|mproving cache performance

» Theincreasing speed gap between CPU and main memory has
made the performance of the memory system increasingly
important

» There are many distinct methods system architect use to
reduce average memory access time

» These methods can be classified by whether they

— Reducethe missrate

— Reduce the miss penalty
— Reducethetimeto hit in acache

» Other methods may also increase capacity for a given cost...

» Conflict (collision) misses

Components of cache missrate

16%

« Three“C”sof cache misses 14% |
« Compulsory misses o 1%
— First accessto ablock can’t bein 7 8%\
.. 6%
the cache o
— Occur regardless of cache 9ze 2%
. i %
 Capacity misses 1 2 4 8 16 32 64 128
— Occur because cacheisn't large Cache size (KB)

enough to hold all blocks
— Compulsory missrate - the miss
rate of afully associative cache

Volss ate

— Theblock can't be kept because

the set isfull
— Difference between fu”y' and 1 2 4 8 16 32 64 128
set- associative cache Cachesize (KB)

9-Apr-00 , CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
‘# UMBC

Y
S))
3% : | | M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

Reducing cache missrate

» To reduce cache miss rate, we must eliminate some of the
misses due to thethree C's
— Capacity misses can’t be reduced much except by making the cache
larger
— Conflict misses and compulsory misses can be reduced in several ways
» Larger cache blocks
— Decrease the compulsory miss rate by taking advantage of spatial
locality
— May increase the miss penalty by requiring more data to be fetched per
miss
— Likely to increase conflict misses since fewer blocks can be stored in
the cache
— May even increase capacity missesin small caches

Larger cache blocks

e Themissrate curve is U-shaped because
— Small blocks have a higher missrate
— Large blocks have a higher miss penalty (even if missrate is not too high)
» High latency, high bandwidth memory systems encourage large block sizes
— The cache gets more bytes per miss for asmall increase in miss penalty
— 32-byte blocks are typical for 1-KB, 4-KB and 16-KB caches
— 64-byte blocks are typical for larger caches
» Instruction caches tend to have larger blocks than data caches

6%

= 4% |
=

=
S, i i

9-Apr-00 g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
(% UMBC

0%
8 16 32 64 128 256
Block size
9-Apr-00 ,)‘i@g‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

4 4
Higher associativity Victim caches
 Conflict misses can be a problem for caches with low » Victim cache => smal| cache (often fully associative) that holds afew of
associativity (especially direct-mapped) the most recently repl.aced blocks or vi .Cti ms from thg main cache
. . alv foll the 2:1 h le of thumb — Reduces conflict misses and (secondarily) capacity misses
Miss I’?IGS generaly 10 OW €c.1cache ru' eor thum — Particularly effective for small, direct-mapped data caches
— A direct-mapped cache of size N has the same miss rate as a 2-way set- * A 4 entry victim cache handled from 20% to 95% of the conflict misses
associative cache of size N/2 from a 4K B direct-mapped data cache
» However, higher associativity means » Check victim cache before main memory on amiss
— More hardware — Swap victim block & cache block if hit in victim cache
— Often, longer cycle times (increased hit time) __
— Possibly, more capacity misses Main Victim
. . cache
» 8-way set-associative caches are the maximum used today, and cache r Main
most systems use 4-way or less CRU &> « memory
O Higher hit rate is offset by the slower clock cycle time
- -
9-Apr-00 w#; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 9-Apr-00 W{E U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
4 4
Pseudo-associative caches Hardware prefetch
» These caches use atechnique similar to double hashing » Prefetching isthe act of getting data from memory beforeit is
— On amiss, the cache searches a different set for the desired block actually needed by the CPU
— The second (pseudo) set to probe is usualy found by inverting one or — Typically, the cache requests the next consecutive bl ock to be fetched
more bitsin the original set index with arequested block, hopeful ly avoiding a subsequent miss
» Two separate searches are conducted on amiss — Compulsory misses reduced by retrieving the data before it is requested
— Thefirst search proceeds as it would for a direct-mapped cache: since — Other misses may increase => useful blocks replaced in the cache
there’s no associative h/w, hit time isfast if block found on first probe » Many caches hold prefetched blocks in a special buffer until
— The second probe takes some time (usually an extra cycle or two), but they are actually needed
|t’S<::1thot fasterdthant;cljm nkg to n;)aln mem;ry ththe bri block — Thisbuffer isfaster than main memory but only has alimited capacity
« gﬁvﬁﬁﬂ] Ay bock can be Sveppeciwith the primery biock on a » Prefetching a'so uses main memory bandwidth
. . . . — Prefetching works well if the data is actually used
This r_nEthOd redu_ces the erf_eCt of Cmﬂl_Ct mi — However, it can adversely affect performance if the dataisrarely used
» Also improves miss rates without affecting the clock rate and the accesses interfere with * demand misses
\. \.
9-Apr-00

