Virtual memory

e Virtual memory isjust another level in the memory hierarchy
— It allows main memory to cache pages (blocks) normally stored on disk
— Aswith caches, the operations performed by virtual memory are
transparent to properly-running user programs
e Virtua memory’s similarity to caching
— Block = page
» Blocksin caches are equivalent to pagesin virtual memory

» Pages are anywhere from 1 KB to 64 KB (though today’ s page
sizesare usually 4+ KB)

— Miss = page fault
* A missin acacheisanalogousto a page fault
* The only differenceisthe penalty...
— Millions of clock cyclesfor VM

_ — Tens of clock cycles for caches

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

Virtual memory

Miss rate
— Themissrate for VM isvery low -- less than 0.001%
— Fewer than one in amillion accesses causes a VM miss (often lower)
e Sze
— Memory cachesare 16 KB - 1 MB or more
— VM “cache” is16 MB to 1024 MB or more — afactor of 1000 larger

Differences include:
— Replacement mechanism.
 |ncaches, it is primarily controlled by the hardware
* In VM, replacement is primarily controlled by the OS
— The number of bitsin the address determines the size of VM where
cache size is independent of the address size

« Two kinds of VM: paging systems and segmentation systems

\

S,
& JUMBC %ﬁ
16-Apr-00 g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

-
Basic virtual memory caching questions

 Where can ablock be placed?

— Since miss penalties are very high, OS designers always choose |ower
miss rates over simple placement algorithms

— VM isamost always fully-associative (blocks can be placed anywhere
IN main memory)

e Which block isreplaced?

— Most operating systems use LRU or an approximation to it

— The page table often includes a reference bit to hel p do LRU
replacement

\

S,
& JUMBC %ﬁ
16-Apr-00 g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

~

\

Basic virtual memory caching questions

e How isablock found?

Paging systems use a page table to translate virtual page numbers into
physical page numbers

The physical address is constructed by concatenating the physical page
number (found in the table) to the offset

Segmented systems use a similar structure except that the segment’s
physical addressis ADDED to the offset

The page table needs enough entries to map the entire virtual address
space since it is accessed using virtual page numbers

* Thisresults lots of space dedicated just to the page table
» One optimization is to use hashing to restrict the number of page
table entries to the number of physical pages (inverted page table)
Trandlation lookaside buffers (TLBS) are used to cache these
trand ations, and reduce address translation time

16-Apr-00

sﬁii:%% . .
g m U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

-
Basic virtual memory caching questions

e What happens on awrite?

— VM isaways writeback (capture as many writes as possible before
writing the page to disk)
— Write-through doesn’t make sense => very large access penalty

— The page table uses adirty bit to keep track which pages have been
modified and must be written to disk before they are replaced

— Don't write pages back to disk unless they’ ve been modified
« Page tables imply that a memory reference requires at least
two memory accesses
— One (or more) for the page table
— Oneto get the data
« A TLB, which caches previous translations, can be effective in
reducing memory references to the page table (uses locality)

\

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

Tranglation lookaside buffer (TLB)

Virtual page # Offset in page

Flags U V D Tag Physical page
—>
—>
>
(N N N/
—>

v
—» Physical address

e Similar to acache
— Tag holdsthe virtual address

— Data portion holds the physical page frame number, protection field, valid bit,
use bit and a dirty bit

\

S,
& JUMBC %ﬁ
16-Apr-00 4 CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

Tranglation lookaside buffer (TLB)

« Aswith normal caches, the TLB may be fully-associative,
direct-mapped, or set-associative

* Replacement may be done in hardware or may be assisted by
software

— For example, amissin the TL B causes an exception which is handled
by the OS, which places the appropriate page information into the TLB
— Hardware handling is (usually) faster, but software is more flexible
« Small, fast TLBs are crucial because they are on thecritical
path to accessing data from the cache

0O Thisisparticularly trueif the cache is physically addressed

\

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

Selecting page size

o Large page sizes are generally better because
— They reduce the size of the page table
— They are more efficient to transfer between memory and di sk
— They allow aTLB to cache trandations for more of memory

