
30-Mar-00 1UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

Putting it all together: G4 vs. K7

• CPU designers have to solve “conflicting” problems
– Run programs as fast as possible

– Maintain compatibility with previous versions of hardware

– Use as few transistors as possible

• Lower cost (=> more markets for processor?)

• Lower power consumption

• Designers of Motorola G4 and AMD K7 took different
approaches to balancing these tradeoffs
– G4 focused on simplicity, lower cost

– K7 focused on performance

• Examining tradeoffs can show how computer architects make
decisions about how to build a CPU...

30-Mar-00 2UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: basic differences

• Motorola G4 is relatively small and simple
– 10 million transistors

– 4 stage pipeline

– Few addressing modes

– Fixed length instructions => hardware instruction decoding

• AMD K7 is beefy and more complex
– 22.5 million transistors

– 12+ stage pipeline

– Many addressing modes

– Variable length instructions => “MacroOps” to decode them

30-Mar-00 3UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: basic similarities

• Both use out-of-order execution
– Reorder instructions for maximum performance

– K7 has to work harder because of deeper pipeline

• Both use branch prediction
– Accuracy more important for K7 because of pipeline depth

– K7 devotes more space & effort to it

• Both use large caches
– Caches reduce memory access time

– Caches allow high-bandwidth access to memory

• Both have superscalar issue

• Both have vector units (though they handle vectors differently)

30-Mar-00 4UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 instruction handling

• Read fixed length instruction from memory

• Decode using hardware

• Issue instruction to functional unit
– Integer

– Vector

– Floating point

– Branch unit

• Retire instructions in order

30-Mar-00 5UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

K7 instruction handling

• X86 instructions packed into predecode cache
– Breaks byte stream into individual instructions

– Deals with variable length instructions

• Transform x86 instructions into MacroOps
– Done in hardware for simple instructions, microcode for complex ones

– A MacroOp is composed of a register-register operation and/or a
memory access instruction (called ops)

– Decoding process takes 3 pipeline stages!

• Ops fed into execution pipeline

• Instructions retired in order

30-Mar-00 6UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: functional units
• G4 functional units include

– 1 FP unit

– 2 vector units

– 2 integer units

– 1 address calculator

• Loads & stores
– 6 entry scheduler

– Limited out-of-order loads

– 1 load or store per cycle

• FP execution speed limited

• Good vector execution speed

• K7 functional units include
– 3 FP/vector units

– 3 integer units

– 3 address calculators

• Loads & stores
– 44 entry scheduler

– Flexible out-of-order loads

– 2 loads per cycle

• Good FP execution speed

• Vectors somewhat slow

30-Mar-00 7UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: math units
• G4 integer units (2)

– One FU can do any operation

– One FU can do only simple stuff

• G4 FP unit
– Does all FP operations (no

specialization)

– Only allows one FP operation at a
time

• K7 integer units (3)
– Can do any operation

– Up to 3 simultaneous operations

• K7 FP units
– Does all FP operations (no

specialization)

– Also perform vector operations...

30-Mar-00 8UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: vector units
• G4 vector units

– 2 separate vector units

– FP & vectors done by
independent units

– Vector unit operates on distinct
register set

• G4 vectors are 128 bits long

• G4 faster at vectors because
– Separate FU for vectors

– Longer 128 bit vectors

• K7 vector units
– Same units as FP units

– Can’t do both FP & vectors at the
same time

– Must reuse FP registers for
vectors

• K7 vectors are 64 bits long

• K7 slower at vectors because
– Shared FU with FP operations

– Smaller vectors

30-Mar-00 9UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: branch prediction
• G4 has relatively simple branch

prediction
– Less space required

– May predict wrong more often

– Penalty isn’t so bad => pipeline
is only four stages deep!

• Branch prediction takes the
approach of improving penalties
at the cost of reducing accuracy

• K7 has relatively complex branch
prediction
– Uses lots of space & transistors

– Reduced misprediction rate

– Penalty is high with a 10+ stage
pipeline!

• Branch prediction takes the
approach of improving accuracy
at the cost of increasing penalties

30-Mar-00 10UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

Comparing design K7 and G4 approaches

• K7 takes the “complexity wins” approach
– Throws transistors at the instruction decoding problem

– Throws transistors into integer & FP functional units

– Uses a superpipelined architecture: pipeline has relatively many stages,
each of which is short

• Clock speed can be faster

• Hazards (data, control) cost much more

• G4 takes the “simplicity wins” approach
– Keeps decoding simple

– Relatively few integer & FP units, but higher utilization

– Short pipeline resistant to hazards, but lower clock speeds

– Considerably lower cost => broader markets

30-Mar-00 11UMBC G4 vs. K7CMSC 611 (Advanced Computer Architecture), Spring 2000

G4 vs. K7: which is better?

• So what’s the bottom line?
– Neither G4 or K7 is clearly better!

– Each has its advantages and disadvantages

• K7 may be better for
– FP intensive code

– Code with relatively few (or predictable) branches

– Systems where power & cost are less important

• G4 may be better for
– Vector intensive code

– Code with lots of branches and data hazards

– Systems where power & cost matter more