9-Apr-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
% UMBC

S, v v
;i% % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

4 N\ 4)
Compiler-controlled prefetch Compiler optimizations
» Some CPUs include prefetching instructions * This method requires no hardware modifications
— Instructions request that data be moved into either aregister or cache — However, it’s often the most efficient way to reduce cache misses
— These specia instructions can either be faulting or non-faulting — The improvement results from better code and data organizations
+ Non-faulting instructions do nothing (no-op) if the memory access » Examples
WC_’UId cauise an exception _ _ — Code can be rearranged to avoid conflictsin adirect-mapped cache
» Prefetching shouldn’t interfere with normal CPU operations — Accesses to arrays can be reordered to operate on blocks of data rather
— The cache must be nonblocking (also called lockup-free) than processing rows of the array
— Thisallowsthe CPU to overlap execution with the prefetching of data — Arrays can be resized to avoid cache conflicts for related elements
* Improves prefetch “hit” rates over hardware prefetch
— However ,it does so at the expense of executing more instructions
— Thus, the compiler tends to concentrate on prefetching datathat are
likely to be cache misses anyway
— Loops are key targets since they operate over large data spaces and
_ their data accesses can be inferred from the loop index in advance W, _ W,
9-Apr-00 w#;: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 9 9-Apr-00 }?q‘;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 10
4 N\ 4 M\
Compiler optimization: merging arrays Compiler optimization: loop interchange
» Combine two separate arrays (that might conflict for asingle block in the » Switch the order in which loops execute
cache) into asingle interleaved array — Misses can bereduced due to improvements in spatial locdity
» Bring together corresponding el ements in both arrays, which are likely to * Example
be referenced together — These loops cause a miss on each memory access because of the long stride
+ Reorganizing and fetching them at the same time can reduce misses given by index j in theinner loop
« Thistechnique reduces misses by improving spatial locality — Switching the order of the loops changes the stride to 1 => the elements are
accessed in sequential order.
i nt val ue[SI ZE] ; struct nerged { fO; (i(=_0; i <100; i++) § { fOfr (j(=Q; j <100; j++) § {
int key[Sl ZE] ; int val ue; or (120,] <100; J++) or (1=0; 1<100; 1++)
int key; alj1li] = aljlli]*2; a[j1li] = a[jl[i]l*2;
b } }
struct nerge ni Sl ZE];
_ J _ J
9-Apr-00 a ‘N,]?z; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 1 9-Apr-00 3%: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 12

,:_i))
i Zﬁu } U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

4 ™\ 4 ™\
Compiler optimization: loop fusion Compiler optimization: blocking
» Many programs have separate |oops that operate on the same data » Previous compiler optimizations work well on array accesses that occur
« Combining these loops allows a program to take advantage of tempor al along one dimension only
locality by grouping operations on the same (cached) data together — Loops that access both rowsand columns can use other techniques
— Caching may work even better because of sequential access between elements — Unoptimized matrix multiplication => cache must hold the shaded areas
— Caching can hold results from previousiterations of the loop... » Another technique: blocking
— Capacity misses can occur for large matrices since it may not be possible to
store all the elements of Z in the cache
— Blocking operates on submatrices: reduces total memory words accessed by a
for (j=0; j<100: j++) { for (j=0; j<100; j++) { factor of B (the blocking factor)
x[i1 =x[il + ylil; x[i1 = x[j] + y[il;
} ylil = ylil + x[j-1];
}
for (j=0; j<100; j++) {
ylil =vylil + x[j-1];
}
X = Y X Z
. J \ J
9-Apr-00 Vw%b U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 13 9-Apr-00 “?!#E U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 14
4 ™\ 4 ™\
Compiler optimization: blocking Giving read misses priority
e Matrix multiplication is performed by multiplying the submatrices first » If asystem has awrite buffer, delay writesto come after reads
— Matrix Y benefits from spatial locaity * Problem: reads may request a val ue about to be written
— Matrix Z benefits from temporal locality + Solution 1: stall reads until the write buffer is empty
* Thismethod is also used to reduce the number of blocks that must be — The write buffer in write-through is likely to have blocks queued up
transferred between disk and main memory — Read miss penalty increases considerably
0 Thetechniqueis effective for several leves of the hierarchy e Solution 2: check the write buffer for conflicts
» Given theincreasing speed gap in processor speed and memory access — Incaseslike this, the write buffer actsas a victim cache
times, these last two techniques will only increase in importance over time
SWO(R3), R4 If thisis adirect-mapped 4KB
LW R11, 4096(R3) cache, will R12 get the value
LWR12, 0(R3) from R4?
X = Y X 7
\. J \. J
9-Apr-00 Chapter 5 15 9-Apr-00 'i@,ﬁ;‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 16

