
(T)
fi=f=*n
(T)
endif
(T)

From the above tableau, we conclude:

{0 <a=yle) < C)call rfact(a,b) (T)
l_
(0 <n=0p(n)=0C)S(T)

Hence, applying the proof rule, we conclude (0 < ¢ = ¢(c)) call rfact(c,d) (T).

Example 58 Termination of procedure msort (mergesort).



3.8. ARRAYS 65

procedure msort(value A, n; value—result g):
/* sort array a[0..(n — 1)] */
n: integer;
A, a: array0..n — 1] of integer
/* variant @(n):n*/
P(n): (n>0)
0<p(n)=n=D)
S: if n =0V n =1 then skip {T)

else
(n>2)
mid = [n/2];
(1< mid <n-—1)
b := a[0..(mid — 1)];
B =
{0 < p(mid) = mid < D)
call msort(B, mid, b);
(T}
¢ := g[mid..(n — 1)];
C:i=q
(0 < ¢(n — mid) = n — mid < D)
call msort(C, n — mid, ¢);
(T)
{n>0Amid>0An—mid>0)
call merge(B,C, A, mid,n — mid,n,b, ¢, a);
(T)
endif
(T)
3.8 Arrays

Let a[0..(n — 1)] be an array with index range 0 to n — 1, and elements of type TP. We regard
as a function from integers in 0..(n — 1) to values in T'P. We then define (a;4 : e) as follows.

o[ Hiej
(aaf'-e)b]_{aw] ifi £ 4

(a;1: e) is an array that is identical to ¢ except for index ¢, where it returns e instead of al].

Example 59 Evaluation of (a;4: ¢)
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(a;4:5)[5] = 5

(t=4Ab=5)V(i#jAalj]=5) [*two-case analysis on value of § */

E=7vE#inai]=5)

(=jVi£j)A=jVa[j]=5) /* distribution*/

(i=37vali]=05) /* excluded middle, and-simplification */

Example 60 Evaluation of (a;i: ¢)
(@34 : 5)[j] = 6

(t=4Ab=86)V(i#jAalj]=6) /[*two-case analysis on value of § */

Fv(i#3jnalj]=3)

i#jinalj]=6 /* or-simplification */

3.8.1 Assignment Axiom for Arrays

By regarding arrays as functions from index values to element values, we can think of an array as
a simple variable whose type happens to be “function.” We then see that the assignment afi] :=¢
is in fact the same as the assignment ¢ := (a;4 : €): changing a[i] to e is the same as changing a to
a new array that is the same as @ in all indices except ¢, where it returns e. Since arrays are just
simple variables, we can use the assignment axiom (subsection 3.4.1). Applying the assignment
axiom to array assignment gives us the following assignment axiom for arrays:

{QUai : e))}ali] :=e{Q(a)} is valid.

a has the value after execution that (a;é : €) has before, so @ (a) is true after iff Q((a;4: ¢)) is true
before.

The next four examples present and simplify valid Hoare triples that are deduced from the assign-
ment axiom for arrays.

Example 61 {(a;i: 5)[i]] = 5} a[i] := 5{ali] = 5}.

Example 62 {(a;i: (a[i] + 1))[{] < 5}ali] := ali] + 1 {a[i] < 5}.
(aii : (afi] + 1)) <5

ali] +1<5

ali] <4
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hence,

{ali] < 4}ald] := ali] + 1{ali] <5}.

Example 63 {(a;i: 5)[] = (a;4: 5)[f]} ali] := 5 {a[i] = a[j]}-
(i : 5)[i] = (a4 : 5)[3]
5 = (434 : 5)[]]

(f=4Ab=8)v({Ei#jADd=a[j]) /[* case analysis on (a;i : 5)[7]

(E=5)v(E#iA5=a[j])

G=jVi£)AG=7vb=alj]) /* distribution */

i=jvalj]=5 /* excluded middle, and-simplification */

hence

{i = jvalj] = 5}tali] := 5{ali] = a[j]}.

