
9-Apr-00 1UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Improving cache performance

• The increasing speed gap between CPU and main memory has
made the performance of the memory system increasingly
important

• There are many distinct methods system architect use to
reduce average memory access time

• These methods can be classified by whether they
– Reduce the miss rate
– Reduce the miss penalty
– Reduce the time to hit in a cache

• Other methods may also increase capacity for a given cost...

9-Apr-00 2UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Components of cache miss rate
• Three “C”s of cache misses
• Compulsory misses

– First access to a block can’t be in
the cache

– Occur regardless of cache size

• Capacity misses
– Occur because cache isn’t large

enough to hold all blocks
– Compulsory miss rate - the miss

rate of a fully associative cache

• Conflict (collision) misses
– The block can’t be kept because

the set is full
– Difference between fully- and

set- associative cache

0%
2%
4%
6%
8%

10%
12%
14%
16%

1 2 4 8 16 32 64 128

Cache size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128

Cache size (KB)

9-Apr-00 3UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Reducing cache miss rate

• To reduce cache miss rate, we must eliminate some of the
misses due to the three C’s
– Capacity misses can’t be reduced much except by making the cache

larger
– Conflict misses and compulsory misses can be reduced in several ways

• Larger cache blocks
– Decrease the compulsory miss rate by taking advantage of spatial

locality
– May increase the miss penalty by requiring more data to be fetched per

miss
– Likely to increase conflict misses since fewer blocks can be stored in

the cache
– May even increase capacity misses in small caches

9-Apr-00 4UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Larger cache blocks
• The miss rate curve is U-shaped because

– Small blocks have a higher miss rate
– Large blocks have a higher miss penalty (even if miss rate is not too high)

• High latency, high bandwidth memory systems encourage large block sizes
– The cache gets more bytes per miss for a small increase in miss penalty
– 32-byte blocks are typical for 1-KB, 4-KB and 16-KB caches
– 64-byte blocks are typical for larger caches

• Instruction caches tend to have larger blocks than data caches

0%

2%

4%

6%

8 16 32 64 128 256

Block size

9-Apr-00 5UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Higher associativity

• Conflict misses can be a problem for caches with low
associativity (especially direct-mapped)

• Miss rates generally follow the 2:1 cache rule of thumb
– A direct-mapped cache of size N has the same miss rate as a 2-way set-

associative cache of size N/2

• However, higher associativity means
– More hardware
– Often, longer cycle times (increased hit time)
– Possibly, more capacity misses

• 8-way set-associative caches are the maximum used today, and
most systems use 4-way or less
⇒ Higher hit rate is offset by the slower clock cycle time

9-Apr-00 6UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Victim caches
• Victim cache => small cache (often fully associative) that holds a few of

the most recently replaced blocks or victims from the main cache
– Reduces conflict misses and (secondarily) capacity misses
– Particularly effective for small, direct-mapped data caches

• A 4 entry victim cache handled from 20% to 95% of the conflict misses
from a 4KB direct-mapped data cache

• Check victim cache before main memory on a miss
– Swap victim block & cache block if hit in victim cache

Main
cache

Victim
cache

Main
memory

CPU

9-Apr-00 7UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Pseudo-associative caches

• These caches use a technique similar to double hashing
– On a miss, the cache searches a different set for the desired block
– The second (pseudo) set to probe is usually found by inverting one or

more bits in the original set index

• Two separate searches are conducted on a miss
– The first search proceeds as it would for a direct-mapped cache: since

there’s no associative h/w, hit time is fast if block found on first probe
– The second probe takes some time (usually an extra cycle or two), but

it’s a lot faster than going to main memory
• The secondary block can be swapped with the primary block on a

“slow hit”

• This method reduces the effect of conflict misses
• Also improves miss rates without affecting the clock rate

9-Apr-00 8UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware prefetch

• Prefetching is the act of getting data from memory before it is
actually needed by the CPU
– Typically, the cache requests the next consecutive block to be fetched

with a requested block, hopefully avoiding a subsequent miss
– Compulsory misses reduced by retrieving the data before it is requested
– Other misses may increase => useful blocks replaced in the cache

• Many caches hold prefetched blocks in a special buffer until
they are actually needed
– This buffer is faster than main memory but only has a limited capacity