Using subblocks to reduce fetch time

» Tags can hurt performance by occupying too much space or by slowing
down caches
— Using large blocks reduces the amount of storage for tags (and makes them
shorter), optimizing space on the chip
— Thismay even reduce miss rate by reducing compulsory misses
— However, the miss penalty for large blocks is high, since the entire block must
be moved between the cache and memory
« Solution: divide each block into subblocks, each of which has avalid bit
— Tagisvalid for the entire block, but only a subblock needs to be read on amiss
— A block is no longer the minimum unit transferred between cache and memory
— Result: asmaller miss penalty

Early restart & critical word first

» Goal: optimize the order in which the words of a block are
fetched and when the desired word is delivered to the CPU
» Thisstrategy requires no extra hardware!

o Early restart
— The CPU getsits data (and resumes execution) as soon as the desired
word arrivesin the cache
— CPU doesn’t wait for the rest of the block!
» Critical word first
— Don't start the fetch of ablock with the first word

3 n n pumEm— E— Subblocks — Instead, fetch the requested word first and then fetch the rest afterwards
123 o 1 1| «— » Early restart & critical word first reduce the miss penalty
123 0 0 0 0 ¥ 0 CPU can continue execution while most of the block is still being
L Tag vaidbits fetched y
9-Apr-00 % U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 17 9-Apr-00 }?g{;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 18
4 ™\ 4 M\
Non-blocking cache Second level caches
* A nonblocking cache can allow the CPU to continue executing + Thismethod focuses on the interface between the cache and main memory
instructions after a data cache miss * Add asecond-level cache between main memory and asmall, fast first-
— Workswaell in conjunction with out-of-order execution Ie/dTE?c:ele v the des e th hef dl
— The cache continues to supply hits while processing read misses (hit — Thishelps satisly the desire to make the cache fast and Jarge
under miss) — The second-level cache allows
Thei . cedi he missed d itsfor the d . ¢ A smadll first-level cache that fits on the chip with the CPU
— The instruction needing the mi atalwalts or the a?tato ar.nve * A first-level cache fast enough to hande hitsin 1-2 CPU cycles
» Complex caches can even have multiple outstanding misses — Hits for many memory accessesthat would go to main memory are handled in
(miss under miss) the L2 cache, lessening the effective miss penalty
— Thisgreatly increases cache complexity L1
— May be of relatively little benefit relative to the design complexity D
~cache L2 Main
CPU —»
cache memory
L1
I-cache
_ J _ J
9-Apr-00 , ?Q?z; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 19 9-Apr-00 ‘i%:“‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 20

Performance of multi-level caches

» Caculating performance of atwo-level cache is done similarly to that of a
one-level cache
— Misspenalty for level 1is cdculated using the hit time, miss rate, and miss
penalty for the level 2 cache
» For two level caches, there are two missrates
— Global missrate: the number of missesin the cache divided by the total
memory accesses generated by the CPU (Missratg ,*Missrate, ,)
— Local missrate: the number of missesin the cache divided by the total memory
accesses to this cache (Miss rate, , for the 2nd-level cache)
¢ Theloca missratefor L2 ishigh becauseit’s only getting the misses from
the L1 cache (instead of all memory accesses)
* Global missrateis often amore useful measure => fraction of the memory
accesses that must go all the way to memory

Avg memory access time= Hit time, x Miss penalty,,

[

Desirable characteristics for an L2 cache

» Larger thanthe L1 cache
— A missinL1isunlikely to beahit in L2 unless L2 ismuch larger
— Thelocal hit rate for L 2 depends on the size ratio between L1 and L 2!
» Higher associativity
— Themain reason for low associativity was fast, small caches
— The L2 cache need be neither, and will benefit from the higher hit rate
that more blocks per set provides
» Larger block size
— This reduces compulsory misses that are fetched from main memory
— Sincethe L2 cacheislarge, the effect of increasing conflict misses (as
istrue for asmaller cache) is minimal

~

Y Miss penalty,, = Hit time , + Miss rate , x Miss penalty, , Y, _ Y,
9-Apr-00 W#;: U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 21 9-Apr-00 }?g{;f U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 2
s N r ™)

Multilevel inclusion

e |f all of thedatainthe L1 cacheisalsointhe L2 cache, thelL?2
cache has the multilevel inclusion property
— Most caches enforce this property since it is easier to deal with cache
consistency

— Consistency between 1/0 and caches (and between cachesin a
multiprocessor) can be determined by checking second-level cache

g, v v
9-Apr-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 23
{4 UMBC

Multilevel cache design

* Designof L1 and L2 caches: athough they can be designed
separately, it is helpful to know if there'san L2 cache
— Write-through in L1 is much more effectiveif thereis an L2 writeback
cache to buffer repeated writes
— A direct-mapped L1 cache works well if the L2 cache satisfies most of
the conflict misses
» Multilevel cache design summary
— Ingeneral, cache design trades fast hits for few misses
— For an L1 cache, fast hits are more important
— For L2, there are many fewer hits, so fewer misses becomes more
important
* Thus, larger caches with higher associativity and larger blocks
are beneficial for L2 caches

9-Apr-00

S,
§ 1%:‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
e

24

