What I1s a vector 1nstruction?

 What isavector instruction?
— Vector instructions handle many data values with a angle instruction
» Registers often contain a set of values
o All valuesin set treated the “same” way
— Vector instructions may operate on
* Integers & floating point numbers
* Bit vectors

 Where arethey used?
— Scientific computation (numerically intensive)
— Graphics: bit-oriented vectors
e MMX (x86)
o AltiVec (PowerPC)

\.

16-Mar-00 CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

Problems with scalar processors

e How can scalar processorsbe sped up?
— Use deeper pipelines
 Inlonger pipelines, pipeline latencies become an issue

— Reduce the instruction fetch/decode rate: for a given amount of data,
fetch fewer instructions

» Make instructions more complex?
» Make instructions operate on more vaues?

e Speed up scalar processors with vectors
— One instruction operates on many values

— Rather than fetching 64 or more instructions to peform 64 FP adds, the
CPU fetches only one

— Good for small instruction caches!

\.

16-Mar-00 CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

-
Using vectors to avoid scalar bottlenecks

 Independent computations

— Computation on each vector element is independent of all other vector
elements

— Deep pipelines can be used without creaing data hazards
0 Compiler must generate vector instructions

o Lotsof work per instruction
— Each instruction can cause many operaion
0 Fewer instructions need to be fetched and decoded

* Reduce control hazards and loop overhead
— A vector instruction can function asaloop in ascdar architecture
— No branches!
* Lower loop overhead
k * No control hazards

16-Mar-00 CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

-
Using vectors to avoid scalar bottlenecks

e Optimize memory access

— The memory access pattern for an entire vector load/store is known at
Instruction issue

0 CPU may be able to get all of the data by paying the latency for
memory access only afew times
e Overlapping vector operations
— Overlap vector operations if there are enough functional units
o Keegp CPU busy with useful work
» Reduce execution time
— Requires more hardware, but hardware provides performance
Improvements

e Memory-memory vs. register-memory vector architectures

\.

D i
284,
B %

% . . ,
g U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

16-Mar-00 1

-

\.

Simple DL X vector architecture (DLXV)

» Main memory
V ector |oad/store

FP add/subtract

FP multiply

VYVVYVVVY

FP divide

V ector
registers

16-Mar-00

Appendix B

DL XV architecture

» Vector |load-store unit ain memary
— Interfaces the vector unit with the tor |oad/st&re

memory

— Moves data between memory an
CPU

— Fully pipelined: one word per
clock cycle after startup

 Vector functiona units

— Fully pipelined: start a new
operation on every clock cycle \&Ctor

— Control unit detects hazards registers

N\ y

SRy,

16-Mar-00 {; % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 6

?
N L
i

DL XV architecture

o Vector regiders ain memary
— 8registers, 64 values each Vegtor load/sibre

— 2read ports & 1 write port per
register (isit enough?)

— May not be needed for memory-
memory vector architectures

o Scalar regigers
— Regular DLX FP registers

_ _ FP divide
— Regular DLX integer registers
— Specia-purpose registersfor use Vector
by the vector unit registers
» Vector length |
* Vector-mask
.
16-Mar-00 \g'}“ UMB C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

/
,

r r r
e Implement Y=axX+Y

— X andY arevectors

— Alisascdar

— SAXPY/DAXPY loop (Sor D
indicates single or double
precision)

— Very common operation in
scientific codes

 Codefor DLX at right

— Interlocks between the MULTD
and ADDD and the memory
operations

— Possible problems with branches
— Total instruction count =600

\.

Sample vectorizable code

for (i

O; 1 < 64; i++) {

Y[i] a* X[i] + Y[i];
}
LD FO, a
ADDI R4, Rx, #512
Loop:
LD F2, 0(Rx) | oad X[i]
MULTD F2, FO, F2 a* Xi]
LD F4, O(Ry) | oad Y[i]
ADDD F4,F2,F4 a*X[i]+Y[i]
SD F4, O(Ry) store Y[i]
ADDI Rx, Rx, #8 X i ndex++
ADDI Ry, Ry,#8 ; Y index++
SUB R20, R4, Rx ; | oop bound
BNEZ R20, Loop | oop if not done

16-Mar-00

{% 5 U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

V ectorized code for DAXPY

e Origina code had LD FO, a
. ADDI R4, Rx, #512

— Lots of dependencies Loop:

— Lotsof loop overhead LD F2,0(Rx) ; load Xi]
 Vectorized code has MILTD F2, FO, F2 5 a * Xi]

_ LD F4,0(Ry) ; load Y[i]
— Nolooping! ADDD F4,F2,F4 ; a*X[i]+Y[i]
— Only afew vector instructions | SD F4,0(Ry) ; store Y[i]

ADDI Rx, Rx,#8 ; X i ndex++
ADDI Ry, Ry,#8 ; Y index++
SUB R20, R4, Rx ; | oop bound

* Reduced instruction
bandwidth (6 instructions)

 Fewer interlocks: BNEZ R20,Loop ; loop if not done
encountered only at startup
: . LD FO, a
— Simpler decoding: fewer LV V1, RX © load X vector
dependencies to work out MULTSV V2, FO, V1 ; scalar-vector multiply

LV V3, Ry ; load Y vector
ADDV V4,V2,V3 ; add
SV Ry, V4 , store result

\.

