
16-Apr-00 1UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Reducing hit time: small & simple caches

• Cache access time limits the clock cycle rate on many systems
⇒ Cache design affects more than average memory access time - it affects

everything

• Small & simple caches reduce hit time
– Less hardware to implement a cache => shorter critical path through

the hardware
– Direct-mapped is faster than set-associative for both reads and writes:

tag
• There is only one block for each index
• If tag check fails, the block is wrong and a (long) cache miss must

be processed
– Fitting the cache on the chip with the CPU is also very important for

fast access times

• Fast clock cycle time encourages small direct-mapped caches



16-Apr-00 2UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Avoid address translation during indexing

• The CPU uses virtual addresses that must be mapped to a
physical address
– The cache may either use virtual or physical addresses

• Cache indexed by virtual addresses => virtual cache
• Cache indexed by physical address => physical cache
• A virtual cache reduces hit time

– Translation from a virtual address to a physical address is not necessary
on hits

– Address translation can be done in parallel with cache access =>
penalties for misses are reduced as well

• So why are they used so infrequently?



16-Apr-00 3UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Issues with virtual caches

• Process switches require cache purging
– Different processes share the same virtual addresses even though they

map to different physical addresses
– When a process is swapped out, the cache must be purged of all entries

to make sure that the new process gets the correct data

• One solution: PID tags
– Increase the width of the cache address tags to include a process ID

(instead of purging the cache)
– The current process PID is specified by a register
– If the PID does not match, it is not a hit even if the address matches



16-Apr-00 4UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Virtual caches & aliasing

• Problem: two different virtual addresses may have the same
physical address (even for a single process)
– This may result in two copies of the same block in the cache!
– The aliasing problem must be handled correctly

• Anti-aliasing hardware: guarantees every cache block a unique
physical address
– Every virtual address maps to the same location in the cache
– This solution can be slow and difficult to implement in hardware

• Page coloring: software technique that forces aliases to share
some address bits
– The virtual address and physical address match over these k bits
– A direct-mapped cache that is 2k bytes or smaller can never have

duplicate physical addresses for blocks



16-Apr-00 5UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Reducing access time in virtual caches

• Use the page offset to index the cache: get the best of both
virtual & physical caches
– Overlap the virtual address translation process with the time required to

read the tags
– Page offset is unaffected by address translation
– However, this restriction forces the cache size to be smaller than the

page size because the index comes from the “physical” portion of the
virtual address (the page offset)

• Basic operation
– Send the page offset to the cache
– At the same time, translate the virtual -> physical page number
– Check the tag from cache against the physical address obtained by

virtual -> physical translation

• High associativity allows for larger cache sizes



16-Apr-00 6UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Tag

=?

=?

CPU

DataIn
DataOut

Write buffer

Main memory

Addr

Data cache

Delayed write buffer

Reducing hit time with pipelined writes
• Write hits take longer than read hits because tag checking is required before

the data is written
• One solution is to pipeline the writes (as in the Alpha AXP 21064)

– The second stage of the write (cache is updated with new data) occurs during
the first stage of the next write

– Allows tag checking and data writing to occur simultaneously



16-Apr-00 7UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Small & simple caches

Avoiding address translations

Pipelining writes

Early restart / critical word 1st

Nonblocking cache

2nd level caches

Compiler optimizations

Giving read misses priority

Subblock placement

Pseudo-associativity

Hardware prefetching

Compiler-controlled prefetch

Larger block sizes

Higher associativity

Victim caches

Miss rate

+

+

+

+

+

+

+

Miss penalty Hit time Hardware complexity

— 0

— 1

2

2

2

3

0

+ 1

+ 1

+ 2

+ 3

+ 2

+ 0

+ 2

+ 1

—

Cache optimization techniques: summary



16-Apr-00 8UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Main memory

• Main memory is usually made from DRAM while caches use
SRAM
– SRAM is faster (by almost an order of magnitude)
– However, it’s also more expensive per bit

• DRAM uses 1 transistor & 1 capacitor per bit
• SRAM uses 6 transistors => 4x to 8x the space

• There are methods for optimizing DRAM performance
• Performance measures for DRAM include:

– Latency: important for caches (reduces miss penalty)
– Bandwidth

• Important for I/O
• Also important for cache with second-level and larger block sizes



16-Apr-00 9UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Main memory performance issues

• Latency measures include
– Access time: time between when a read is requested and when the

desired word arrives
– Cycle time: the minimum time between the starts of two accesses to

memory
• This is at least as long as access time, and is usually longer

• DRAM refresh
– DRAMs must occasionally refresh their data
– This is done by reading all of the cells in a row and writing them back
– Refresh must be done every few milliseconds

• This operation consumes less than 5% of total time
• The low time requirement occurs because the time necessary to

refresh is proportional to the square root of the size of the DRAM



16-Apr-00 10UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Main memory performance

• Amdahl suggested that memory capacity should grow linearly
with CPU speed
– Memory capacity grows four-fold every three years to supply this

demand
– The CPU-DRAM performance gap is a problem, however, since

DRAM performance improvement is only about 7% per year
– Cache innovations have addressed this problem to some degree

