
16-Mar-00 1UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

What is a vector instruction?

• What is a vector instruction?
– Vector instructions handle many data values with a single instruction

• Registers often contain a set of values

• All values in set treated the “same” way

– Vector instructions may operate on

• Integers & floating point numbers

• Bit vectors

• Where are they used?
– Scientific computation (numerically intensive)

– Graphics: bit-oriented vectors

• MMX (x86)

• AltiVec (PowerPC)

16-Mar-00 2UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Problems with scalar processors

• How can scalar processors be sped up?
– Use deeper pipelines

• In longer pipelines, pipeline latencies become an issue

– Reduce the instruction fetch/decode rate: for a given amount of data,
fetch fewer instructions

• Make instructions more complex?

• Make instructions operate on more values?

• Speed up scalar processors with vectors
– One instruction operates on many values

– Rather than fetching 64 or more instructions to perform 64 FP adds, the
CPU fetches only one

– Good for small instruction caches!

16-Mar-00 3UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Using vectors to avoid scalar bottlenecks
• Independent computations

– Computation on each vector element is independent of all other vector
elements

– Deep pipelines can be used without creating data hazards

⇒ Compiler must generate vector instructions

• Lots of work per instruction
– Each instruction can cause many operation

⇒ Fewer instructions need to be fetched and decoded

• Reduce control hazards and loop overhead
– A vector instruction can function as a loop in a scalar architecture

– No branches!

• Lower loop overhead

• No control hazards

16-Mar-00 4UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Using vectors to avoid scalar bottlenecks

• Optimize memory access
– The memory access pattern for an entire vector load/store is known at

instruction issue

⇒ CPU may be able to get all of the data by paying the latency for
memory access only a few times

• Overlapping vector operations
– Overlap vector operations if there are enough functional units

• Keep CPU busy with useful work

• Reduce execution time

– Requires more hardware, but hardware provides performance
improvements

• Memory-memory vs. register-memory vector architectures

16-Mar-00 5UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Simple DLX vector architecture (DLXV)

Main memory
Vector load/store

FP add/subtract

FP multiply

FP divide

Integer

Logical
Scalar

registers

Vector
registers

16-Mar-00 6UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

DLXV architecture
• Vector load-store unit

– Interfaces the vector unit with the
memory

– Moves data between memory and
CPU

– Fully pipelined: one word per
clock cycle after startup

• Vector functional units
– Fully pipelined: start a new

operation on every clock cycle

– Control unit detects hazards

Main memory
Vector load/store

FP add/subtract

FP multiply

FP divide

Integer

Logical
Scalar

registers

Vector
registers

16-Mar-00 7UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

DLXV architecture
• Vector registers

– 8 registers, 64 values each

– 2 read ports & 1 write port per
register (is it enough?)

– May not be needed for memory-
memory vector architectures

• Scalar registers
– Regular DLX FP registers

– Regular DLX integer registers

– Special-purpose registers for use
by the vector unit

• Vector length

• Vector-mask

Main memory
Vector load/store

FP add/subtract

FP multiply

FP divide

Integer

Logical
Scalar

registers

Vector
registers

16-Mar-00 8UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Sample vectorizable code
• Implement

– X and Y are vectors

– A is a scalar

– SAXPY/DAXPY loop (S or D
indicates single or double
precision)

– Very common operation in
scientific codes

• Code for DLX at right
– Interlocks between the MULTD

and ADDD and the memory
operations

– Possible problems with branches

– Total instruction count ≈600

LD F0,a
ADDI R4,Rx,#512
Loop:
LD F2,0(Rx) ; load X[i]
MULTD F2,F0,F2 ; a * X[i]
LD F4,0(Ry) ; load Y[i]
ADDD F4,F2,F4 ; a*X[i]+Y[i]
SD F4,0(Ry) ; store Y[i]
ADDI Rx,Rx,#8 ; X index++
ADDI Ry,Ry,#8 ; Y index++
SUB R20,R4,Rx ; loop bound
BNEZ R20,Loop ; loop if not done

for (i = 0; i < 64; i++) {
 Y[i] = a * X[i] + Y[i];
}

r r r
Y aX Y= +

16-Mar-00 9UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vectorized code for DAXPY
• Original code had

– Lots of dependencies

– Lots of loop overhead

• Vectorized code has
– No looping!

