
Solution to HW3 of CMSC611
1.a Here we assume that branch is solved at the MEM stage since no extra
 hardward is allowed.
Note: in the chart, the stall is represented by "st" clock cycle

instruction clock cycles

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

LW R1,0(R4) IF ID EX MEM WB
SLLI R1,R1,#3 IF ID st st EX MEM WB
LW R2,4(R4) IF st st ID EX MEM WB
ADD R1,R2,R1 IF ID st st EX MEM WB
SW R1,0(R4) IF st st ID st st EX MEM WB
ADDI R4,R4,4 IF st st ID EX MEM WB
SUB R6,R3,R4 IF ID st st EX MEM WB
BNZ R6, loop IF st st ID st st EX MEMWB

LW R1,0(R4) IF

From above chart, we can see for one iteration, it will take 21 cycles
since R4 = R3 - 196, then there are 196/4 = 49 iterations.

Total cycles = 21 * 48 + 22 = 1030

b. Here we assume that branch is solved at the ID stage.
instruction clock cycles
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LW R1,0(R4) IF ID EX MEM WB
SLLI R1,R1,#3 IF ID st EX MEM WB
LW R2,4(R4) IF st ID EX MEM WB
ADD R1,R2,R1 IF ID st EX MEM WB
SW R1,0(R4) IF st ID EX MEM WB
ADDI R4,R4,4 IF ID EX MEM WB
SUB R6,R3,R4 IF ID EX MEM WB
BNZ R6,loop IF ID st EX MEM WB

LW R1,0(R4) IF

Total cycles = 12 * 48 + 15 = 591

c.instruction clock cycles
 1 2 3 4 5 6 7 8 9 10 11 12
LW R1,0(R4) IF ID EX MEM WB
LW R2,4(R4) IF ID EX MEM
SLLI R1,R1,#3 IF ID EX MEM WB
ADDI R4,R4,4 IF ID EX MEM WB
SUB R6,R3,R4 IF ID EX MEM WB
ADD R1,R2,R1 IF ID EX MEM WB
BNZ R6,loop IF ID EX MEM WB
SW R1,-4(R4) IF ID EX MEM WB

LW R1,0(R4) IF

Total cycles = 8 * 48 + 12 = 396

C code:
Int A[49];
for(int i = 1; i<= 49; i++){
 A[i] = A[i] * 8 + A[i + 1];
}

2. a. IF: needs one adder to compute PC

 RF: does not need adder

 Alu1: needs one adder to compute address

 Alu2: needs one adder for ADD operation

 MEM: does not need adder

 WB: does not need adder

 So, we need three adders in this system.

b. We need one register read and one register write port, two memory read port and one memory write
port. Because RF read register, WB write register, WB is at the first half of the circle, RF is at the second
half of the cycle, so there is no confliction. Therefore, only one port for each is needed.

 IF read memory, MEM read/write memory, IF and MEM can overlap, so we need to assign two ports for
read, one port for write.

c. Data forwarding between ALUs:
 pipeline register opcode of pipeline register opcode of
 of source instruction source instrution of source instruction source instruction
 ALU2/WB r-r ALU RF/ALU1 load, store, branch, ALUimm
 ALU2/WB ALUimm RF/ALU1 load, store, branch, ALUimm
 ALU2/WB r-r ALU MEM/ALU2 r-r ALU, ALUimm
 ALU2/WB ALUimm MEM/ALU2 r-r ALU, ALUimm

d. Data forwarding between memory and ALU, memory and memory.
 pipeline register opcode of pipeline register opcode of
 of source instruction source instrution of destination instruction destination instruction
 MEM/ALU2 load RF/ALU1 load, store, branch, ALUimm,r-rALU
 MEM/ALU2 load MEM/ALU2 r-rALU, ALUimm
 ALU2/WB r-r ALU ALU1/MEM store, branch
 ALU2/WB ALUimm ALU1/MEM store, branch
 MEM/ALU2 load ALU1/MEM store

e. The remaining hazard that involve at least one unit other than an ALU as the source or destination unit.
 Source instruction Destination instruction length of hazard
 Load Load, store, ALUimm one
 ALUop store, one
 Load ALUop one or two

f. Control hazard types. Since the pipeline initiate one instruction every cycle, and the branch results are
known

 only after ALU2, so if the branch is taken, then the successor instructions are wasted, if the branch is not
 taken, then there is no stall at all.

 For branch taken:
 branch IF RF ALU1 MEM ALU2 WB
 successor1 IF RF ALU1 MEM ALU2 WB
 successor2 IF RF ALU1 MEM ALU2 WB
 successor3 IF RF ALU1 MEM ALU2 WB
 successor4 IF RF ALU1 MEM ALU2 WB
 target IF RF ALU1 ALU2 MEM WB
 successor1 to 4 are wasted, the length of stall is 4 cycles.

 For branch not taken:

 branch IF RF ALU1 MEM ALU2 WB
 successor1 IF RF ALU1 MEM ALU2 WB
 successor2 IF RF ALU1 MEM ALU2 WB
 successor3 IF RF ALU1 MEM ALU2 WB
 successor4 IF RF ALU1 MEM ALU2 WB
 successor5 IF RF ALU1 ALU2 MEM WB
 There is no stall.

