16-Mar-00 Appendix B

R , _
M § U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000

(") (N
What is avector instruction? Problems with scalar processors
» What is avector instruction? » How can scalar processors be sped up?
— Vector instructions handle many data values with a angle instruction — Use deeper pipelines
» Registers often contain a set of values * Inlonger pipelines, pipeline latencies become an issue
* All valuesin st treated the “ same” way — Reduce the instruction fetch/decode rate: for a given amount of data,
— Vector instructions may operate on fetch fewer instructions
* Integers & floating point numbers * Make instructions more complex?
« Bit vectors » Make instructions operate on more vaues?
« Where are they used? » Speed up scalar processors with vectors
— Scientific computation (numerically intensive) — One instruction operates on many values
— Graphics: bit-oriented vectors — Rather than fetching 64 or more instructions to perform 64 FP adds, the
« MMX (x86) CPU fetches only one
. AltiVec (PowerPC) — Good for small instruction caches!

\. J \. J
16-Mar-00 ?ﬁg‘e U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 1 16-Mar-00 J?wl!:‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 2
(") ()
Using vectorsto avoid scalar bottlenecks Using vectors to avoid scalar bottlenecks

* Independen.t computations N « Optimize memory access
— Computation on each vector element is independent of all other vector h ; . load/ sk
dlements — The memory access pattern for an entire vector load/store is known at
> i be Used with 0 deta hezard instruction issue
- Deep I_o'p Ines can be used wit _OUt cregmg ata hazards 0 CPU may be ableto get all of the data by paying the latency for
0 Compiler must generate vector instructions memory access only a few times
— Eachinstrudtion can cause many operaion — Overlap vector operationsif there are enough functional units
0 Fewer instructions need to be fetched and decoded « Keep CPU busy with useful work
* Reduce control hazards and loop overhead + Reduce execution time
— A vector instruction can function asaloop in a scdar architecture — Requires more hardware, but hardware provides performance
— No branches! improvements
+ Lower loop overhead * Memory-memory Vs. register-memory vector architectures
\ * No control hazards) \)

16-Mar-00

;“'j)“Lmi’m’ﬁ . .
M § U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B 4

(") ()
Simple DLX vector architecture (DLXV) DLXV architecture
| | > Main memory » Vector load-store unit ain memofy
Vector load/store |« — Interfaces the vector unit with the \Mettor |oad/sibre
memory
— Moves data between memory an v J
v J cPU J add/suba
FP add/subtract — Fully pipelined: one word per
> clock cycle after startup P multipl
> FP multiply « Vector functional units = —
> — Fully pipelined: start a new ,E\ FP divid
iVi operation on every clock cycle
FP divide P n every clock ¢y ector el Integer
—3 — Control unit detects hazards registers Scalab]
Vector > :
—> I nteger ;
registers —> €9 registefs] L ogical
Scalar .
registers Logical
\. — J \. J
16-Mar-00 ?ﬁg‘e U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 5 16-Mar-00 ’?WE‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 6
(") ()
DLXYV architecture Sample vectorizable code
i | Y=ax+y for (1 =0, 1 <64 |
. . . = + = y <) ++
Vectorr_egsters ain memafy Implement O:K[i(i - a*IX[i] A IY[i;'{
— 8registers, 64 values each Vettor |oad/sibre — XandY arevectors } '
— 2read ports & 1 write port per — Alisascdar
register (isit enough?) v J — SAXPY/DAXPY loop(SorD [LD FO,a
— May not be needed for memory- J indicates single or double ﬁDD' R4, Rx, #512
. - oop:
memor.y vector architectures precision) o s F2.0(R) : load X[i]
e Scalar regigers — Very common operation in MULLTD F2,FO,F2 ; a * Xi]
— Regular DLX FP registers scientific codes LD F4,0(Ry) ; load Y[i]
— Regular DLX integer registers * Codefor DLX at right QBDD ';j' g(ZR)I:;l 2t ﬁ Ie] :(E(ll i !
— Specia-purpose registersfor use ~ Vector — Interlocks betweenthe MULTD | appi R, Rx, #8 ; X i ndex++
by the vector unit registers and ADDD and the memory ADDI Ry, Ry, #8 ; Y index++
+ Vector length Scala operations SUB R20, R4, Rx ; |oop bound
. Vector-mask regists _ Possit?leprob!emswith branches| BNEZ R20, Loop ; loop if not done
— Total instruction count =600
N\ y, N\ y,
16-Mar-00 U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 7 16-Mar-00 ,M‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 8

