

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

1 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Given the important of response time (and throughput), we need a means of
computing values for these metrics.

Our black box model:

Let’s assume our system is in steady-state (input rate = output rate).

The contents of our black box.

I/O requests “depart” by being completed by the server.

I/O system

CPU issues requests
Arrivals

I/O system processes requests
Departures

Arrivals
Queue

Server
I/O controller

and device

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

2 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Elements of a queuing system:
•

Request & arrival rate

This is a single “request for service”.
The rate at which requests are generated is the

arrival rate

.

•

Server & service rate

This is the part of the system that services requests.
The rate at which requests are serviced is called the service rate.

•

Queue

This is where requests wait between the time they arrive and the time
their processing starts in the server.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

3 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Useful statistics
• Length

queue

,Time

queue

These are the average length of the queue and the average time a request
spends waiting in the

queue

.

• Length

server

,Time

server

These are the average number of tasks being serviced and the average
time each task spends in the

server

.
Note that a server may be able to serve

more than one

 request at a time.

• Time

system

,Length

system

This is the average time a request (also called a task) spends in the

sys-
tem

.
It is the sum of the time spent in the queue and the time spent in the
server.

The length is just the average number of tasks anywhere in the system.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

4 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Useful statistics
•

Little’s Law

The

mean number of tasks in the system = arrival rate * mean response
time

.

This is true only for systems in equilibrium.
We must assume any system we study (for this class) is in such a
state.

•

Server utilization

This is just

This must be between 0 and 1.
If it is larger than 1, the queue will grow infinitely long.

This is also called

traffic intensity

.

LengthSystem Arrival Rate TimeSystem×=

Server utilization Arrival Rate
Server Rate-----------------------------= where Rate = 1/Time

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

5 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Queue discipline

This is the order in which requests are delivered to the server.

Common orders are FIFO, LIFO, and random.

For FIFO, we can figure out how long a request waits in the queue by:

The last parameter is the hardest to figure out.

We can just use the formula:

C is the coefficient of variance, whose derivation is in the book.
(don’t worry about how to derive it - this isn’t a class on queuing the-
ory.)

TimeSystem LengthQueue TimeServer +×=

Mean time for server to finish current tasks when request arrives

Average residual service time
1
2---

Weighted mean time 1 C+()××=

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

6 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Example: Given:
• Processor sends 10 disk I/O per second (which are exponentially distrib-

uted).
• Average disk service time is 20 ms.

On average, how utilized is the disk?

What is the average time spent in the queue?

When the service distribution is exponential, we can use a simplified for-
mula for the average time spent waiting in line:

What is the average response time for a disk request (including queuing time and disk
service time)?

Server utilization Arrival Rate
Server Rate-----------------------------

10
1

0.02----------
---------- 0.2= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()---× 20ms
0.2

1 0.2–()---------------------× 5ms= = =

Timequeue Timeserver+ 5 20ms+ 25ms= =

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

7 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Queuing theory

Basic assumptions made about problems:
• System is in equilibrium.
• Interarrival time (time between two successive requests arriving) is expo-

nentially distributed.
• Infinite number of requests.
• Server does not need to delay between servicing requests.
• No limit to the length of the queue and queue is FIFO.
• All requests must be completed at some point.

This is called an M/G/1 queue
M = exponential arrival
G = general service distribution (i.e. not exponential)
1 = server can serve 1 request at a time

It turns out this is a good model for computer science because many

arrival

processes turn out to be

exponential

.

Service times

, however, may follow any of a number of distributions.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

8 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Disk Performance Benchmarks

We use these formulas to

predict

 the performance of storage subsystems.

We also need to measure the performance of real systems to:
• Collect the values of parameters needed for prediction.
• To determine if the queuing theory assumptions hold (e.g., to determine if

the queueing distribution model used is valid).

Benchmarks:
•

Transaction processing

The purpose of these benchmarks is to determine how many small (and
usually random) requests a system can satisfy in a given period of time.

