What I1s avector instruction?

» What is avector instruction?
— Vector instructions handle many data values with a angle instruction
* Registers often contain a set of values
» All valuesin st treated the “same” way
— Vector instructions may operate on
* Integers & floating point numbers
* Bit vectors

* Where are they used?
— Scientific computation (numerically intensive)
— Graphics: bit-oriented vectors
e MMX (x86)
» AltiVec (PowerPC)

N

S
16-Mar-00 s . ‘% CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B
W UMBC

Problems with scalar processors

» How can scalar processors be sped up?
— Use deeper pipelines
* Inlonger pipelines, pipeline latencies become an issue

— Reduce the instruction fetch/decode rate: for a given amount of data,
fetch fewer instructions

» Make instructions more complex?
» Make instructions operate on more vaues?

» Speed up scalar processors with vectors
— Oneinstruction operates on many values

— Rather than fetching 64 or more instructions to perform 64 FP adds, the
CPU fetches only one

— Good for small instruction caches!

N

S
16-Mar-00 & MR CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B
W UMBC

4)
Using vectorsto avoid scalar bottlenecks

* Independent computations

— Computation on each vector element is independent of all other vector
elements

— Deep pipelines can be usad without creating data hazards
0 Compiler must generate vector instructions

» Lotsof work per instruction
— Each instruction can cause many operdion
0O Fewer instructions need to be fetched and decoded

* Reduce control hazards and loop overhead
— A vector instruction can function asaloop in ascdar architecture
— No branches!

» Lower loop overhead
\ * No control hazards

S
16-Mar-00 s . ‘% CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 3
% UMBC

4)
Using vectors to avoid scalar bottlenecks

* Optimize memory access

— The memory access pattern for an entire vector load/store is known at
instruction issue

0 CPU may be ableto get all of the data by paying the latency for
memory access only afew times
» Overlapping vector operations
— Overlap vector operations if there are enough functional units
» Keep CPU busy with useful work
* Reduce execution time
— Requires more hardware, but hardware provides performance
improvements

* Memory-memory Vvs. register-memory vector architectures
\- J

S
16-Mar-00 & MR CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 4
' UMBC

4)

Simple DL X vector architecture (DLXV)

|
V ector |oad/store

l

——————| Main memory

FP add/subtract
> :
> FP multiply
>
> - -
FP divide
—
>
Vector — Integer
registers —>
Scalar _
registers Logical
\ Y,
16-Mar-00 ’:ﬁ;ﬁ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 5
4 N

DL XV architecture
» Vector load-store unit I—I—main memagry

— Interfaces the vector unit with the f?ztor |oad/st&re

memory

— Moves data between memory an

CPU :IJ
— Fully pipelined: one word per >

clock cycle after startup
* Vector functional units _ 5

. . / :
— Fully pipelined: start anew .
operation on every clock cycle &ctor
— Control unit detects hazards registers
S

Scala
regist

\ Y,

S,
16-Mar-00 & MR CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 6
W UMBC

— Special-purpose registersfor use Vector

DL XV architecture

» Vector regiders

8 registers, 64 values each

2 read ports & 1 write port per
register (isit enough?)

May not be needed for memory-
memory vector architectures

o Scalar regigers

Regular DLX FP registers
Regular DL X integer registers

I—I—N‘Iain memary

Vegtor load/sibre]

]

FP divide

o _ : I nteger
the vector unit
g Vector length N Scalgt '
ector leng registers Logica
» Vector-mask
\§
16-Mar-00 ’:ﬁ;ﬁ UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B
(
Sampl e vectorizable code
ror r
 Implement Y=aX+Y for (i =0, i < 64; i++) {
— XandY arevectors il =a Xl + v
}
— Alisascaar
— SAXPY/DAXPY loop(SorD | LD FO, a
indicates single or double f‘DD' R4, Rx, #512
- oop:
precision) o LD F2,0(R<) : load X[i]
— Véry common operation in MULTD F2,F0,F2 ; a * Xi]
scientific codes LD F4,0(Ry) ; load Y[i]
« Codefor DLX at right ADDD F4,F2,F4 ; a*X[i]+Y[i]
SD F4,0(Ry) ; store Y[i]
— Interlocks between the MULTD ADDI RX, Rx,#8 : X index++
and ADDD and the memory ADDI Ry, Ry, #8 ; Y index++
operations SUB R20,R4,Rx ; loop bound
— Possible problems with branches| BNEZ R20, Loop ; Toop if not done
— Tota instruction count =600
\§

16-Mar-00

e
S A . A
M : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

V ectorized code for DAXPY

» Origina code had LD FO, a
. ADDI R4, Rx, #512

— Lots of dependencies Loop:

— Lotsof loop overhead LD F2,0(Rx) ; load X[i]
 Vectorized code has MULTD F2,FO,F2 ; a * Xi]

