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Virtual memory

• Virtual memory is just another level in the memory hierarchy
– It allows main memory to cache pages (blocks) normally stored on disk
– As with caches, the operations performed by virtual memory are

transparent to properly-running user programs

• Virtual memory’s similarity to caching
– Block ≡ page

• Blocks in caches are equivalent to pages in virtual memory
• Pages are anywhere from 1 KB to 64 KB (though today’s page

sizes are usually 4+ KB)
– Miss ≡ page fault

• A miss in a cache is analogous to a page fault
• The only difference is the penalty...

– Millions of clock cycles for VM

– Tens of clock cycles for caches
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Virtual memory

• Miss rate
– The miss rate for VM is very low -- less than 0.001%
– Fewer than one in a million accesses causes a VM miss (often lower)

• Size
– Memory caches are 16 KB - 1 MB or more
– VM “cache” is 16 MB to 1024 MB or more — a factor of 1000 larger

• Differences include:
– Replacement mechanism.

• In caches, it is primarily controlled by the hardware
• In VM, replacement is primarily controlled by the OS

– The number of bits in the address determines the size of VM where
cache size is independent of the address size

• Two kinds of VM: paging systems and segmentation systems
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Basic virtual memory caching questions

• Where can a block be placed?
– Since miss penalties are very high, OS designers always choose lower

miss rates over simple placement algorithms
– VM is almost always fully-associative (blocks can be placed anywhere

in main memory)

• Which block is replaced?
– Most operating systems use LRU or an approximation to it
– The page table often includes a reference bit to help do LRU

replacement
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Basic virtual memory caching questions

• How is a block found?
– Paging systems use a page table to translate virtual page numbers into

physical page numbers
– The physical address is constructed by concatenating the physical page

number (found in the table) to the offset
– Segmented systems use a similar structure except that the segment’s

physical address is ADDED to the offset
– The page table needs enough entries to map the entire virtual address

space since it is accessed using virtual page numbers
• This results lots of space dedicated just to the page table
• One optimization is to use hashing to restrict the number of page

table entries to the number of physical pages (inverted page table)
– Translation lookaside buffers (TLBs) are used to cache these

translations, and reduce address translation time
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Basic virtual memory caching questions

• What happens on a write?
– VM is always writeback (capture as many writes as possible before

writing the page to disk)
– Write-through doesn’t make sense => very large access penalty
– The page table uses a dirty bit to keep track which pages have been

modified and must be written to disk before they are replaced
– Don’t write pages back to disk unless they’ve been modified

• Page tables imply that a memory reference requires at least
two memory accesses
– One (or more) for the page table
– One to get the data

• A TLB, which caches previous translations, can be effective in
reducing memory references to the page table (uses locality)
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Translation lookaside buffer (TLB)

• Similar to a cache
– Tag holds the virtual address
– Data portion holds the physical page frame number, protection field, valid bit,

use bit and a dirty bit

Physical pageTagDVUFlags

Virtual page # Offset in page

Physical address
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Translation lookaside buffer (TLB)

• As with normal caches, the TLB may be fully-associative,
direct-mapped, or set-associative

• Replacement may be done in hardware or may be assisted by
software
– For example, a miss in the TLB causes an exception which is handled

by the OS, which places the appropriate page information into the TLB
– Hardware handling is (usually) faster, but software is more flexible

• Small, fast TLBs are crucial because they are on the critical
path to accessing data from the cache
⇒ This is particularly true if the cache is physically addressed
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Selecting page size

• Large page sizes are generally better because
– They reduce the size of the page table
– They are more efficient to transfer between memory and disk
– They allow a TLB to cache translations for more of memory

• The biggest drawback to large pages is that they may waste
memory: internal fragmentation
– Assuming a process has three primary segments (text, heap and stack)
– The average wasted storage per process will be 1.5 times the page size
– When page size is 4 KB or 8 KB, this is negligible for machines with

megabytes of memory
– For larger pages, e.g., 64+ KB, lots of storage may be wasted

• Variable size pages can be used to get advantages of large
pages without internal fragmentation
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Memory protection

• VM is often used to protect a program from other programs
⇒ Protection mechanisms must have hardware support

• Base & bounds
– Each reference must fall between two addresses, given by the base &

bound registers
– This method also allows some relocation
– User processes cannot be allowed to change these registers, but the OS

must be able to do so on a process switch

• Therefore, the hardware must provide:
– At least two modes of operations, user and kernel mode and a

mechanism to switch between them
– A protection mechanism for other portions of the CPU state to prevent

user processes from being malicious
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Using virtual memory for protection

• To ensure protection, CPU provides:
– User/supervisor mode bit(s): separation of user & OS functions
– Interrupt enable/disable bit(s): atomic operations

• Virtual memory offers a more fine-grained alternative
– Each process has its own page table, which it cannot modify itself
– Permission flags are provided with each segment or page

• Read/write
• Execute

– Concentric rings of security and capability lists are more fine-grained
alternatives, allowing more than two levels of protection

⇒ The OS course discusses VM in more detail
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Effect of CPU design on memory hierarchy

• Superscalar & vector execution
– A superscalar or vector machine may fetch several words per cycle
– Clearly, the memory system must deliver the bandwidth to handle this;

otherwise the benefit is lost
– The brunt of the load falls upon the L1 cache

• Bandwidth can be increased by widening the path to the cache or
by providing extra ports to the cache

• However, cache access is often the bottleneck in modern CPUs

• Speculative execution
– Speculative execution and conditional instructions may generate invalid

addresses that would not occur otherwise
– The memory system must recognize and suppress these exceptions
– Similarly, it must not stall the cache on a miss caused by a speculative

instruction
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I/O and cache consistency

• I/O devices move data from peripherals to memory
• This has two pitfalls:

– Data written into memory is not automatically updated in the cache
– Data in a writeback cache is not written to memory immediately so

memory has stale data

• One solution is to flush blocks from the cache that are used in
the I/O operation
– Before the I/O for a write (so the write operation uses up-to-date

information)
– After the I/O for the read (before the I/O should work as well. The CPU

should not access the data as it is being read into memory)

• An alternate method is simply to mark the blocks from I/O
buffers as uncacheable
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I/O and cache consistency: other solutions

• Watch the I/O buses for addresses in the tag
– This eliminates the consistency problem
– The drawback is that the checking slows down the cache

• Do I/O directly into the cache
– This method guarantees consistency but it slows down the cache since

both the CPU and I/O access it
– Moreover, it displaces data in the cache with new data that is unlikely

to be accessed soon by the CPU,
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Stuff to beware of...

• Don’t predict cache performance of code A from code B
– Programs vary widely in how they use cache
– A scientific program may have a small tight code loop but access large

quantities of data
– On the other hand, a word processing program might operate on

relatively little data but use lots of code

• Simulate plenty of memory references
– A CPU executes 500 million or more instructions per second
– Simulating cache behavior using traces of only a few million traces can

be misleading
– Program locality behavior isn’t constant over the entire program run

• Don’t ignore the OS
– Context switches can have a devastating effect on performance
– The OS can miss or interfere with application programs, causing misses