16-Mar-00 {% ' g U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

Calculating vector execution time

 Terms (not “official”; made up by textbook authors)

— Convoy: agroup of vector instructions that could be issued in the
“same’ cycle because there are no dependencies between them

— Chime: the time a maximum-length vector instruction takes to complete
ItS execution
e Basic performance

— Approximate execution time for a sequence of vector instructionsis
number of convoys* chimelength

— Only approximate because it ignores gartup overheads
0 Overheads are often short compared to instruction execution time

S,
AT Y

16-Mar-00 CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 10

Vector startup latency

o Startup latency: delay before the first result comesout of the

vector pipeline
— Pipeline produces one result per cyde thereafter
— Effect on performance reduced with longer vector lengths
— Irrelevant if vectorsinfinitely long (but thisisn’t realistic)

o Startup latency == pipeline depth
o Sample startup latencies (for DLXV)
— Load/store: 10 cycles
— Multiply: 7 cycles
— Add: 6 cycles
— Memory often has alonger startup latency (why?)

\.

/”*u,a,ﬂ;im,g@\

SLE i i
-Mar- S\ L l | (: C ter Architecture), 2000
16-Mar-00 \%\ }.!: M B CMSC 611 (Advanced Computer Architecture), Spring

Appendix B

11

\.

Sampl e performance calculation

|dealized

LD FO, a
LV V1, Rx

LV V3, Ry

ADDV V4, V2, V3 ; ..
- store result Realistic

SV Ry, V4

- |load X vector
MJULTSV V2, FO, V1 ;

scalar-vector multiply
load Y vector
add

e Only MULTSV & second LV may
be combined => 4 convoys

» Seguence requires 4 chimes

» Total timerequired => 64 * 4 = 256

* Requires 4 cydes/element

o Compute actud start & finish times

foreach covoy g vt Finish

LD FO, a 0

LV V1, Rx 0 9+n
MULTSV V2, FO, V1 10+n 16+2n
LV V3, Ry 10+n 20+2n
ADDV V4,V2,V3 20+2n 26+3n
SV Ry, V4 26+3n 36+4n

e Total timeis 37+4n, or 293 cycles
* Requires 4.58 cycles/element

J

16-Mar-00

CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

12

V ector |oad-store unit 1ssues

o L oad-store units may not be able to complete one result per
cycle (unlike mog pipelined functional units)

e Long startup latencies

— Reélatively dow memory delays the first word of data
— Data caches don’'t usually help vector processors (why?)

Avoid memory corflicts

— Vector processors often access several banks of memory at once
— CPU gets more than one word per memory cycle

e Non-sequential memory accesses

\.

— Programs often need to load a vector from non-sequential elements
— Done using strided memory access

16-Mar-00

CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

13

\.

V ector stride

Datain memory may not be
sequentid
— Distance between adjacent
elementsin the vector is called
the stride
Strided access needed only for
load and store
0 Vectors held in aregister are
accessed normally
Stride & vector address obtained
from generd purpose registers
Stride and number of memory
banks should be relatively prime

0 Spreads accesses evenly for
better performance

Stride=1

Stride=4 Stride=7

16-Mar-00

Ry,

&7 LM B C %

g i CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 14
\1\%" U M B C

4)
Handling odd-length vectors & strip mining
e Must handlevectors of less than AR
the maximal length T \
— Done by setting the vector length \‘
register (VLR) ||
o Strip mining example (500 ‘.
elements) l
— Create 7 operations that run on OR |
full-| engthp(64 element) vectors ::> Short
— Create 1 operation that runs on 52 veclt ors
elements !
« Shorter vector can be the first)
or last handled /
« Making it first smplifiesthe |’
end-of-loop checks = e
(‘e
N L J
o —

&7 LM B C %
g i CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 15
\1\%5 U M B C

\.

Performance for odd-size vectors

Estimate loop performance using same method as before
— Include time per element
— Include vector instruction startup time
— Include loop overhead

— Doesn’'t include loop startup (paid once per execution, not once per 1oop)
Compute T, by adding up all of the vector startup latencies (excluding

those that overlap in convoys)
Compute T 4, DY counting the convoys

n]
X (
max vector length H

Tn = E Tloop +Tstart) TN XTC

hime

16-Mar-00

CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B

\.