. LD F4,0(Ry) ; load Y[i]
— Nolooping! ADDD F4,F2,F4 ; a*X[i]+Y[i]
— Only afew vector instructions | SD F4,0(Ry) ; store Y[i]

ADDI Rx, Rx,#8 ; X index++
ADDI Ry, Ry, #8 ; Y index++
SUB R20, R4, Rx ; | oop bound

» Reduced instruction
bandwidth (6 instructions)

+ Fewer interlocks: BNEZ R20,Loop ; loop if not done
encountered only at startup
. o LD FO, a
— Simpler decoding: fewer LV VL, R ; load X vector
dependencies to work out MULTSV V2, FO, V1 ; scalar-vector multiply
LV V3, Ry ; load Y vector
ADDV V4,V2,V3 ; add
SV Ry, V4 ; store result
_ -
16-Mar-00 iﬁg U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 9
4)

Calculating vector execution time

* Terms (not “official”; made up by textbook authors)

— Convoy: agroup of vector instructions that could be issued in the
“same” cycle because there are no dependencies between them

— Chime: the time a maximum-length vector instruction takes to complete
its execution
» Basic performance

— Approximate execution time for a sequence of vector instructionsis
number of convoys * chimelength

— Only approximate because it ignores gartup overheads
O Overheads are often short compared to instruction execution time

\ Y,

S
16-Mar-00 & MR CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 10
5 UMBC

Vector startup latency

» Startup latency: delay before the first result comesout of the
vector pipeline
— Pipeline produces one result per cyde thereafter
— Effect on performance reduced with longer vector lengths
— lrrelevant if vectorsinfinitely long (but thisisn't realistic)

» Startup latency == pipeline depth

» Sample startup latencies (for DLXV)
— Load/store: 10 cycles
— Multiply: 7 cycles
— Add: 6 cycles
— Memory often has alonger startup latency (why?)

\- J
S

16-Mar-00 - ‘% CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 11
(W UMBC

4 ™)

|dealized

N

Sample performance calculation

LD FO, a
LV V1, Rx
MULTSV V2, FO, V1 ;
LV V3, Ry
ADDV V4, V2,V3 ;
sV Ry, V4

. load X vector

. load Y vector

scalar-vector multiply

add

;. storeresult Realistic

* Only MULTSV & second LV may
be combined => 4 convoys

* Seguence requires 4 chimes
 Total timerequired => 64 * 4 = 256
* Requires 4 cydes/element

» Compute actud start & finish times

for each convoy Start Finish

LD FO, a 0

LV V1, Rx 0 9+n
MULTSV V2, FO, V1 10+n 16+2n
LV V3, Ry 10+n 20+2n
ADDV V4,V2,V3 20+2n 26+3n
SV Ry, V4 26+3n 36+4n

* Total timeis 37+4n, or 293 cycles
* Requires 4.58 cycles/element

16-Mar-00

=
S A . A
M : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

N

V ector |oad-store unit 1ssues

L oad-store units may not be able to complete one result per

cycle (unlike mog pipelined functional units)

Long startup latencies
— Relatively dow memory delays the first word of data
— Data caches don’t usually help vector processors (why?)

Avoid memory corflicts

— Vector processors often access several banks of memory at once

— CPU gets more than one word per memory cycle
Non-sequential memory accesses

— Programs often need to load a vector from non-sequential elements

— Done using strided memory access

S
16-Mar-00 £ N ‘% CMSC 611 (Advanced Computer Architecture), Spring 2000
% UMBC

Appendix B

N

V ector stride

Data in memory may not be
sequentid

— Distance between adjacent

elements in the vector is called

the stride

Strided access needed only for

load and store

0 Vectorsheldin aregister are

accessed normally

Stride & vector address obtained

from generd purpose registers

Stride and number of memory

banks should be relatively prime

0 Spreads accesses evenly for
better performance

Stride=1 Stride=4 Stride=7

S,
16-Mar-00 & MkE CMSC 611 (Advanced Computer Architecture), Spring 2000
' UMBC

Appendix B

-

Must handle vectors of less than
the maximal length

— Done by setting the vector length
register (VLR)

Strip mining example (500
elements)

— Create 7 operations that run on
full-length (64 element) vectors

— Create 1 operation that runs on 52
elements

 Shorter vector can be the first
or last handled

e Making it first simplifies the
end-of-loop checks

N

16-Mar-00

7

e

!
\

~

OR

/

\

~

Handling odd-length vectors & strip mining

~

e
SRR) _
{ Iﬁ“ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B

N

16-Mar-00

Performance for odd-size vectors

Estimate |oop performance using same method as before

— Include time per element

— Include vector instruction startup time
— Include loop overhead

— Doesn’t include loop startup (paid once per execution, not once per 1oop)
Compute T, by adding up all of the vector startup latencies (excluding

those that overlap in convoys)