Example 64 {(a;ali] : §)[i] = i} alalf]] := i {ali] = i}.
(a;ali] : §)[i] =14

(ali] =ini=1) v(a[i] #iAali] =i) [* case analysis on (a;a[d] : £)[i] */

(a[i] =ini=1) /* contradiction, or-simplification */

ali] =14 /* and-simplification */
hence

{ali] = i} alali]] := ¢ {ali] = i}.

3.8.2 Implementing Linked Lists Using Arrays

We discuss the implementation of a singly linked list using arrays. We use two arrays: data[0..(n—1)]
and nezt[0..(n — 1)]. dote contains the data items in the linked list, and next contains the pointers
to the next item. Also, the index head gives the index of the first element of the list.
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head
date |[FREE [FREE Y |FREE T % |FREE
neat 5 2 | NI

Linked list is z,y, 2,NIL

We show how the insertion and deletion operations on a linked list can be formally specified, and
verify the correctness of an implementation of the insert operation.

Specifying and Verifying Insertion into Linked Lists

insert(value item, pos; value —result dota, next, head)
/* ingert item into linked list stored in arrays data, next with first element datalhead]. Element
pos is used to store z. */

precondition: list(head, data,next) = L A free(pos, data)
postcondition: list(head, data, next) = iteme L A datalhead] = item
where

list(head, data, next) = dotalhead) o list(next[head], data, next)
list(NIL, data, next) = A (empty sequence)

free(pos, data) = (data[pos] = “FREE")

¢ denotes sequence concatenation

The following procedure performs the insert operation into a linked list. We show it is correct with
respect to the specification above.

procedure insert(value item, pos; value —result data, next, head)

P: {list(head,data,next) = L A free(pos)}
{list(head, (data; pos : item), (next;pos : head)) = L}
/* and-simplification */
{tist(head, (data; pos : item), (next; pos : head)) = L A item = item}
/ * (data; pos : item) [pos| = item = /
{list(head, (data; pos : item), (next;pos : head)) = L A (data; pos : item)[pos] = item}
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/* array assignment axiom */
data[pos] := item;
{list(head. data, (next; pos : head)) = L A datalpos] = item}
/ * (next; pos : head)[pos] = head * /
{list((next; pos : head)[pos], data, (next; pos : head)) = L A data[pos] = item}
/* array assignment axiom */
next[pos] := head;
{list(nextpos|, data, next) = L A data[pos] = item}
/¥ idempotence of A */
{datalpos] = item A list(next[pos),data, next) = L A datalpos| = item}
/ * list(pos, data, next) = data[pos|  list(next[pos|, data, next) = /
{list(pos, data, next) = item e L A data[pos] = item}
head := pos;
Q: {list(head,data, next) = item e L A datalhead] = item}

The verification condition

list(head, data, next) = LA free(pos) = list(head, (data; pos : item), (next; pos : head)) = L

is seen to be valid by observing that, when free(pos) is true, then pos indexes in to free positions
in both dato and next. Hence, changing the value in these positions cannot change the linked
list. The best way to understand this proof is to start with the postcondition and work your way
backwards, using the comments t0 guide you in each step.

Specifying Deletion from Linked Lists

delete(value—result data, next, head)
/* delete first item from linked list stored in arrays data, next */

precondition: list(head, data,next) = X o L
postcondition: list(head, data, next) = L

3.9 Deriving Invariants from Postconditions

When the postcondition contains quantifications, the invariant can sometimes be obtained from
the postcondition by making the range of quantification depend on the program variables:

1. The invariant ig initially established by making the range empty.
2. The range extended one element at a time in a loop

3. When the range has been extended to that in the postcondition, the program can terminate.

Examples of invariants that we derived in this way are the invariants in the following programs:
linear search, array sum, array minimum, bubble sort.