• There are innovations in main memory organizations that are
more cost-effective



16-Apr-00 11UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Wider main memory

CPU

Cache

Memory Memory

Cache

CPU

4
words

1
word1

word

1
word

Wider memory
• doubles or quadruples memory
bandwidth to cache

Disadvantages:
• MUX required on critical path
to allow word access
• Increases minimum memory
increment that customer must
purchase
• Complicates error correction

MUX



16-Apr-00 12UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Wider main memory

• DRAM chips are typically 1-8 bits wide
– Any number of them can be accessed in parallel without extra delay

• By increasing the width of memory, the CPU can get more bits
in a single cycle
– This increases bandwidth between cache and memory

• Example: consider a cache with 4 word blocks
– Main memory might require

• 4 cycles to send the address
• 40 cycles to access memory
• 4 cycles to transfer over the bus

– If the memory is only one word wide, a miss would require 4 x (4 + 40
+ 4) = 192 cycles!

– If the memory is enlarged to 4 words wide, miss time is only 48 cycles



16-Apr-00 13UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Interleaved main memory

CPU

Cache

Memory Memory
Bank 0

Cache

CPU

1
word

1
word1

word

1
word

• Banks are often one word wide
=> Bus width need not be changed
• Several independent banks can be
accessed simultaneously

Memory
Bank 1

Memory
Bank 2

Memory
Bank 3



16-Apr-00 14UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Interleaved main memory

• Example: fetch a block by
– Sending 1 address
– Waiting for a single memory cycle
– Transferring 4 words for a total time of 4 + 40 + (4 x 4) = 60 cycles

• A little slower than wider memory (due to bus limitations)
– Reads must transfer more words
– Writes can be overlapped if they are addressed to different banks

• Read access optimization may be possible
– Example: cache block size is four words => parallel access is possible

• Write-back caches make writes sequential as well as reads
• How many banks are sufficient?

– Possible rule: ‘# of banks >= # of clocks to access a word in a bank’
– This allows up to 1 word per clock cycle in best case



16-Apr-00 15UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Independent memory banks

• Interleaved memory concept can be extended to remove all
restrictions on memory access
– Interleaved memory => only a single memory controller in the system

⇒ Allows the interleaving of sequential access patterns
– Address line sharing among the banks is possible in this scheme

• Instead, use multiple independent controllers
– Example: one for I/O devices, one for cache reads and one for cache

writes
– Banks are still accessed in parallel, but now there may be multiple

independent requests serviced simultaneously

• This can be particularly useful for
– Nonblocking caches (that allow multiple outstanding read misses)
– Multiprocessors



16-Apr-00 16UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Avoiding memory bank conflicts

• As with caches, programs can be modified to improve
memory performance
– The most important principle is to keep all the banks running
– Programs that access all banks evenly will perform best

• Problem: data memory references are not random and may end
up going to the same bank
– Using a prime number of memory banks makes this work well
– However, using a prime number makes the division operation

expensive
Bank number = Address MOD Number of banks
Address within bank = floor (Address / Number of banks)



16-Apr-00 17UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Avoiding memory bank conflicts

• There are schemes distribute memory accesses to banks using
– A prime number of banks
– Fast modulo arithmetic

• For example, the following can be used:
Bank number = Address MOD number of banks
Address in bank = Address MOD number of words in bank
– This avoids the use of an expensive ‘non power of 2’ division operation

shown previously
– There is a proof that guarantees that the above mapping provides a

unique mapping between an address and a memory location
– For numbers of the form 2N-1, there is fast hardware to implement the

MOD operation



16-Apr-00 18UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Improving DRAM performance
• Previous methods work with any

memory technology
• There are also techniques that

take advantage of the nature of
DRAMs

• DRAMs buffer a row of bits
inside the DRAM for column
access
– The size of the buffer is usually

the square root of the DRAM
size, e.g. 16Kbits for 64MBits

• DRAMs are designed to allow
multiple accesses to this buffer,
eliminating the row access time

Row
buffer

MUX

Row
address

Column
address

Data out



16-Apr-00 19UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

DRAM-specific techniques

• Nibble mode
– The DRAM can supply three extra bits from locations sequential to the

one just accessed, once after each RAS (Row Access Strobe)

• Page mode
– The DRAM can act as an SRAM once a row has been selected
– For example, random bits from the row can be selected by changing

just the column address
– This can occur until the next RAS or refresh

• Static column mode (Extended Data Out [EDO] RAM)
– Very similar to page mode
– No need to toggle (clock) the column access strobe line every time the

column address changes

• These optimizations can improve bandwidth by a factor of 4!



16-Apr-00 20UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

DRAM-specific techniques

• Synchronous DRAM (SDRAM)
– The clock is supplied to the RAM chip, and all signals are

synchronized to it
– This allows the RAM to run at higher speeds
– Similarly, sequential data can be retrieved faster, at the rate of one bit

per clock cycle (similar to page mode)

• VRAM
– Video RAM is used to drive displays
– Read or written using a normal interface
– Read via special interface that outputs rows one bit at a time (good for

video displays)

• Modern DRAM chips often output multiple bits at a time (4-8
bits per address)


