|mproving cache performance

The increasing speed gap between CPU and main memory has
made the performance of the memory system increasingly
important
There are many distinct methods system architect use to
reduce average memory access time
These methods can be classified by whether they

— Reduce the missrate

— Reduce the miss penalty
— Reduce thetimeto hit in acache

Other methods may also increase capacity for a given cost...

N\
9-Apr-00 Wk‘ UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
s
Components of cache missrate
16%
« Three“C’sof cache misses 14% |
« Compulsory misses o 1o
— First accessto ablock can’t bein 5 8%\
the cache - S
— Occur regardless of cache 9ze 2%
* Capacity misses 0%1 2 4 8 16 2 o4 128
— Occur because cacheisn't large Cache size (KB)
enough to hold all blocks 100%
— Compulsory miss rate - the miss 80%
rate of afully associative cache 2 0%
» Conflict (collision) misses B o
— Theblock can't be kept because R
the set isfull .
— Difference between fully- and O 4 & 16 % e e
Set- associative cache Cache size (KB)
\
9-Apr-00

S,
i W B U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

Reducing cache missrate

e Toreduce cache miss rate, we must eliminate some of the
misses due to thethree C's
— Capacity misses can't be reduced much except by making the cache
larger
— Conflict misses and compulsory misses can be reduced in several ways
o Larger cache blocks
— Decrease the compulsory miss rate by taking advantage of spatial
locality
— May increase the miss penalty by requiring more datato be fetched per
miss
— Likely to increase conflict misses since fewer blocks can be stored in
the cache
— May even increase capacity missesin small caches

N\
9-Apr-00 3‘%% U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
(
Larger cache blocks
» The missrate curveis U-shaped because
— Small blocks have a higher missrate
— Large blocks have a higher miss penalty (even if missrate is not too high)
» High latency, high bandwidth memory systems encourage large block sizes
— The cache gets more bytes per miss for a small increase in miss penalty
— 32-byte blocks are typical for 1-KB, 4-KB and 16-KB caches
— 64-byte blocks are typical for larger caches
» Instruction caches tend to have larger blocks than data caches
9 6%
4% -
O% T T T T T
8 16 32 64 128 256
Block size
\

iy
9-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
% UMBC

Higher associativity

» Conflict misses can be a problem for caches with low
associativity (especially direct-mapped)
» Missrates generally follow the 2:1 cache rule of thumb

— A direct-mapped cache of size N has the same missrate as a 2-way set-
associative cache of size N/2

« However, higher associativity means
— More hardware
— Often, longer cycletimes (increased hit time)
— Possibly, more capacity misses
» 8-way set-associative caches are the maximum used today, and
most systems use 4-way or less
0O Higher hit rate is offset by the ower clock cycletime

N

Sy
9-Apr-00 o CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
W UMBC

Victim caches

* Victim cache => small cache (often fully associative) that holds afew of
the most recently replaced blocks or victims from the main cache
— Reduces conflict misses and (secondarily) capacity misses
— Particularly effective for small, direct-mapped data caches
* A 4 entry victim cache handled from 20% to 95% of the conflict misses
from a4KB direct-mapped data cache

» Check victim cache before main memory on amiss

— Swap victim block & cache block if hit in victim cache

_ Victim

Man r cache

cache Main
< >

memory

CPU |<&=p

iy
9-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
% UMBC

Pseudo-associ ative caches

These caches use a technique similar to double hashing
— On amiss, the cache searches a different set for the desired block
— The second (pseudo) set to probeis usually found by inverting one or
more bitsin the original set index
Two separate searches are conducted onamiss
— Thefirst search proceeds as it would for a direct-mapped cache: since
there’ s no associative h/w, hit time isfast if block found on first probe

— The second probe takes some time (usually an extra cycle or two), but
it'salot faster than going to main memory

» The secondary block can be swapped with the primary block on a
“dow hit”

This method reduces the effect of conflict misses
» Also improves miss rates without affecting the clock rate

N\ y,

9-Apr-00 zﬁf U MB C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 7

()
Hardware prefetch

» Prefetching isthe act of getting data from memory beforeit is
actually needed by the CPU

— Typically, the cache requests the next consecutive bl ock to be fetched
with arequested block, hopeful ly avoiding a subsequent miss
— Compulsory misses reduced by retrieving the data before it is requested
— Other misses may increase => useful blocks replaced in the cache
» Many caches hold prefetched blocks in a special buffer until
they are actually needed
— Thisbuffer isfaster than main memory but only has a limited capacity
* Prefetching also uses main memory bandwidth