This means the benchmark stresses

I/O rate

 (number of disk accesses per
second) rather than

data rate

 (bytes of data per second).

Banks, airlines, and other large customer service organizations are most
interested in these systems, as they allow simultaneous updates to little
pieces of data from many terminals.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

9 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Disk Performance Benchmarks

•

TPC-A and TPC-B

These are benchmarks designed by the people who do transaction pro-
cessing.

They measure a system’s ability to do random updates to small pieces of
data on disk.

As the number of transactions is increased, so must the

number of request-
ers

 and the

size of the account file

.
These restrictions are imposed to ensure that the benchmark really
measures disk I/O.

They prevent vendors from adding more main memory as a database
cache, artificially inflating TPS rates.

•

SPEC system-level file server (SFS)

This benchmark was designed to evaluate systems running Sun Micro-
systems network file service, NFS.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

10 (May 16, 1999 3:45 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Disk Performance Benchmarks

•

SPEC system-level file server (SFS)

It was synthesized based on measurements of NFS systems to provide a
reasonable mix of reads, writes and file operations.

Similar to TPC-B, SFS

scales

 the size of the file system according to the
reported

throughput

, i.e.,
It requires that for every 100 NFS operations per second, the size of
the disk must be increased by 1 GB.

It also limits average response time to 50ms.

• Self-scaling I/O
This method of I/O benchmarking uses a program that automatically
scales several parameters that govern performance.

• Number of unique bytes touched.
This parameter governs the total size of the data set.
By making the value large, the effects of a cache can be counteracted.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

11 (May 16, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Disk Performance Benchmarks
• Self-scaling I/O

• Percentage of reads.

• Average I/O request size.
This is scalable since some systems may work better with large
requests, and some with small.

• Percentage of sequential requests.
The percentage of requests that sequentially follow (address-wise)
the prior request.

As with request size, some systems are better at sequential and some
are better at random requests.

• Number of processes.
This is varied to control concurrent requests, e.g., the number of tasks
simultaneously issuing I/O requests.

Advanced Computer Architecture Chapter 6 (Part III) CMSC 611

12 (May 16, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Disk Performance Benchmarks
• Self-scaling I/O

The benchmark first chooses a nominal value for each of the five param-
eters (based on the system’s performance).

It then varies each parameter in turn while holding the others at their
nominal value.

Performance can thus be graphed using any of five axes to show the
effects of changing parameters on a system’s performance.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

1 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Reliability, Availability and RAID

Some definitions:
•

Reliability

Refers to the dependability of individual components of a system.
•

Availability

Is the system still available to the user after a failure of one or more of its
components ?

Adding hardware can therefore improve

availability

 but it can

NOT

 improve

reliability

.

Disk arrays

:
The basic idea behind

disk arrays

 is that by adding disks and therefore more
disk arms working in parallel,

bandwidth

 is improved.
Individual process-request seek latencies can be overlapped in time.

This is cost effective since price/megabyte is independent of disk size.

However,

latency

 for small requests is not improved because it still takes all of
the usual latency to get to a randomly selected block.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

2 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Reliability, Availability and RAID

•

Striping

In disk arrays, the data from files can be

striped

 across several disks.

This

increases bandwidth

 by allowing a file to be read from

more than one

disk at a time.

The data is distributed round robin between the disks.

Problems with disk arrays:
•

Reliability

Disks have a

mean time to failure

 of about 20 years.

However, a collection of 8 disks will experience a failure (on average)
every 2.5 years.

N devices generally have 1/N the reliability of a single device.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

3 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Reliability, Availability and RAID

Problems with disk arrays:
•

Reliability

Increase the number to 1000 disks, and a failure occurs every 1/50th of a
year or every week !

When a disk fails, it takes its data with it.

•

Availability

The other problem with disk arrays is that the disk array becomes unus-
able after a single failure.