* The biggest drawback to large pages is that they may waste
memory: internal fragmentation
— Assuming a process has three primary segments (text, heap and stack)
— The average wasted storage per process will be 1.5 times the page size

— When page sizeis4 KB or 8 KB, thisis negligible for machines with
megabytes of memory

— For larger pages, e.g., 64+ KB, lots of storage may be wasted
o Variable size pages can be used to get advantages of large
pages without internal fragmentation

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 8
{5 UMBC

Memory protection

VM isoften used to protect a program from other programs
0 Protection mechanisms must have hardware support

e Base & bounds
— Each reference must fall between two addresses, given by the base &
bound registers
— This method also allows some relocation
— User processes cannot be allowed to change these registers, but the OS
must be able to do so on a process switch

* Therefore, the hardware must provide;
— At least two modes of operations, user and kernel mode and a
mechanism to switch between them
— A protection mechanism for other portions of the CPU state to prevent
user processes from being malicious

\

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

Using virtual memory for protection

* To ensure protection, CPU provides:

— User/supervisor mode bit(s): separation of user & OS functions
— Interrupt enable/disable bit(s): atomic operations

« Virtual memory offers amore fine-grained alternative

— Each process has its own page tabl e, which it cannot modify itself
— Permission flags are provided with each segment or page

» Read/write

* Execute

— Concentric rings of security and capability lists are more fine-grained
alternatives, allowing more than two levels of protection

0 The OS course discusses VM in more detall

\

16-Apr-00

e
; m% U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

10

4)
Effect of CPU design on memory hierarchy

e Superscalar & vector execution

— A superscalar or vector machine may fetch several words per cycle

— Clearly, the memory system must deliver the bandwidth to handle this;
otherwise the benefit islost

— The brunt of the load falls upon the L1 cache

» Bandwidth can be increased by widening the path to the cache or
by providing extra ports to the cache

 However, cache access is often the bottleneck in modern CPUs
e Speculative execution

— Speculative execution and conditional instructions may generate invalid
addresses that would not occur otherwise

— The memory system must recognize and suppress these exceptions

— Similarly, it must not stall the cache on amiss caused by a speculative
9 Instruction

J

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 11
{5 UMBC

\

|/O and cache consistency

|/O devices move data from peripherals to memory

This hastwo pitfalls:
— Datawritten into memory is not automatically updated in the cache
— Datain awriteback cacheis not written to memory immediately so
memory has stale data
One solution is to flush blocks from the cache that are used in

the 1/O operation
— Beforethe I/O for awrite (so the write operation uses up-to-date
Information)
— After the |/O for the read (before the I/O should work as well. The CPU
should not access the data as it is being read into memory)

An aternate method is ssmply to mark the blocks from I/O
buffers as uncacheable

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
{5 UMBC

12

4)
|/O and cache consistency: other solutions

o Watch the I/O buses for addresses in the tag

— This eliminates the consistency problem
— The drawback is that the checking slows down the cache

e Do I/Odirectly into the cache

— This method guarantees consistency but it slows down the cache since
both the CPU and 1/0 access it

— Moreover, it displaces data in the cache with new datathat is unlikely
to be accessed soon by the CPU,

_ J

S,
16-Apr-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 13
{5 UMBC

Stuff to beware of...

e Don't predict cache performance of code A from code B

— Programs vary widely in how they use cache

— A scientific program may have a small tight code loop but access large
guantities of data

— On the other hand, aword processing program might operate on
relatively little data but use lots of code

o Simulate plenty of memory references

— A CPU executes 500 million or more instructions per second

— Simulating cache behavior using traces of only afew million traces can
be mideading

— Program locality behavior isn’t constant over the entire program run

e Don'tignorethe OS

\

— Context switches can have a devastating effect on performance
— The OS can miss or interfere with application programs, causing misses /

16-Apr-00

sﬁii:%% . .
{ M U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 14