— Prefetching works well if the data is actually used

— Howeuver, it can adversely affect performance if the dataisrarely used
and the accesses interfere with ‘demand misses

iy
9-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 8
% UMBC

Compiler-controlled prefetch

» Some CPUs include prefetching instructions
— Instructions request that data be moved into either aregister or cache
— These special instructions can either be faulting or non-faulting
» Non-faulting instructions do nothing (no-op) if the memory access
would cause an exception
* Prefetching shouldn’t interfere with normal CPU operations
— The cache must be nonblocking (also called lockup-free)
— Thisalowsthe CPU to overlap execution with the prefetching of data

* Improves prefetch “hit” rates over hardware prefetch
— However ,it does so at the expense of executing more instructions

— Thus, the compiler tends to concentrate on prefetching datathat are
likely to be cache misses anyway

— Loops are key targets since they operate over large data spaces and

_ thelr data accesses can be inferred from the loop index in advance Y,
9-Apr-00 wﬂ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 9
4)

Compiler optimizations

» This method requires no hardware modifications
— Howeuver, it’s often the most efficient way to reduce cache mi sses
— Theimprovement results from better code and data organizations

« Examples
— Code can be rearranged to avoid conflicts in a direct-mapped cache

— Accesses to arrays can be reordered to operate on blocks of data rather
than processing rows of the array

— Arrays can be resized to avoid cache conflicts for related elements

e,
9-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 10
% UMBC

()
Compiler optimization: merging arrays
» Combine two separate arrays (that might conflict for asingle block in the
cache) into asingle interleaved array
» Bring together corresponding elements in both arrays, which are likely to
be referenced together
» Reorganizing and fetching them at the same time can reduce misses
» Thistechnique reduces misses by improving spatial locality
I nt val ue[Sl ZE] ; struct nerged {
i nt key[SI ZE] ; i nt val ue;
i nt key;
b
struct nerge nf Sl ZE];
N\ J
9-Apr-00 wﬂ UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 11
()
Compiler optimization: loop interchange
» Switch the order in which loops execute
— Misses can bereduced due to improvementsin spatial locdity
 Example
— These loops cause a miss on each memory access because of the long stride
given by index j in the inner loop
— Switching the order of the loops changes the stride to 1 => the elements are
accessed in sequential order.
for (i=0; 1<100; i++) { for (j=0; j<100; j++) {
for (j=0; j<100; j++) { for (i=0; i<100; i++) {
a[j]1[i] = a[j][i]*2; a[j1[i] = a[j][i]*2;
} }
} }
\ J

iy
9-Apr-00 § - CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
W UMBC

Compiler optimization: loop fusion

« Many programs have separate loops that operate on the same data
» Combining these loops allows a program to take advantage of tempor al
locality by grouping operations on the same (cached) data together
— Caching may work even better because of sequential access between elements
— Caching can hold results from previousiterations of the loop...

for (j=0; j<100; j++) { for (j=0; j<100; j++) {
x[i1 =x[j1 +ylil; x[i] =x[j] +ylil;
} ylil = y[il + x[j-1];

for (j=0; j<100; j++) {
ylil = ylil + x[i-1];

}

N

iy
9-Apr-00 o CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
W UMBC

Compiler optimization: blocking

* Previous compiler optimizations work well on array accesses that occur
along one dimension only
— Loops that access both rowsand columns can use other techniques
— Unoptimized matrix multiplication => cache must hold the shaded areas
» Another technique: blocking
— Capacity misses can occur for large matrices since it may not be possible to
store al the elements of Z in the cache
— Blocking operates on submatrices: reduces total memory words accessed by a
factor of B (the blocking factor)

X = Y X 7

e,
9-Apr-00 § =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
% UMBC

N

Compiler optimization: blocking

Matrix multiplication is performed by multiplying the submatrices first

— Matrix Y benefits from spatial locality

— Matrix Z benefits from temporal locality
This method is also used to reduce the number of blocks that must be
transferred between disk and main memory

0 Thetechnique is effective for severa levds of the hierarchy
Given the increasing speed gap in processor speed and memory access
times, these last two techniques will only increase in importance over time

X = Y X 7

9-Apr-00

Sy
3‘% U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

15

Giving read misses priority

If asystem has awrite buffer, delay writes to come after reads
Problem: reads may request a val ue about to be written
Solution 1: stall reads until the write buffer is empty
— Thewrite buffer in write-through is likely to have blocks queued up
— Read miss penalty increases considerably
Solution 2: check the write buffer for conflicts
— Incaseslikethis, the write buffer actsas a victim cache

SWO(R3), R4 If thisis adirect-mapped 4KB
LWR11, 4096(R3) cache, will R12 get the value
LWR12, O(R3) from R4?

iy
9-Apr-00 - CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
% UMBC

16

Using subblocks to reduce fetch time

» Tags can hurt performance by occupying too much space or by slowing
down caches
— Using large blocks reduces the amount of storage for tags (and makes them
shorter), optimizing space on the chip
— This may even reduce miss rate by reducing compulsory misses
— However, the miss penalty for large blocksis high, since the entire block mus
be moved between the cache and memory
« Solution: divide each block into subblocks, each of which has avalid bit
— Tagisvalid for the entire block, but only a subblock needs to be read on amiss
— A block isno longer the minimum unit transferred between cache and memory
— Result: asmaller miss penalty