– Only a few vector instructions

• Reduced instruction
bandwidth (6 instructions)

• Fewer interlocks:
encountered only at startup

– Simpler decoding: fewer
dependencies to work out

LD F0,a
LV V1,Rx ; load X vector
MULTSV V2,F0,V1 ; scalar-vector multiply
LV V3,Ry ; load Y vector
ADDV V4,V2,V3 ; add
SV Ry,V4 ; store result

LD F0,a
ADDI R4,Rx,#512
Loop:
LD F2,0(Rx) ; load X[i]
MULTD F2,F0,F2 ; a * X[i]
LD F4,0(Ry) ; load Y[i]
ADDD F4,F2,F4 ; a*X[i]+Y[i]
SD F4,0(Ry) ; store Y[i]
ADDI Rx,Rx,#8 ; X index++
ADDI Ry,Ry,#8 ; Y index++
SUB R20,R4,Rx ; loop bound
BNEZ R20,Loop ; loop if not done

16-Mar-00 10UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Calculating vector execution time

• Terms (not “official”; made up by textbook authors)
– Convoy: a group of vector instructions that could be issued in the

“same” cycle because there are no dependencies between them

– Chime: the time a maximum-length vector instruction takes to complete
its execution

• Basic performance
– Approximate execution time for a sequence of vector instructions is

number of convoys * chime length

– Only approximate because it ignores startup overheads

⇒ Overheads are often short compared to instruction execution time

16-Mar-00 11UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector startup latency

• Startup latency: delay before the first result comes out of the
vector pipeline
– Pipeline produces one result per cycle thereafter

– Effect on performance reduced with longer vector lengths

– Irrelevant if vectors infinitely long (but this isn’t realistic)

• Startup latency == pipeline depth

• Sample startup latencies (for DLXV)
– Load/store: 10 cycles

– Multiply: 7 cycles

– Add: 6 cycles

– Memory often has a longer startup latency (why?)

16-Mar-00 12UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Sample performance calculation
LD F0,a
LV V1,Rx ; load X vector
MULTSV V2,F0,V1 ; scalar-vector multiply
LV V3,Ry ; load Y vector
ADDV V4,V2,V3 ; add
SV Ry,V4 ; store resultIdealized Realistic

• Only MULTSV & second LV may
be combined => 4 convoys

• Sequence requires 4 chimes

• Total time required => 64 * 4 = 256

• Requires 4 cycles/element

• Compute actual start & finish times
for each convoy
 Start Finish
LD F0,a 0
LV V1,Rx 0 9+n
MULTSV V2,F0,V1 10+n 16+2n
LV V3,Ry 10+n 20+2n
ADDV V4,V2,V3 20+2n 26+3n
SV Ry,V4 26+3n 36+4n

• Total time is 37+4n, or 293 cycles

• Requires 4.58 cycles/element

16-Mar-00 13UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector load-store unit issues

• Load-store units may not be able to complete one result per
cycle (unlike most pipelined functional units)

• Long startup latencies
– Relatively slow memory delays the first word of data

– Data caches don’t usually help vector processors (why?)

• Avoid memory conflicts
– Vector processors often access several banks of memory at once

– CPU gets more than one word per memory cycle

• Non-sequential memory accesses
– Programs often need to load a vector from non-sequential elements

– Done using strided memory access

16-Mar-00 14UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector stride
• Data in memory may not be

sequential
– Distance between adjacent

elements in the vector is called
the stride

• Strided access needed only for
load and store

⇒ Vectors held in a register are
accessed normally

• Stride & vector address obtained
from general purpose registers

• Stride and number of memory
banks should be relatively prime

⇒ Spreads accesses evenly for
better performance

Stride = 1 Stride = 4 Stride = 7

16-Mar-00 15UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Handling odd-length vectors & strip mining
• Must handle vectors of less than

the maximal length
– Done by setting the vector length

register (VLR)

• Strip mining example (500
elements)

– Create 7 operations that run on
full-length (64 element) vectors

– Create 1 operation that runs on 52
elements

• Shorter vector can be the first
or last handled

• Making it first simplifies the
end-of-loop checks

OR
Short

vectors

16-Mar-00 16UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Performance for odd-size vectors
• Estimate loop performance using same method as before

– Include time per element

– Include vector instruction startup time

– Include loop overhead

– Doesn’t include loop startup (paid once per execution, not once per loop)

• Compute Tstart by adding up all of the vector startup latencies (excluding
those that overlap in convoys)

• Compute Tchime by counting the convoys

T
n

max vector length
T T n Tn loop start chime= 






 × + + ×()