70 CHAPTER 3. VERIFICATION OF PROGRAM CORRECTNESS

3.10 Directed Graphs

There are two popular representations for directed graphs:
1. Adjacency matrix: c[i, §] is T iff there is an edge from i to j. If c[i, j] is an integer, then it
gives the “cost” of the edge from ¢ to §. Assumes nodes are numbered.
2. Adjacency list: for each node i, there is a linked list containing the nodes § for which there
is an edge from § to §

We now present a derivation of a shortest path algorithm from a formal specification.

3.10.1 All-Pairs Shortest Path Algorithm
Input:

1. Directed graph g = (v,e). » is set of vertices (nodes), e is binary relation over nodes.
2. Cost matrix ¢ for g. (i, j] = cost of the edge from ¢ to § (= +oo if —e(, §)).

Qutput:
Matrix a, where a[i, j] = cost of a shortest path from ¢ to j (= +o0 if no path from ¢ to 7).

Precondition P: V(4,7 : e(4,§) : cfi,§] > 0)
/* edges have non-negative cost */

Postcondition @: Y(i,j:i€vAfewv:ali,j] = MIN(x : path(m, i, ) : cost(n)))
where
mth(ﬂaiﬁj) = El(k&ﬂ-’ =7 ek: mth(ﬂ-’e‘i&k) A e(ka.?)) v (C[ﬂ,j] 7é +ooAT =i ".?)

{0 if |7] =1
03 =1 lanlt],w[2)] + cost(ei(m)) it [x] > 1

m, @ are sequences of nodes (paths).
ti(w) is 7 with the first node removed.

Ag this is a considerably more intricate algorithm than those we have covered so far, it is unclear
how to formulate the invariant. We apply the method suggested in section 3.9.

For the shortest path problem, the range in the postcondition is path(r, 4, ). We restrict this by
restricting the nodes that can be in m:

V(E,j:i €vAf €v:afi,j] = MIN(r : path(m, i, §, ¢) : cost(n)))
where

path(md,f,) = Ak, 7' o =n"ekAk € a:path(n', i, k,e) Ae(k,7)) V (c[i,f] #+ooAT =iej).
/* every node of 7, except possibly i,f, sina Cv */
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The invariant of our shortest path program can then be expressed informally as: “afi,j] = the
length of a shortest path & such that path(r, i, 7, ), where a C v. We express this invariant (g, )
formally as follows:

Vi, j:i€vAf cv:afi,j] = MIN(x : path(m, i, 4§, o) : cost(n))) A aC .
At this point, we should:
1. Determine how to initialize the invariant, and

2. Check whether the invariant and termination condition (i.e., =B, where B is the looping
condition) implies the postcondition.

These checks should be done as soon as possible, so that errors are discovered at the earliest possible
time, before more effort is wasted.

To initialize the invariant, we use 4 := ¢;a := . The precondition is then I(c,B). Since a path
from ¢ t0 j contains no nodes except ¢ and j, this path is simply the edge from ¢ to j (if it exists).
Hence, the cost of a shortest path from i to j is the cost of an edge from i to §, i.e., [i,f]. This is
what I(c,D) asserts, hence I(c, ) is valid.
Upon termination, we have I(a,) A = v, i.e.,

Vi, j:i€vAj€v:ali,j] = MIN(7 : path(m,i,4,v) : cost(n))) A v Cuo
By definition, path(r, i, j,v) = path(m, i, §). Hence:

V(E,j:i€vAf€v:ali,j] = MIN(r : path(m, i, ) : cost(m)))
which is ). These considerations lead to the following outline and partial tableau.