Subblocks
2% 1 1 <« 1
128 0 1 1| «— o
123 0 0 0 0 K
L Tag T~ vaidbits
9-Apr-00 wﬂ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 17
4 N

Early restart & critical word first

o (Goal: optimize the order in which the words of a block are
fetched and when the desired word is delivered to the CPU

» Thisstrategy requires no extra hardware!

o Early restart

— The CPU gets its data (and resumes execution) as soon as the desired
word arrives in the cache
— CPU doesn’t wait for the rest of the block!

» Critical word first

— Don't start the fetch of ablock with the first word

— Instead, fetch the requested word first and then fetch the rest afterwards
o Early restart & critical word first reduce the miss penalty

0 CPU can continue execution while most of the block is still being
fetched

iy
9-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 18
% UMBC

Non-blocking cache

» A nonblocking cache can allow the CPU to continue executing
instructions after a data cache miss
— Workswell in conjunction with out-of-order execution

— The cache continues to supply hits while processing read misses (hit
under miss)

— The instruction needing the missed data waits for the datato arrive
» Complex caches can even have multiple outstanding misses
(miss under miss)
— Thisgreatly increases cache complexity
— May be of relatively little benefit relative to the design complexity

1\ J
G,
-Apr- | ; . Spri
9-Apr-00 3‘% : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 19
4 N

Second level caches

» This method focuses on the interface between the cache and main memory
e Add asecond-level cache between main memory and a small, fast first-
level cache
— This helps satisfy the desire to make the cache fast and large
— The second-level cache allows
» A small first-level cache that fits on the chip with the CPU
» A first-level cache fast enough to handle hitsin 1-2 CPU cycles

— Hitsfor many memory accessesthat would go to main memory are handled in
the L2 cache, lessening the effective miss penalty

L1
D-cache .
CPU |, L2 Main
L1 cache memory
|-cache
1\ J

iy
9-Apr-00 ¢ sy CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 20
Wt UMBC

N

Performance of multi-level caches

Calculating performance of atwo-level cacheis done similarly to that of a
one-level cache

— Miss penalty for level 1 is cdculated using the hit time, miss rate, and miss
penalty for the level 2 cache
For two level caches, there are two miss rates

— Global missrate: the number of missesin the cache divided by the total
memory accesses generated by the CPU (Missrate ,*Missrate, ,)

— Local missrate: the number of missesin the cache divided by the total memory
accesses to this cache (Miss ratg, , for the 2nd-level cache)

* Theloca missrate for L2 is high becauseit’s only getting the misses from
the L1 cache (instead of all memory accesses)

Global missrate is often a more useful measure => fraction of the memory
accesses that must go all the way to memory

Avg memory access time = Hit time; x Miss penalty, ,
Miss penalty , = Hit time_, + Miss rate , x Miss penalty,, y

S
9-Apr-00 o CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 21
W UMBC

r

\
Desirable characteristics for an L2 cache

Larger than the L1 cache

— A missinLlisunlikely tobeahit in L2 unlessL2 is much larger

— Theloca hit rate for L 2 depends on the size ratio between L1 and L 2!
Higher associativity

— The main reason for low associativity was fast, small caches

— The L2 cache need be neither, and will benefit from the higher hit rate

that more blocks per set provides

Larger block size

— Thisreduces compulsory misses that are fetched from main memory

— Sincethe L2 cacheislarge, the effect of increasing conflict misses (as
Istrue for asmaller cache) is minimal

9-Apr-00

oo,
m U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 22

Multilevel inclusion

 |f dl of thedatainthe L1 cacheisasointhelL?2 cache, thelL?2

cache has the multilevel inclusion property
— Most caches enforce this property since it is easier to deal with cache
consistency

— Consistency between 1/O and caches (and between cachesin a
multiprocessor) can be determined by checking second-level cache

1\ J
Sy
-Apr- | ; . Spri
9-Apr-00 3‘% : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 23
4 N

Multilevel cache design

» Designof L1 and L2 caches. although they can be designed
separately, it is helpful to know if there’'san L2 cache
— Write-through in L1 is much more effective if thereisan L2 writeback
cache to buffer repeated writes
— A direct-mapped L1 cache works well if the L2 cache satisfies most of
the conflict misses
e Multilevel cache design summary
— Ingeneral, cache design trades fast hits for few misses
— For an L1 cache, fast hits are more important
— For L2, there are many fewer hits, so fewer misses becomes more
Important
» Thus, larger caches with higher associativity and larger blocks
are beneficial for L2 caches
\ J

iy
9-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 24
% UMBC

