
25-Apr-00 1UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Distributed shared memory protocols

• Distributed shared-memory machines need cache coherence
for the same reasons as centralized shared-memory machines
– Centralized protocols have drawbacks in these architectures due to the

interconnection network and scalability requirements

• DSM might not use hardware mechanisms!
– Instead, focus on scalability (Cray T3D)
– In this scheme, only data that actually resides in the private memory

may be cached (shared data is marked uncacheable)
– Coherence is maintained by software => several disadvantages
– Compiler mechanisms are very limited

• They have to be very conservative, e.g. treat a block on another
processor as dirty even though it may not be

• This results in excessive coherence overhead (extra fetching)

25-Apr-00 2UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Issues with DSM coherence protocols

• More disadvantages of software implemented coherence
– Multiple words in a block provide no advantage

• Software coherence must be run each time a word is needed
• The advantage of spatial locality (the “prefetch” of other words in

the block) is lost in single word fetching
– Latencies to remote memory are relatively high.

• Remote references can take 50 - 1000 CPU cycles, making
coherency “misses” a very costly proposition

• Snooping isn’t feasible for DSM
– Snooping coherence schemes aren’t scalable => problem for DSMs
– The distributed nature of the snooping protocol’s data structure (which

maintains the state of the cache blocks) does NOT scale well
– Snooping requires broadcast (communication with all caches on every

miss) => very expensive with an interconnection network

25-Apr-00 3UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory-based coherence

• Alternative to snooping: directories, which hold:
– The state of every block in memory (shared, uncached or exclusive)

• Exclusive => the block has been written, is in one cache and
memory is out-of-date

• This information is also keep in the cache for efficiency reasons
– Which caches have copies

• May be implemented using a bit vector for each block with the
processors identified by the bit’s position

– Whether or not the block is dirty

• The amount of information in the directory is proportional to
number of processors * number of memory blocks
⇒ This works O.K. for less than 100 processors -- other solutions are

needed for >100 processors

25-Apr-00 4UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory location
• Directory entries may be distributed along with the memory

– High-order bits of an address can be used to find the location of a particular
block of memory

– Directory and data for a block at the same place

• This structure avoids broadcast

CPU CPU CPU CPU

cachecachecachecache

mem I/O mem I/O mem I/O mem I/O

Interconnection network

dirdirdirdirdirdirdirdir

25-Apr-00 5UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory-based cache coherence protocols

• Handle two basic primitives
– Read miss
– Write to a shared, clean cache block
– Awrite miss is a combination of these two

• Simplifying assumptions still hold here
– Writes to non-exclusive data generate write misses
– Write misses are atomic (processors block until the access completes)

• This introduces two complications
– There is no longer a bus => no single point of arbitration
– Broadcast is to be avoided => the directory and cache must issue

explicit response messages, e.g., invalidate and write-back request
messages

25-Apr-00 6UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Invalidate a shared copy
of data at addr A

Function

P has a read miss at addr A
Request data & make P a read sharer

P has a write miss at addr A
Request data & make P exclusive owner

Directory protocol: message types
• States and transitions at each cache are identical to the snooping protocol
• Actions are somewhat different, however
• Message types for directory-based protocols

– Local node: Where the request originates
– Home node: Where memory and directory live
– Remote node: Node that has a copy of the block (exclusive or shared)

Home

Message
type

Source Destination Contents

Read miss

Write miss

Invalidate

Local

Local

Home

Home

Remote

P, A

P, A

A

25-Apr-00 7UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory protocol: more message types

Return a data value from the home
memory

Function

Fetch block at addr A & send to home
Change the state of A in remote to shared

Fetch block at addr A & send to home
Invalidate the block in the cache

Home

Message
type

Source Destination Contents

Fetch

Fetch/invalidate

Data value reply

Home

Home

Remote

Remote

Local

A

A

Data

Write back a data value for addr ARemoteData writeback Home A, Data

25-Apr-00 8UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory protocol: cache state machine

Invalid
Shared

(read-only)

Exclusive
(read/write)