/* Shortest path: find the length of a shortest path from { to §. */
P V(6,7 : e(i,f) : cli, 7] 2 0)}
{1(c,0)}
a:i=¢ /* shorthand for matrix copy */
{1{a,0)}
o= P
{invariant I(a, &): V(i, 7 = ai, j] = MIN(7 : path(r, i, 7, @) : cost(r))) A a C v}
while o # v do

{I(a; ) A # v}
choose(v — o, n); /* Select some node n € v —a */
a:=alU{n}
extend; /* re-establish I(a, ) */
{I(a, )}
endwhile

{H(a,a) Aa=v}
Q: {¥(i,7 :: afi, ] = MIN(x : path(m,i,7) : cost(n)))}

extend re-establishes 7(a, ), “extending” it to take account of new node n. How is I(a,) re-
established? The idea is as follows: adding » to o introduces new possible shortest paths. We need
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to check these and modify ¢ appropriately. After adding n to «, shortest path from i to j is the
shorter of:

¢ The previous shortest path from i to j.
¢ A new shortest path from ¢ to § via n.

This new path must be a concatenation of a shortest path from ¢ to » and a shortest path from n
to 7. Hence, extend is:

a[ﬁaj] = mﬁn(a[ﬁ,j], al}? n] + a’[ﬂ’ﬁ J"])

executed for every i,7 € v. We can now complete the outline and tableau as follows.

/* Shortest path: find the length of a shortest path from § to j. */
P {V(i,j : e(i,f) : cfi, 7] 2 0)}
{I(c,0)}
ai=¢; /* shorthand for matrix copy */
{I(a,0)}
o=
{invariant I(a, @) : ¥(i,§ = a[i, j] = MIN(7 : path(m,i,§, ) : cost(n))) A a C v}
while a # v do
{I{a, ) A # v}
choose(v — o, n); /* Select some node n € v —a */
a:=alU{nk
§:=10;
while { # |v| — 1 do
j=0;
while j # |v| — 1 do
a’[i’&.?] = mﬁn(a[ﬁ,j],a[ﬁ, ﬂ] + a[n, 3"])
endwhile
endwhile
{1{a, )}
endwhile
{H(a,a) Aa= v}
Q: {¥(i,7 :: afi, j] = MIN(x : path(r,i,7) : cost(n)))}

3.11 The Weakest Precondition

The weakest precondition provides an alternate way of defining program correctness. We first define
the concepts “weaker” and “stronger.”

If P = P’ ig valid, then :

1. P is stronger than P'.
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2. P! is weaker than P.

P restricts the set of possible states more than P’ does. F is the strongest predicate. T is the
weakest predicate.

Definition 21 (wp(S,Q))
wp(S, Q) i3 the weakest predicate P such that:

If execution of § 9 started with P true, then execution terminates, and the final state
is guaranteed to satisfy Q.

wp(S, Q) is called the weakest precondition of S with respect to Q. The following figure illustrates
wp(S, @). Recall the view of a predicate as the set of states in which that predicate is true (see
chapter 1). The execution of program S can then be regarded as a mapping that takes an initial
state to a final state. wp(S, Q) is then the largest set of initial states that are guaranteed to always
be mapped into some final state in @ by the execution of S.
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wp(S, Q)

execution of §

3.11.1 Relation Between wp and Hoare Triples
The relation between weakest preconditions and Hoare triples is expressed by the following facts:
L (wp($,Q)) S (Q)

2. if (P} S (@), then P = wp(5,Q)
3. if P = wp(S,Q), then (P) S(Q)

We summarize the above by the single fact:
(P}S(Q) = P=wp(S5,Q)
This expresses (P} S (@) as a predicate.

3.11.2 Specifying Termination Using the Weakest Precondition

When dealing with termination only, we replace the general postcondition ¢ by the postcondition
T (true).

wp(S, T) is the weakest predicate P such that:

If execution of § is started with P true, then execution terminates (and the final state
is guaranteed to satisfy T).
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i.e., wp(S,T) is the weakest precondition for termination of S.