We need a scheme to prevent data loss when a disk fails, and to allow the sys-
tem to recover from the failure (remain available.)

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

4 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Reliability, Availability and RAID

The solution:

Redundant Arrays of Inexpensive Disks.

Improves availability by adding

redundant

disks.
When a disk fails, the lost information can be reconstructed from redun-
dant information.

This works since the

mean time to failure

 (MTTF) of disks is long (years)
and the

mean time to repair

 (MTTR) is short (hours).

The idea behind RAID is to use some of the disks to store error correction
information for the rest of the disks.

RAIDs do NOT have to detect errors.
The ECC kept on each sector by each disk allows the disk electronics to
check and detect disk failures.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

5 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

There are 7 levels of RAID, each of which can be characterized by their avail-
ability and overhead.

•

RAID 0

This is no redundancy at all.
However, it is the fastest and cheapest RAID level.

This refers to the nonredundant disk array discussed previously.

Raid Level Failures survived Data Disks Check Disks

0 Nonredundant 0 8 0

1 Mirrored 1 8 8

2 Memory-style ECC 1 8 4

3 Bit-interleaved parity 1 8 1

4 Block-interleaved parity 1 8 1

5 Block-interleaved dis-
tributed parity

1 8 1

6 P+Q redundancy 2 8 2

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

6 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

•

RAID 1

Disks in this configuration are mirrored or copied to another disk.

With this arrangement, the data on a failed disk can be easily replaced by
reading it from the other disk.

In addition,

reading

 is actually

faster

 than it is for RAID 0 because read
requests to the same disk can be split between the two disks.

Writing

 is a little

slower

, though, because the file system must wait for
the slower of the two requests.

Remember, both disks must be updated.
Also, seek time is different between the two disks since they are not
synchronized.

The main problem with RAID 1 is that it imposes a 50% space penalty.

Therefore, it is the most expensive solution.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

7 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

• RAID 3 (Bit interleaved parity)

In this scheme, data is striped across disks in

very small units

.

These units are so small that all disks must work together on both reads
and writes because a

single sector

actually spans

 all

 of the disks.

Redundancy is implemented by

calculating parity

 and storing it on the
check disk.

The overhead for

n

 data disks is

1

 disk, for a storage efficiency of

n/
(n+1)

.

This level can survive a single disk failure and reconstruct data using the
remaining disks.

This RAID level is somewhat limited since the entire disk system can
only handle one request at a time.

Thus, the sustainable request rate is no higher than that of a single disk.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

8 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

• RAID 4 (Block interleaved parity)

This is similar to RAID 3, but individual disks each have a

block

(or
more) of consecutive data within a stripe.

This means that

each disk

 can handle an individual small read request if
all disks are working.

However, writes are still a problem since the

parity disk

 must participate
in all write operations, which creates a bottleneck.

0
4
8

12
16
20

1
5
9

13
17
21

2
6
10

14
18
22

3
7
11

15
19
23

P0
P1
P2
P3
P4
P5

RAID 4

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

9 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

• RAID 5 (Rotated parity)

The biggest problem with RAID 4 is that the parity disk is a bottleneck.

In RAID 5, the parity information may be stored on any disk.

Advantages:
Reads can be spread among all n+1 disks.
For writes, the parity disk bottleneck is eliminated.

0
4
8

12

20

1
5
9

21

2
6

13

22

3

14

23

P0
P1

P2

P3
P4

P5

RAID 5

7
10 11

15

16 17 18 19

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

10 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

• RAID 5 (Rotated parity)

With respect to the parity calculation and update, RAID 5 does have a
problem writing small pieces of data.

If a full stripe is written, the parity calculation is simple to implement.

XOR

 all the data together to get the parity.

If only a

single block

 is written, though, the system must somehow fig-
ure out the new parity.

The most straightforward solution is to read the rest of the blocks in the
stripe and XOR them together.