3. a. For 3-stage pipeline, the dependence is 1 cycle stall, the probability is 1/p; for 4-stage pipeline, the
 dependence between instruction i and i+1 is 2 cycle stall, the probability is 1/p, between i and i+2 is
 1 cycle stall, the probability is 1/p2, then the average execution time per instruction for 3-stage pipeline
 is (1+1/p)*T, for 4-stage pipeline is (1+2/p+1/p2)*(T-d), to make it a profitable change, there is
 (1+1/p)*T>=(1+2/p+1/p2)*(T-d), then we get d>= T/(1+p), so the lower bound of d is T/(1+p).

b. When forwarding is implemented, there is no data hazard, just consider control hazard. For 3-stage
 pipeline, taken branches have 2 cycle stall, not-taken branches have 1 cycle stall; for 4-stage pipeline,
 taken branches have 3 cycle stall, not-taken branches have 2 cycle stall. The frequency for taken branch
 is 60% of conditional branch, and not-taken branch is 40% of that. Let x be the percentage of conditional
 branches in the program. Then the average execution time per instruction for 3-stage pipeline is
 T*(1+2*60%*x+1*40%*x), for 4-stage pipeline is (T-d)(1+3*60%*x+2*40%*x), to make it better
 performance, there is T*(1+2*60%*x+1*40%*x)>=(T-d)(1+3*60%*x+2*40%*x), we get x<=d/(T- 6*d),
 let r=d/T, then the upper bound of x is r/(1-2.6*r). When r=10%, the maximum percentage is 13.51%.

4. History file keeps track of the original values of registers. When an exception occurs and the state must be
 rolled back earlier than some instruction that completed out of order, the original value of the register can be
 restored from the history file.
 Future file keeps the newer value of a register, when all earlier instructions have completed, the main register
 file is updated from the future file. On an exception, the main register file has the precise values for the
 interrupted state.
 When choosing from them, we should know the complexity of implementation of each method, and the
 requirement of hardware; we also should know the frequency of exception, and implementation time difference
 of instructions. If frequency high or the difference is large, future file is better, since history file need to keep
 more results and the cost to roll back is high We can compute the frequency of exception, and the time to
 handle to quantify the cost of each method.
 Future file needs more register, since it needs to keep track of newer values of register, when the value is
 updated during the implementation of the instruction, but the control logic is less since the main register file
 need the new value all the time. while history file need less register, but the roll back logic is more
 complicated.

5. For the first method, when exception occurs, the exception instruction drain all the instruction following it,
 and wait until all the instruction preceding it finishes, then it restarts from an empty pipeline. Every 500
 instructions, there is an exception. When exception occurs at IF, there is 4 cycle delay; for ID, it is 3 cycle;
 for EX, it is 2 cycle; for MEM, it is 1 cycle. Then the average delay is (60%*4+5%*3+10%*2+25%*1)/500=
 3/500, then the execution time is IC*(1.2+3/500)/(500*106)=0.0024*IC.

 For the second method, the pipeline keeps full, the exception instruction start one more time. So the CPI
 remains the same, while the IC changes. The execution time is (1.2*501*IC/500)/(475*106)=0.0025*IC.

 From the calculation above, we get that the first method results in a faster CPU.

6. a. If the ALU stage is split into two cycles, and all possible forwarding paths are implemented,
 there are three additional data hazards, all are RAW hazards.
 ALU2/MEM ID/ALU1, when instructioni+1 needs the ALU result of i;
 MEM/WB ID/ALU1, when instructioni+1 needs the memory reference result of i;
 WB ID , when instructioni+2 needs the result of i and i+1.

 b. To estimate the penalty bound, we need to know the frequency of instructions, about 27% instructions are
 ALU, suppose half time is followed by such instruction, then it introduce 0.13 penalty, about 26% are loads,
 then it introduce 0.26 penalty.we can suppose that each instruction is dependent on the former one, then each
 causes 2 cycle stall, so the maximum penalty is 2 cycles stall.

7. If each stage is split into two stages that are half as long, the benefit is that the faster clock rate, and higher
throughput. But the performance improvement gained by deeper pipeline stages are limited by some factors.
And there are some drawbacks.

First, it will not improve the execution time for a specific program P. The original execution time for
P = IC * CPIold * Clock Cycle Time, the new execution time for P = IC * CPI new * 0.5 Clock Cycle Time, in order
to have improvement, we mush have 2 * CPIold > CPI new. But in fact, since the pipeline is twice as
deep, if there is no any stalls, 2 * CPIold will be equal to CPInew, and if have stalls, the pipeline stall cycles per
instruction maybe increased or decreased, but no matter which one is larger (2 * CPIold vs. CPInew), their difference
will be not very larger. But we spend more hardware.

 Also, it will make the pipeline design more difficult and complex and improve the cost to built a pipeline, but
finally just get a little improvement or even no improvement. So, consider the tradeoff, it is not worthwhile to have
such arrangement.