Using this, we can express the Hoare triple for conditional correctness as a predicate:
{P}S{Q} = (P Awp(S,T) = wp(S5,Q))

3.11.3 Weakest Precondition of the Assignment Statement
wp(z ==, Q(z)) = Q)
If Q(e) is true before, and x is assigned e, then Q(x) will be true after.

Example 65 wp(z :=z+1,z<5)=(z+1<5) =<4
wp(z:=10,z=10)=(10=10) =T
wp(z:=10,z =11)=(11=10)=F

3.11.4 Weakest Precondition of the Assignment Statement for Arrays

wplali] =, Q(a)) = Q((a;i:¢))

If Q((a;4 : €)) is true before, and o is assigned (a; ¢ : €) (see subsection 3.8.1), then Q(a) will be
true after.

Example 86 wp(ali] i= 5,60 =5) = (si:5)i]l=5 = T.
Example 67 wp(ali] = ali] + L,ali] <5) = (ai:(afil + 1)) <5 = ali<4
Example 68 wp(ali] := 5,ai] = alj]) = (aii:5)[] = (a;é:8)[f] = i=jval]=5
Example 69 wp(afali]] i—i,ali] =i) = (aialil:9)i]=i = a[i] =i

3.11.5 Weakest Precondition of the two-way-if

wp(if B then §) else 52, Q) = (B = wp(5$1,Q)) A (—B = wp(S52,Q))

If B is true initially, then execution of S; terminates with @ true. If B is false initially, then
execution of S» terminates with @ true. Hence, in either case, execution of if B then 5; else 5>
terminates with ¢ true.
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Example 70 Computing the maximum of two integers.

wp(if = > y then 2z := z else 2z := y, 2 = maz(z, y))

(€ 2y = wplz =2,z =maz(z,y))) A (2 <y=>wp(z:=y,z=maz(z,y)))

(@ 2y =a=maz(@y) A (z<y=>y=max(zy)

T

3.11.6 Weakest Precondition of the one-way-if

wp(if B then $1,Q) = (B = wp(S1,Q)) A (-B=> Q)

If B is true initially, then execution of 5; terminates with ¢ true. If B is false initially, then nothing
is executed, i.e., the program state is unchanged. Hence, () must be true initially. Hence, in either
case, execution of if B then §) terminates with @ true.

Example 71 Computing the absolute value.
wp(if x < 0 then y:= —z,y = abs(x))

( < 0= wply:=—x,y =abs(x))) A (x> 0=y =abs(x))

(< 0= —z=abs(x)) A (20 =y =abs(z))

z>20=y==x

3.11.7 Weakest Precondition of a Sequential Composition

wP(SH 82& Q) = wp(‘slaw?(s?& Q))

Execution of §; terminates with wp(Ss, @) true. Hence, execution of Sy following ) terminates
with Q) true.

Example 72 Compute wp(Ss; 94, I(k, sum)), where

I(k,sum): sum=2(:0<i <k :ali)

Sa: sum. := sum + alk];
Sy k:=k+1
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Work backwards from the last assignment:
wp(Sa, I(k,sum)) = I(k + 1, sum)

wp(Sa, I(k + 1,sum)) = I(k + 1, sum + alk])
Hence

wp(Sa; S4, Ik, sum)) = I(k + 1, sum + a[k])

3.11.8 Weakest Precondition of the while-statement

wp(while Bdo 5,Q)=3(k: k>0: F)

where
Py=-BAQ
P =B Awp(S,Py)

Py =BAwp(S,P)
Pyr=BA 'wp(S, Pk—l)

Py, : The while-loop terminates in exactly % iterations, and the final state satisfies @

There is no “closed form,” i.e., no “formula” for the weakest precondition of a while-loop that
can be used to mechanically calculate it, like we did above for the assignment and if-statements.
Therefore, we still need invariants.

3.11.9 Constructing a Proof Tableau

Using the concept of weakest precondition, we can present a more comprehensive procedure for
constructing a proof tableau.

