Basic Stuff

« Due to layout rules Haskell syntax is rather elegant and generally eazy to understand. The import
thing is to indent consistently, becuase, unlike other languages, indentation matters.

» Like ML Functions can either be defined in a curried form:
add x y =x + Y
Or an un-curried form using turples, which work the same way as they do in ML.
add (x,v) =x +vy
However, unlike ML, functions are generally defined in the un-curried form.
« Functions can also be defined without a name
\XV > X+Y
« Haskell also has infix operators which are really just functions.
Which can be partly applied just like curied functions using a compact syntax.

() =\xy >x+yY
(54) =\y > 5 + X

It is also possable to define your own infix operators:

infixl <? -- infix, left binding
X<?vy | x<y =X
| otherwise =y

Which is definding the "min" operator. The expression "20 <? 30 <? 10" will then evaluate to 10
as expected.

- Pattens and wildcards behave the same way they do in ML.

len []
len (_:xs)

0
1 + len xs

However, Haskell also has pattern guards which are an elegant form of "if then else".

signx | x> 0 = 1
| x=0 = 0
| x< 0 = -1

But it is not always convenient to have to define a separate function every time a patern
match/guard is needed. For this, haskell provided the case statement.

len 1st = case 1lst of
[] -> 0
(_:xs) > 1 + len xs

abs x = case x of
X | x>0 ->x
| x < 0 > —x



Haskell even has the "if then else" statment, however it is really just a shorthand for:

case <exp> of
true -> <then clause>
false -> <else clause>

A let clause can be used to define bindings much like in ML.

let vy a*b
fx=x+v)/v
infc+ £fd

In the contex of functions and case expressions, a where clause can also be used which is similar
to let except that the bindings come after the expression.

fun x=f c+ fd
wherey =a *b
fx=&x+vVv) /v

A where cause, unlike the let clause, can also be used to scope bindings over several guarded
equations:

Al V
Il
N

I mnn