CPU read hit

CPU read miss
Send read miss msg

CPU write miss
Data write-back

C
P

U
 w

ri
te

Se
nd

 w
ri

te
 m

is
s

m
sg

CPU read hit
CPU write hit

Receive invalidate msg

CPU writ
e

Send w
rite

 m
iss

 m
sg

CPU read m
iss

Send fetch m
sg

CPU read miss
Send read miss msg

D
at

a
w

ri
te

ba
ck

R
ec

v
F

et
ch

/i
nv

al
id

at
e

Data writeback

Send data write
back msg

25-Apr-00 9UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory protocol: directory state machine

Uncached
Shared

(read-only)

Exclusive
(read/write)

Recv read miss
Data value reply
Sharers += {P}

Recv write miss
Fetch/invalidate; data value reply
Sharers = {P}

Recv read miss
Data value reply
Sharers = {P}

Recv
 w

rit
e m

iss

Fetc
h; d

ata
 valu

e r
ep

ly

Share
rs

+= {P
}

Rec
v r

ea
d m

iss

Invali
date

; d
ata

 valu
e r

ep
ly

Share
rs

= {P
}

R
ec

v
da

ta
 w

ri
te

ba
ck

Sh
ar

er
s

=
 {

}

R
ec

v
w

ri
te

 m
is

s
D

at
a

va
lu

e
re

pl
y

Sh
ar

er
s

=
 {

P}

Directory receives only 3
types of messages
• Read miss
• Write miss
• Data writeback

25-Apr-00 10UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Uncached & shared states

• Uncached state
– When the block is uncached, the directory can only receive two kinds

of messages: read miss and write miss
• A read miss moves the block into the shared state
• A write miss moves it into exclusive

– In either case, the directory updates its list of sharing nodes to include
only the node that requested the data

• Shared state
– Again, only read or write misses are possible, since all caches have the

same value as memory
– Read miss => node requesting data is added to the list of sharing nodes
– Write miss => block is moved to the exclusive state

• Invalidate messages are sent to all current sharing nodes.
• Sharing list is updated to only the requesting processor

25-Apr-00 11UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Exclusive state

• Read miss
– Owner is sent a fetch message telling it to write data back to memory
– Requesting node is added to the sharing list
– Block is marked as shared

• Write miss: block must be written back by the current owner
– Directory sends out a fetch message
– When the data is written, the directory forwards it to the new owner

and replaces the old owner with the new owner in the sharing list

• Write-back: the data is updated in memory and the block goes
into the uncached state and the sharing list is cleared

• Optimization: have the old owner send the data directly to the
new owner on a write miss
– May be done either instead of or in addition to writing the data to home

25-Apr-00 12UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Directory protocol issues

• What happens when read-only data is replaced?
– This scheme does not explicitly notify the directory when a clean block

is replaced in the cache
– This is OK => the cache will simply ignore invalidate messages for

blocks that are not currently cached
– Potential problem: the directory may send a few unnecessary messages

• Probably not as bad as having the remote caches send a message
each time they replace a block

• Synchronization
– Deciding the order of accesses in a distributed memory system is harder
– Without a shared bus, it’s impossible to tell which writes come first

• It’s not feasible to stall all accesses until a write completes
– Often, this can be handled by requiring all writes to be atomic

• However, doing so slows down the system greatly

25-Apr-00 13UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Synchronization in parallel processors

• Processors within a parallel system must have some method of
synchronization
– Software routines are usually built on top of hardware-supplied

synchronization instructions

• For shared-memory machines, the key element is an
uninterruptible instruction that can atomically retrieve and
change a value
– Atomic exchange: exchanges register and memory location atomically
– Test-and-set
– Implementation is challenging since it requires both a memory read and

write to execute atomically
– This complicates coherence and does not scale well

25-Apr-00 14UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Load-linked & store conditional

• Another option: use a pair of instructions:
try: mov R3,R4 ; move exchange value into R3
 ll R2,0(R1) ; load the value at 0(R1) into R2
 sc R3,0(R1) ; store the value R3 and set R3
 beqz R3,try ; branch if value set is changed to 0
 mov R4,R2 ; put load value into R4

• Store conditional (sc) fails if
– Memory location specified by the load linked instruction is changed

before the store conditional instruction (to the same address)
– If it fails, the sequence is executed again