(") (N
Vectorized code for DAXPY Calculating vector execution time
* Original code had ;BDI Eg’ S » Terms (not “official”; made up by textbook authors)
— Lotsof dependencies Loop: — Convoy: agroup of vector instructions that could be issued in the
— Lots of loop overhead LD F2,0(Rx) ; load Xi] “same’ cycle because there are no dependencies between them
« Vectorized .code has E/BLTD Ei S?RE)Z T s dxg('[]i | — Chime: the time a maximum-length vector instruction takes to complete
— No |00p|ng! ADDD F4,F2,F4 ; a*X[i]+Y[i] Its execution
— Only afew vector instructions | SD F4,0(Ry) ; store Y[i] . .
« Reduced instruction ADDI R, Rx, #8 ;X 1 ndex++ Basic performance
i ; ; ADDI Ry, Ry,#8 ; Y index++ — Approximate execution time for a sequence of vector instructions is
bandwidth (6 instructions) SUB RO RA Rx - | bound ;
Fewer interlocks » ¥ RXC, 1 00p boun number of convoys* chimelength
*) BNEZ R20,Loop ; loop if not done] o
encountered only at startup — Only approximate because it ignores gartup overheads
— Simpler de_codi ng: fewer I[\? \F,g ;X * load X vector 0 Overheads are often short compared to instruction execution time
dependencies to work out MULTSV V2, FO, V1 ; scalar-vector multiply
LV V3, Ry ; load'Y vector
ADDV V4,V2,V3 ; add
SV , V4 ; storeresult
N il] . y
16-Mar-00 ?ﬁg‘e UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 9 16-Mar-00 JWE& UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 10
(") ()
Vector startup latency Sample performance calculation
« Startup latency: delay before the first result comesout of the NV B load X vector
vector pipeline MULTSV V2, FO, V1 ; scalar-vector multiply
o LV V3, ; load Y vect
— Pipeline produces one result per cyde thereafter _ ADDV Va4, \F% V3 a%d veeer o
— Effect on performance reduced with longer vector lengths |dealized sv Ry,V4 ; storeresult Realistic
— lrrelevart if vectorS|-nf|n|-tely long (but thisisn't redlistic) « Only MULTSV & second LV may « Compute actual start & finish times
* Startup latency == pipeline depth be combined => 4 convoys foreachcorvoy ¢ ..y Finish
» Sample startup latencies (for DLXV . - - LD FO, a 0
p . P () Sequence requires 4 chimes Ly Vi R o oen
— Load/store: 10 cycles . Total timerequired => 64 4= 256 MULTSV V2,FO, VL 10+n 16+2n
- Mu|t|p|y 7cyc|es LV V3, Ry 10+n 20+2n
: * Requires 4 cydes/element ADDV V4,V2,V3 20+2n 26+3n
— Add: 6 cycles ™ y sV Ry, V4 26+3n 36+4n
— Memory often has alonger startup latency (why?) * Total timeis 37+4n, or 293 cycles
* Requires 4. I
\) \ equires 4.58 cycles/element y
16-Mar-00 L U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 11 16-Mar-00 :}*&:‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 12

4) 4
V ector load-store unit issues Vector stride
+ Load-store units may not be able to complete one result per * Datain memory may not be Stride=1 Stride=4 Stride=7
cycle (unlike mog pipelined functional units) sequentid
. — Distance between adjacent
* Long startup latencies elementsin the vector is called
— Relatively dow memory delays the first word of data the stride
— Data caches don’t usually help vector processors (why?) * Strided access needed only for
» Avoid memory corflicts load and store . .
0 Vectors held in aregister are
— Vector processors often access several banks of memory at once accessed normally
— CPU gets more than one word per memory cycle o Stride & vector address obtained
» Non-sequential memory accesses from genera purpose registers
— Programs often need to load a vector from non-sequential elements * Stride and number of memory
— Done using strided memory access banks should be relatively prime
0 Spreads accesses evenly for
\ y, \ better performance Y,
16-Mar-00 ?ﬁg‘e U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 13 16-Mar-00 ?ﬁg‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 14
(") (™
Handling odd-length vectors & strip mining Performance for odd-size vectors
» Must handle vectors of less than B B ‘ [] ‘,, » Estimate loop performance using same method as before
the maximal length || ' \‘ — Include time per element
- Dope by setting the vector length A — Include vector instruction startup time
_ reg|.st§r (VLR) - \ — Include loop overhead
* Strip mining example (500 || ': — Doesn't include loop startup (paid once per execution, not once per loop)
elements) i ! « Compute T, by adding up all of the vector startup latencies (excluding
— Create 7 operations that run on :HWW’ OR|L| those that overlap in convoys)
full-length (64 element) vectors N i » Compute T, by counting the convoys
— Create 1 operation that runs on 52 | vec'tors P chime OY g Yy
elements — !
« Shorter vector can be the first L/] n]
or last handled | /,’ Tn = X (Tloop + Tstart) +n xTchime
« Making it first smplifiesthe || H'nax vector length H
end-of-loop checks BT 1
-
\ — rL B J N J
16-Mar-00 U M BC

CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

15

16-Mar-00

S . . .
M § U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

16

(") ()
Vector chaining Vector chaining: example
» Chaining = forwarding for vector * Example
operations g = LV V1, 0(Rx) g. = < o
— Entire result from a vector = x ADDSV V2, FO, V1 = x s: =
operation may take 64+ cyclesto — Sf ;' — Without chaining, requires 10 + — 2 /\ i
produce ; > 5 64 + 6 + 64 = 146 cycles ; > g
— First dement is reajy after the - 3 (LL-]‘ — With chai ning, the ADDSV could — 3 ,' a
startup latency > start after the load produced its : A
« Could be fed into a second B first element - S it 9,:
operation that usesthe vector _ 8 * Reducestotal timeto 10 + 6 z } Startup latency
register as a source, > < +64=82cycles w ‘ for ADDSV
— Timeto do two chained 0 * Total time reduced to 56.2% § | .
R % N ‘ Time saved
operationsis (length + startup,,, g of the original time 7 \ by chaining
+ startupy,,) > + Long chains (multiple ingructions o
» Chaining reduces overdl time by a Startup latency chained together) can drastically <
overlapping vector instructions) f cut execution time
< or ADDSV
\. J/ \. J
16-Mar-00 4 ’WE’% U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 17 16-Mar-00 AJWEQ‘& U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 18
4) (")
Vector mask control Handling sparse matrices
» Vector mask r_egister: one bi_t for |1]ofol1]o|2f2]1 Computed » Sparse matrix: much of matrix is 1112171 4l20]5
each element in avector register values Zero
— Bit set => perform operation ‘n' — Zero elements aren’t stored
» 1
— Bit clear => do no operation " R — Non-zero elements represented as
— Functional unit busy for acycle 4 B index-value pairs
regardless of bit set/clear g o] — Example A[5] =4=>54 + base address (=40)
» Vector mask register set by - 5 » Sparse matrices use scatter-gather
— Copying avaue from a scalar > E — Memory indices stored in a
register R ‘B vector
— Doing a vector-based operation to o AN — Load uses vector values as
- PR Ll n .
set each bit individually ' pointers or offsets Mm[a1] [M[521|M[a71[Mg [m[eor [mp4s]
+ Example: SNESV Original » Scatter-gather also useful when
0 Allows the handling of conditions values indices determined on-the-fly
inside loops Vector arithmetic pipeline
\ J _ J
16-Mar-00 K U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 19 16-Mar-00 JW:‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 20

(") (N
Measures of vector processor performance Vector performance: example
 R.: MFLOPS rate on aninfinitely long vector * Assume DAXPY with chaining
— Ignores startup latency — One memory pipeling, 500 MHz | LV V1, Rx ; chai ned w MULTSV
- T =0andT. =15 MULTSV V2, FO, V1
— Useful for determining the throughput on really long vectors c base loop LV V3, Ry : chai ned w ADDV
. . - + Compute ADDV V4, V2, V3
N,,: vector Iength necessary to achlev(? half R. | T. =10 (loac) + 7 (multiply) + | SV Ry VA store the result
— Shows how quickly vector performance failsif non-maximal vectors 10 + 6 (add) +12 (store) = 45
are used — Need 3 chimes oydes _ Elsn % 0
— Affected greetly by startup latency dement L'{Qélig?’ YA
* N, vector length necessary so that using vector operations to Time to computen elements | R =2 x500/3.94 = 253.8 MFLOPS
do a computation will be faster than using scalar operations on g
— Shows how long vectors have to be to be useful Tn = Towe * BV B (Tiop * Taar) + 1 X Teime For N 2238_ 2x500 <
— Fast scalar operations and startup latency affect this number Y% 2 cycles/eement
T,=0+ f%(15+45)+n x3 7.88n=0+1x(15+45) +n x3 0 F 12.3
\. J \. J
16-Mar-00 ?ﬁg‘e U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 21 16-Mar-00 ,?wg‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 22
(")
V ector processor gotchas
* Remember the startup latency!
— High startup latency will drastically lower performance because vectors
can be short
* Improve scalar & vector performance together
— Otherwise, the machine will perform poorly overal
— Most instructions are scalar, even though most operations are vector
» Get agood memory system!
— True for any processor running heavy scientific codes!
— Thisisthe main reason that desktop workstations can’t match big iron
for heavy-duty scientific use
0 Can’'t move datain and out of the CPU fast enough
N\ J

16-Mar-00

CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 23

w UMBC