A better solution involves only four accesses:
• Read the old data.
• Compare old data to new data (to determine which bits change).
• Read and change the old parity.
• Write the new data and new parity.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

11 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Levels

• RAID 6 (P+Q parity)

The objective of RAID 6 is to survive two disk failures.

This is done using schemes such that only

n

 out of

n+2

 disks are neces-
sary to reconstruct the data.

This RAID level is not common today because disk failures are still rela-
tively rare.

If a disk in a parity-based RAID fails, no data is lost if a new disk is installed
and “updated” before another crash takes place.

Since stripes tend to be relatively small (usually less than 32 disks), the
chance that another disk will fail is relatively low.

Most people don’t worry about it.

Advanced Computer Architecture Chapter 6 (Part IV) CMSC 611

12 (May 16, 1999 4:18 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

RAID Issues:

• Mapping data to disks.

The first problem in a RAID system is how to map data to disks.
Usually, this is done using simple modulo arithmetic.

It is more complex for RAID 5, but there is still a formula that allows you
to determine where a given block is located.

• Reconstruction

After a disk has failed, it is replaced.

But we are not done since the new disk must be reconstructed with the
lost information in order to allow the array to withstand another crash.

Since the lost information is “embedded” in the remaining disks, recon-
struction is possible and carried out immediately.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

1 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Designing an I/O system: Basics

Now that we’ve seen how to

estimate

 performance on an I/O system.
And how to actually

measure

 performance.
We are ready to talk about how to build one.

The objective is to find a design that is expandable and that meets goals for

cost

and

variety of devices

 while

avoiding bottlenecks

 to I/O performance.

In designing an I/O system, analyze

performance

,

cost

and

capacity

 using

vari-
ous I/O connection schemes

 and

different numbers

 of I/O devices of each type.

 Here are the steps to follow in designing an I/O system:
•

List the types of I/O devices and buses, and their costs.

•

List the physical requirements of each device.

These include volume, power, connectors, bus slots, etc.
This won’t be a problem for paper examples, but it certainly will be for
real systems.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

2 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Designing an I/O system: Basics

•

Figure out the CPU resource demands for each I/O device.

Clock cycles to initiate, support the operation of, and complete requests.
Clock stalls from I/O access to memory.
Clock cycles to recover from an I/O activity, such as a cache flush.

•

List memory and I/O bus resource demands for each device

.
Bandwidth of main memory and the I/O bus can often be a bottleneck,
particularly when many devices are connected to a single bus.

•

Compute performance for various configurations of devices, buses, etc

.
This can really only be done by building the system and measuring it.

If this is not feasible (which is usually the case), the next best thing is a
detailed simulation.

Queuing models can be used to get a rough estimate of performance.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

3 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Designing an I/O system: Basics

Remember, performance can be measured as:
• Megabytes per second.
• I/Os per second.
This is dependent on the needs of the applications.

The goals for the design should also be clear:
• Is it a design to maximize performance at any cost ?
• Is it the cheapest system that will satisfy minimum requirements ?
• Is it the best price/performance ?

Look over the examples in the text !

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

4 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Tertiary storage

Many modern computer systems now use

removable media

 to store their
data.

Advantages:

• Inexpensive

Removable media cost a lot less because you only pay once for the
machinery to read, write, and transport the medium.

Since removable media use similar technology to non-removable media,
the media costs are similar but the mechanism cost is much lower.

• Low power

Disks use power to rotate.
A major advantage of removable media is that they do not consume
power.

• Unerasability

Some removable media (WORM) can not be erased even if the system
requests it.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

5 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Tertiary storage

Components:

• Tape robots

These systems typically hold thousands of tape cartridges and can load
any cartridge in under 20 seconds.

IBM 3490 cartridges (the most common today) hold 9 GB of data per car-
tridge and transfer at 9 MB/sec.

• Optical disk jukeboxes

These are usually used for two purposes:
Small randomly-accessed data.
Data that should not ever be overwritten (even accidentally).