• ll is implemented by storing the address given in the
instruction in a link register
– If an interrupt occurs or if the cache block containing the address is

invalidated, the ll register is set to 0 and sc fails

25-Apr-00 15UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Implementing locks using coherence

• How can locks be cached in machines with cache coherence?
– Spin-lock operation is performed on a local cached copy

• This reduces memory bandwidth
– There is often locality in lock access => caching reduces time to

acquire the lock

• Assume that we have an exchange instruction
– To implement a spin-lock, use the following where 0 indicates success:

 lwi R2,#1 ; load immediate #1
lockit: exch R2,0(R1) ; exchange R2 with 0(R1)
 bnez R2,lockit ; if 1 returned, fail

• Problem:
– Each exch operation requires a write
– Most writes result in a write miss => writing requires exclusive access

25-Apr-00 16UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Implementing locks using coherence

• In the loop, read instead and write only when the lock is free
lockit: lw R2,0(R1) ; read the lock
 bnez R2,lockit ; keep reading if lock not free
 lwi R2,#1 ; load the lock value
 exch R2,0(R1) ; race to exchange & get 0
 bnez R2,lockit ; if another processor beat us, start over

• A load linked/store conditional version need not cause any bus
traffic during the testing operation:
lockit: ll R2,0(R1) ; read the lock
 bnez R2,lockit ; keep reading if lock not free
 lwi R2,#1 ; load the lock value
 sc R2,0(R1) ; Try to store & get 0
 beqz R2,lockit ; if another processor beat us, start over

– However, when the lock is released, a lot of traffic is generated
– This makes it difficult to scale this implementation to many processors

25-Apr-00 17UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Barrier synchronization
• Barrier synchronization: another common synchronization operation in

programs with parallel loops
– Allows multiple processes on multiple CPUs to wait until a certain number of

processes have reached a “barrier”
– When sufficient processes arrive, all waiting processes may continue

lock(counterlock); // ensure count update is atomic
if (count == 0) // First process to barrier -- reset ‘release’
 release = 0;
count += 1; // Count arrivals
unlock(counterlock); // Release lock
if (count == total) { // All have arrived, so reset
 count = 0; // counter and release processes
 release = 1;
} else { // Waiting for more processes
 spin (release == 1); // Spin until release set to 1
}

25-Apr-00 18UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Barrier synchronization
• Previous method can fail if one process ‘races’ ahead and resets release

before the last process has been scheduled again and exits the spin
• Instead, use a sense-reversing barrier

– A fix which uses private per-process variables.
– local_sense is initialized to 1 for each process

Local_sense = !local_sense; // toggle private variable
lock(counterlock); // ensure count update is atomic
if (count == 0) // First process to barrier -- reset ‘release’
 release = 0;
count += 1; // Count arrivals
unlock(counterlock); // Release lock
if (count == total) { // All have arrived, so reset
 count = 0; // counter and release processes
 release = local_sense;
} else { // Waiting for more processes
 spin (release == local_sense);
}

25-Apr-00 19UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Memory consistency models

• Deciding when a change to memory should be propagated to
other CPUs is a difficult problem
– Message-passing machines require explicit propagation, so the decision

is left entirely to software
– Shared memory in hardware has to support hardware mechanisms for

making this decision

25-Apr-00 20UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Future of parallel processors

• This class has only scratched the surface on multiprocessors
– There is more than enough material to spend an entire semester

discussing MP hardware design
– Predicting the future of MPs is even harder than understanding how

today’s MPs work

• Large scale machines that scale up naturally
– These would be built from commodity elements that can be added in

small numbers to build a a big system
– The interconnect is proprietary, but the processor is commodity
– The SGI Origin 2000 series and Cray T3E work this way

25-Apr-00 21UMBC Chapter 8CMSC 611 (Advanced Computer Architecture), Spring 2000

Future of parallel processors

• Large-scale machines built of clusters of mid-range machines
– Require faster uniprocessors but can be built from fewer machines
– Examples include the SGI Challenge and Sun Enterprise

• Off-the-shelf nodes with custom interconnect
– Uses standard processor boards
– Uses a high-speed custom-built interconnect
– Examples include IBM SP/2

• All off-the-shelf components
– Everything (processor, network) is standard and relatively inexpensive
– Workstation clusters (Beowulf) are a good example of this