Vector chaining

Chaining = forwarding for vector

operations

— Entire result from a vector

operation may take 64+ cyclesto

produce

LV V1,0(R1)

LV V1,0(R1)

— First element is ready after the

startup latency

e Could be fed into a second
operation that uses the vector
register as a source,

— Time to do two chained
operations s (length + startup,,,
+ startupopz)
Chaining reduces overdl time by
overlapping vector instructions

ADDSV V2,F2 V1

ADDSV V2,F2 V1

Startup latency
for ADDSV

(ST,

S
& e RN . .
16-Mar-00 . CMSC 611 (Advanced Computer Architecture), Spring 2000
{1 UMBC

Appendix B 17

Vector chaining: example

 Example
LV V1, 0(Rx)
ADDSV V2, FO, V1
— Without chaining, requires 10 +
64 + 6 + 64 = 146 cycles
— With chaining, the ADDSV could

start after the load produced its
first element

 Reducestotal timeto 10 + 6
+ 64 = 82 cycles

e Total time reduced to 56.2%
of the original time
* Long chains (multiple ingructions
chained together) can drastically
cut execution time

\.

LV V1,0(R1)

LV V1,0(R1)

]
J
N

Startup latency
for ADDSV

Time saved<
by chaining

—

ADDSV V2,F2 V1

ADDSV V2,F2 V1

D,
(ST,

A ¢
et % . . .
16-Mar-00 . CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B
{45 UMBC

\.

\
Vector mask control
* Vector mask register: onebitfor |[1]|o|o|1|0(1]|1|1 Computed
each element in a vector register values
— Bit set => perform operation ‘/.'
> I
— Bit clear => do no operation R
. : —> 7
— Functional unit busy for acycle 2
regardless of bit set/clear g I 5
: >
e Vector mask register set by =5
— Copying avaue from ascalar > E
register > ‘3
— Doing avector-based operation to . aN
set each bit individually \
* Example: SNESV Origljinal
0 Allowsthe handing of conditions values
Inside loops Vector arithmetic pipeline
J

N Y

& LM B C G, . .
16-Mar-00 g i CMSC 611 (Advanced Computer Architecture), Spring 2000

B UMBC

Appendix B

19

\.

Handling sparse matrices
Sparse matrix: much of matrix is 1 1217142]20] 5
Zero
— Zero elements aren’t stored
— Non-zero elements represented as l
index-value pairs
— Example: A[5] =4=>5/4 [+ base address (:40)]
Sparse matrices use scatter-gather
— Memory indices stored in a
vector l
— Load uses vector values as
pointers or offsets M[41]|M[52] |M[47] | M[44] | M[60] [M[45]
Scatter-gather also useful when
Indices determined on-the-fly
Appendix B 20

S,

& LM B C G, . .
16-Mar-00 g i CMSC 611 (Advanced Computer Architecture), Spring 2000

B UMBC

4)
Measures of vector processor performance

R _: MFLOPSr rate on aninfinitely long vector

— Ignores startup latency
— Useful for determining the throughput on really long vectors

* N, vector length necessary to achieve half R,

— Shows how quickly vector performance fails if non-maximal vectors
are used

— Affected greatly by startup latency
* N, vector length necessary so that using vector operations to
do a computation will be faster than using scalar operations

— Shows how long vectors have to be to be useful
— Fast scalar operations and startup latency affect this number

N\ y

G,

SLE ; ; :

g I B CMSC 611 (Advanced Computer Architecture), Spring 2000 Appendix B 21
Loy UM BC (Adv i ltecture), Spring PRSI

16-Mar-00

4)
Vector performance:. example
« Assume DAXPY with chaining
— One memory pipeline, 500 MHz | LV V1, Rx ; chai ned w MULTSV
— Tpue=0and Ty, = 15 MULTSV V2, FO, V1 |
LV V3, Ry chai ned w ADDV
« Compute ADDV V4, V2, V3
— Tgq =10 (load) + 7 (multiply) + [SV Ry, V4 store the result
10 + 6 (add) +12 (store) = 45 (15.+ 45)
. nx (15 +45) 0
— Need 3 chimes oycles 53 + al 0. 60
—I|mD =3+ =394
element nwE n E 64
Time to computen elements | R =2 x500/3.94 =253.8 MFLOPS
T Tbase Qvl Qx (Tloop start) +tn Tchlme 253.8 2 x 500
. = <
For Ny, 2 cycles/dement =
T, =0+ 5 x (15+45) +n x3 7.88n=0+1x(15+45) +n x3 O e 12.3
. % i y,

16-Mar-00

CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B 22

V ector processor gotchas

 Remember the startup latency!
— High startup latency will drastically lower performance because vectors

can be short

mprove scalar & vector performance together
— Otherwise, the machine will perform poorly overall

— Most instructions are scalar, even though most operations are vector

o (Get agood memory system!

\.

— True for any processor running heavy scientific codes!

— Thisisthe mainreason tha desktop workstations can’t match big iron

for heavy-duty scientific use
0 Can’'t move data in and out of the CPU fast enough

16-Mar-00

i
284,
B %

% . .
g U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Appendix B