16-Mar-00 17UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector chaining
• Chaining ≈ forwarding for vector

operations
– Entire result from a vector

operation may take 64+ cycles to
produce

– First element is ready after the
startup latency

• Could be fed into a second
operation that uses the vector
register as a source,

– Time to do two chained
operations is (length + startupop1

+ startupop2)

• Chaining reduces overall time by
overlapping vector instructions

Startup latency
for ADDSVA

D
D

SV
 V

2,
F2

,V
1

L
V

 V
1,

0(
R

1)

L
V

 V
1,

0(
R

1)

A
D

D
SV

 V
2,

F2
,V

1

16-Mar-00 18UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector chaining: example
• Example

LV V1,0(Rx)
ADDSV V2,F0,V1

– Without chaining, requires 10 +
64 + 6 + 64 = 146 cycles

– With chaining, the ADDSV could
start after the load produced its
first element

• Reduces total time to 10 + 6
+ 64 = 82 cycles

• Total time reduced to 56.2%
of the original time

• Long chains (multiple instructions
chained together) can drastically
cut execution time

Startup latency
for ADDSV

A
D

D
SV

 V
2,

F2
,V

1
L

V
 V

1,
0(

R
1)

L
V

 V
1,

0(
R

1)

A
D

D
SV

 V
2,

F2
,V

1

Time saved
by chaining

16-Mar-00 19UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector mask control
• Vector mask register: one bit for

each element in a vector register
– Bit set => perform operation

– Bit clear => do no operation

– Functional unit busy for a cycle
regardless of bit set/clear

• Vector mask register set by
– Copying a value from a scalar

register

– Doing a vector-based operation to
set each bit individually

• Example: SNESV

⇒ Allows the handling of conditions
inside loops

1 0 0 1 0 1 1 1

Vector arithmetic pipeline

D
es

ti
na

ti
on

 re
gi

st
er

Original
values

Computed
values

16-Mar-00 20UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Handling sparse matrices
• Sparse matrix: much of matrix is

zero
– Zero elements aren’t stored

– Non-zero elements represented as
index-value pairs

– Example: A[5] = 4 => 5,4

• Sparse matrices use scatter-gather
– Memory indices stored in a

vector

– Load uses vector values as
pointers or offsets

• Scatter-gather also useful when
indices determined on-the-fly

1 12 7 4 20 5

+ base address (=40)

M[41] M[52] M[47] M[44] M[60] M[45]

16-Mar-00 21UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Measures of vector processor performance

• R∞: MFLOPS rate on an infinitely long vector
– Ignores startup latency

– Useful for determining the throughput on really long vectors

• N1/2: vector length necessary to achieve half R∞
– Shows how quickly vector performance fails if non-maximal vectors

are used

– Affected greatly by startup latency

• Nv: vector length necessary so that using vector operations to
do a computation will be faster than using scalar operations
– Shows how long vectors have to be to be useful

– Fast scalar operations and startup latency affect this number

16-Mar-00 22UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector performance: example
• Assume

– One memory pipeline, 500 MHz

– Tbase = 0 and Tloop = 15

• Compute
– Tstart = 10 (load) + 7 (multiply) +

10 + 6 (add) +12 (store) = 45

– Need 3 chimes

LV V1,Rx ; chained w/MULTSV
MULTSV V2,F0,V1
LV V3,Ry ; chained w/ADDV
ADDV V4,V2,V3
SV Ry,V4 ; store the result

DAXPY with chaining

Time to compute n elements

T T
n

MVL
T T n Tn base loop start chime= + 





× + + ×()

T
n

nn = + 





× + + ×0
64

15 45 3()

cycles

element

n
n

nn
=

+ × +()















= + =
→∞

lim .
3

15 45
64 3

60
64

3 94

253 8
2

2 500
64

.
,= × ≤

cycles/element
n

R∞ = × =2 500 3 94 253 8/ . . MFLOPS

For N1/2:

7 88 0 1 15 45 3 12 3. () .n n n= + × + + × ⇒ =

16-Mar-00 23UMBC Appendix BCMSC 611 (Advanced Computer Architecture), Spring 2000

Vector processor gotchas

• Remember the startup latency!
– High startup latency will drastically lower performance because vectors

can be short

• Improve scalar & vector performance together
– Otherwise, the machine will perform poorly overall

– Most instructions are scalar, even though most operations are vector

• Get a good memory system!
– True for any processor running heavy scientific codes!

– This is the main reason that desktop workstations can’t match big iron
for heavy-duty scientific use

⇒ Can’t move data in and out of the CPU fast enough