Compute T4, by counting the convoys

L] n []
X (Tloop
max vector length H

T =

n

+Tstart) +n ><-I—C

hime

e
S) .
M : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B

e Chaining = forwarding for vector

Vector chaining

operations E“ =
— Entire result from a vector S g:_;
operation may take 64+ cyclesto ;l hy ;‘
produce < > o~
— First element isready after the - 3 LNL
startup latency >
» Could be fed into a second 5
operation that usesthe vector ~ _ 8
register as a source, > <
— Timeto do two chained o
operationsis (length + startup,, gl
+ startup,,) 5
e Chaining reduces overdl time by I Startup latency
overlapping vector instructions 9): for ADDSV
\ /
16-Mar-00 aiﬁf U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 17
4)
Vector chaining. example
o Exarnp|e
LV V1, 0(Rx) gy = > -
ADDSV V2, FO, V1 < o >
— Without chaining, requires 10 + — 3 L E
64 + 6 + 64 = 146 cycles ; > g
— With chaining, the ADDSV could - 3 ; a
start after the load produced its . I
first element v e a
¢ Reducestotal timeto 10 + 6 > Startup latency <
+64 =82 cycles E for ADDSV
» Total time reduced to 56.2% S :
of the original time ;) -kl;l r?:f\aﬁl\i/Ed<
» Long chains (multipleindructions QO y 0
chained together) can drastically 9,; O U
cut execution time
\ /

16-Mar-00

Gy))
5 W E U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B

V ector mask contro

» Vector mask register: onebit for
each element in a vector register
— Bit set => perform operation
— Bit clear => do no operation
— Functional unit busy for acycle
regardless of bit set/clear
* Vector mask register set by
— Copying avaue from a scalar
register
— Doing a vector-based operation to
set each bit individually

1|0|0|1(0f1]|1]1 Computed
values

H

L & 1

e

2

g

> c

q 9o

B

T

P
e

* Example: SNESV Ol’lgll nal
O Allowsthe handling of conditions values
inside loops Vector arithmetic pipeline
_ y,
16-Mar-00 iﬁg U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 19
4)

e Sparse matrix: much of matrix is
Zero
— Zero elements aren't stored
— Non-zero elements represented as
index-value pairs
— Example: A[5] =4=>54
e Sparse matrices use scatter-gather

— Memory indices stored in a
vector

— Load uses vector values as
pointers or offsets
o Scatter-gather also useful when
indices determined on-the-fly

N

Handling sparse matrices

11127 |4 |20

. B

[+ base address (:40)]

. B

M[41]

M[52] |M[47]|M[44]

M[60] | M[45]

S,
16-Mar-00 & MkE CMSC 611 (Advanced Computer Architecture), Spring 2000
' UMBC

Appendix B 20

4)
Measures of vector processor performance

R,: MFLOPS rate on aninfinitely long vector

— lgnores startup latency

— Useful for deermining the throughput on really long vectors
N, vector length necessary to achieve half R,

— Shows how quickly vector performance fails if non-maximal vectors
are used

— Affected greetly by startup latency
N, : vector length necessary so that using vector operations to
do a computation will be faster than using scalar operations
— Shows how long vectors have to be to be useful
— Fast scalar operations and startup latency affect this number

\ /
16-Mar-00 s’iﬁ;@: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 21
4)
Vector performance: example
e Assume DAX PY Wlth Cha| ni ng
— One memory pipeline, 500 MHz | LV V1, Rx ; chai ned w MULTSV
— Tpe=0 and Tloop =15 MULTSV V2, FO, V1 .
LV V3, Ry ; chai ned w ADDV
 Compute ADDV V4, V2,V3
— Ty =10 (load) + 7 (multiply) + SV Ry, V4 ; store the result
10 + 6 (add) +12 (store) = 45 15+ 45)
. nx(15+45)0
— Need 3 chimes odes gzn+64D_ 60
—I|mD D—3+——3.94
element n-« n E 64

Time to computen elements | R =2 x500/3.94 =253.8 MFLOPS

T2 = Toe * S ¢ (T * Taw) *11 X o Forn,, 238 2x500
,

= ,n<64
2 cycles/element

T, = 0+2 ><(15+45) +Nn x3 7.88n=0+1x(15+45) +n x3 O+ 12.3
L %4@)

S,
16-Mar-00 & MkE CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 22
W UMBC

Vector processor gotchas

* Remember the startup latency!
— High startup latency will drastically lower performance because vectors

N

can be short

mprove scalar & vector performance together
— Otherwise, the machine will perform poorly overal

— Most instructions are scalar, even though most operations are vector
» Get agood memory system!

— True for any processor running heavy scientific codes!

— Thisisthe mainreason tha desktop workstations can’t match big iron

for heavy-duty scientific use
0 Can't move data in and out of the CPU fast enough

16-Mar-00

.
ey) _
{ Iﬁu : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B 23