1. Write down the program S together with its precondition P and postcondition @
2. For each while-statement while B do S’ endwhile that occurs in §:

(a) Find an invariant I for the while-statement

(b) Write {7} immediately before the while-statement

(c) Write {I A —B} immediately after the while-statement

(d) Write {{ A B} at the top of the body of the while-statement (i.e., immediately before
Sh

(e) Write {1} at the bottom of the body of the while-statement (i.e, immediately after $*)
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For each assignment statement z := e with postcondition R(x), apply the assignment axiom
t0 obtain a precondition R(e)

For each simple if-statement if B then §i else S> endif with postcondition ¢, calculate
wp(if B then S else S; endif, Q') and use it as the precondition for the if-statement.

For each complex if-statement if B then S; else S> endif with postcondition ¢':

(a) Calculate a precondition pre(S;, Q') for §; with respect to @', and a precondition
pre(Ss, ') for S, with respect to @',

(b) Use (B = pre(S1, Q")) A (-B = pre(S»,Q')) as the precondition for the if-statement.
Repeat steps 3 through 5 until the tableau is complete.

For each pair of predicates P', P" such that P" immediately follows P in the tableau (ie.,
with no statement in between them), extract the verification condition P = P".

Example 73 Finding the minimum value in an array.

P

{T}
{1(0,al0])}
Ji=0
{1(7,al0])}
m = a[0];
{invariant I(j,m) : m=MIN(i: 0 <i < j : ali])}
while Bi: j#n—1do
{I(ja m) A Bl}
{P2(J' + lem)}
ji=i+1
P2(j? m): {wP(SEI(j? m))}
S: if B2 : m > a[f] then
m = aj]
else
skip
endif
{1(4,m)}
endwhile
(1(G,m) A~By}
{m=MIN(G:0<i<n:afi])}
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(m > alj] = wp(m := alj], (7, m))) A (m < alj] = wp(skip, 1(j, m)))

(m > alj] = 1(G,ali])) A (m < alf] = I(7,m))

(m>alf]=>af] =MIN(GE:0<i<j:a[i])) A m<alf]>m=MIN(G:0<i<j:a[))
Verification condition:

I(jam) ABI :>-P2(j+ I?m)

m=MIN({:0<i<j:a[iAj#n—-1=
(m>af+1]=>af+1]=MIN(G:0<i<j+1:af] A
m<af+1]=>m=MIN(G:0<4i<j+1:afi]))

(m=MIN@E:0<i<j:ai])Af#n—1=(m > a[j+1] = alj+1] = MIN{E: 0 < § < §+1:afi]))

)
A
(

m=MINGE:0<i<j:a[iAj#n—-1=>(m<aj+1]]>m=MIN(G:0<i<j+1:qaf]))

(m=MIN@G:0<i<j:aidAj#n—-1Am>a[j+1]=>a[f+1]=MIN(GE: 0 <{ < j+1:qff]))

(m=MIN(G:0<i<j:afiAj£n—1Am<a[f+1l]=>m=MIN(i:0<i<j+1:a[])
These two implications are easily verified using properties of MIN.

Example 74 Termination of a program to compute the factorial.

This program uses an if-statement to check that its input » is non-negative, and so avoids the
possibility of nontermination that occurs in this case.

P {T)

input(n);

{(r<0=>T)A(R>0=>n0>0))

if n < 0 then
{T)
output(“n must be non-negative”)
(T)

else
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endif
(T}

CHAPTER 3. VERIFICATION OF PROGRAM CORRECTNESS

(mvarlant I(k): 0<k <mn)
/* variant (k): n— & */
while B: k£ ndo
(k) Ak #nAp(k) =C)
Tk+ 1) Apk+1) <CAp(k) >0}
ki=k+1;
(I(k) A p(k) < C)
fi=Ff=*k
{(I(k) A p(k) < C)
endwhile
(T)
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