The cost per GB is higher than for tape, but seek time is much better.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

6 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Tertiary storage

How it works:

• Moving data from disk to tertiary

Data is moved from disk to tertiary storage when the disk gets full.

This is called

file migration

 or simply

migration

.
Migrating data is done to free up disk space.

Files are picked for migration according to several factors:
• How big they are.
• When they were last used.
• Cost to retrieve the file.
• Other factors (possibly file type and/or user).

The device to which the file is migrated can also depend on these factors.
Small files might go to optical disk while large files are sent to a tape
robot.

Migration can also occur from one tertiary storage device to another.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

7 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Tertiary storage

• Moving data from tertiary to disk

Data is moved from tertiary to disk when it is needed.

It may also be prefetched if the system believes that the file might be
used soon.

File migration issues

Tertiary storage is very much an

ad hoc

 art these days.

System designers build their systems based on what others have done
because there is relatively little concrete research on what works and
what does not.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

8 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Tertiary storage

File migration issues

• When should a file be migrated ?

How should the system choose the files to move from disk to tape ?

This is very important because a user notices even a single miss.
It may take close to a minute to retrieve a file from tape !

Migrating just one file that should not have been moved can adversely
impact a user’s session.

• When should a file be deleted from disk ?

Just because a file has been migrated to tape does not mean it should be
deleted from disk.

When should its space be reclaimed ?

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

9 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Tertiary storage

File migration issues

• When should a file be moved from tape to disk ?

For demand fetches, this is obvious.

However, there is also

prefetching

 and

clustering

 that might help
improve performance.

• What kinds of devices and layouts work best for various kinds of files ?

Again, clustering is important, as is transfer time versus time to first
byte.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

10 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Fallacies and Pitfalls

• Media cost is not the same as actual cost.

Just because a disk costs $0.20/MB does

 NOT

mean you can pay
$200,000 and get a terabyte of disk.

There are lots of other costs associated with I/O systems.
For example, disks need controllers, I/O buses, system buses, power
supplies, and mounting hardware.

This supporting structure becomes much more expensive as the
number of disks supported grows.

The same is true for removable media.
It only costs $1000 to buy a terabyte of magnetic tape.

But that does not include tape readers, a robot, software, and all the
other pieces necessary to build a full system.

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

11 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Fallacies and Pitfalls

• Disk seek time is not linear.

A disk head must accelerate to maximum velocity, travel across tracks,
decelerate, and settle.

Most of the head’s time is spent accelerating and decelerating, a non-lin-
ear activity.

5

10

15

20

25

Access
time (ms)

Seek distance
250 500 750 1000 1250 1500 1750 2000 2250 2500

Timeseek Timemin
Distance

Distanceave
----------------------------- Timeave Timemin–()×+=

Naive formulation

Sophisticated model

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

12 (May 16, 1999 5:29 pm)

UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Fallacies and Pitfalls

• Disk seek time is not linear.

For disks with more than 200 cylinders, Chen and Lee [1995] modeled
the seek distance as:

The curve represented by this model in shown on the previous slide in
red.

Seek time (distance) a Distance 1– b Distance 1–() c+×+×=

where a, b and c were computed as:

a
10 Timemin 15 Timeave 5 Timemax×–×+×–

3 Number of cylinders×---=

b
7 Timemin 15 Timeave 8 Timemax×+×–×

3 Number of cylinders×---=

c Timemin=

Advanced Computer Architecture Chapter 6 (Part V) CMSC 611

13 (May 16, 1999 5:29 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

Fallacies and Pitfalls
• I/O will become more important with time.

As our society stores more and more information on computer media,
the ability to get to that information will become ever more important.

The NASA Mission to Project Earth will capture more than a terabyte of
data per day from satellites.

How can we find a needle in that haystack ?

Similarly, future libraries may dispense with physical books and instead
keep information online.

This makes it easier to distribute the information, but getting data to and
from storage will be a bottleneck unless progress is made.