• Prefetching also uses main memory bandwidth
– Prefetching works well if the data is actually used
– However, it can adversely affect performance if the data is rarely used

and the accesses interfere with ‘demand misses’

9-Apr-00 9UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler-controlled prefetch

• Some CPUs include prefetching instructions
– Instructions request that data be moved into either a register or cache
– These special instructions can either be faulting or non-faulting

• Non-faulting instructions do nothing (no-op) if the memory access
would cause an exception

• Prefetching shouldn’t interfere with normal CPU operations
– The cache must be nonblocking (also called lockup-free)
– This allows the CPU to overlap execution with the prefetching of data

• Improves prefetch “hit” rates over hardware prefetch
– However ,it does so at the expense of executing more instructions
– Thus, the compiler tends to concentrate on prefetching data that are

likely to be cache misses anyway
– Loops are key targets since they operate over large data spaces and

their data accesses can be inferred from the loop index in advance

9-Apr-00 10UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler optimizations

• This method requires no hardware modifications
– However, it’s often the most efficient way to reduce cache misses
– The improvement results from better code and data organizations

• Examples
– Code can be rearranged to avoid conflicts in a direct-mapped cache
– Accesses to arrays can be reordered to operate on blocks of data rather

than processing rows of the array
– Arrays can be resized to avoid cache conflicts for related elements

9-Apr-00 11UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler optimization: merging arrays
• Combine two separate arrays (that might conflict for a single block in the

cache) into a single interleaved array
• Bring together corresponding elements in both arrays, which are likely to

be referenced together
• Reorganizing and fetching them at the same time can reduce misses
• This technique reduces misses by improving spatial locality

int value[SIZE];
int key[SIZE];

struct merged {
 int value;
 int key;
};
struct merge m[SIZE];

9-Apr-00 12UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler optimization: loop interchange
• Switch the order in which loops execute

– Misses can be reduced due to improvements in spatial locality

• Example
– These loops cause a miss on each memory access because of the long stride

given by index j in the inner loop
– Switching the order of the loops changes the stride to 1 => the elements are

accessed in sequential order.

for (i=0; i<100; i++) {
 for (j=0; j<100; j++) {
 a[j][i] = a[j][i]*2;
 }
}

for (j=0; j<100; j++) {
 for (i=0; i<100; i++) {
 a[j][i] = a[j][i]*2;
 }
}

9-Apr-00 13UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler optimization: loop fusion
• Many programs have separate loops that operate on the same data
• Combining these loops allows a program to take advantage of temporal

locality by grouping operations on the same (cached) data together
– Caching may work even better because of sequential access between elements
– Caching can hold results from previous iterations of the loop...

for (j=0; j<100; j++) {
 x[j] = x[j] + y[j];
}

for (j=0; j<100; j++) {
 y[j] = y[j] + x[j-1];
}

for (j=0; j<100; j++) {
 x[j] = x[j] + y[j];
 y[j] = y[j] + x[j-1];
}

9-Apr-00 14UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler optimization: blocking
• Previous compiler optimizations work well on array accesses that occur

along one dimension only
– Loops that access both rows and columns can use other techniques
– Unoptimized matrix multiplication => cache must hold the shaded areas

• Another technique: blocking
– Capacity misses can occur for large matrices since it may not be possible to

store all the elements of Z in the cache
– Blocking operates on submatrices: reduces total memory words accessed by a

factor of B (the blocking factor)

X = Y × Z

9-Apr-00 15UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler optimization: blocking
• Matrix multiplication is performed by multiplying the submatrices first

– Matrix Y benefits from spatial locality
– Matrix Z benefits from temporal locality

• This method is also used to reduce the number of blocks that must be
transferred between disk and main memory

⇒ The technique is effective for several levels of the hierarchy

• Given the increasing speed gap in processor speed and memory access
times, these last two techniques will only increase in importance over time

X = Y × Z

9-Apr-00 16UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Giving read misses priority
• If a system has a write buffer, delay writes to come after reads
• Problem: reads may request a value about to be written
• Solution 1: stall reads until the write buffer is empty

– The write buffer in write-through is likely to have blocks queued up
– Read miss penalty increases considerably

• Solution 2: check the write buffer for conflicts
– In cases like this, the write buffer acts as a victim cache

SW 0(R3),R4
LW R11,4096(R3)
LW R12,0(R3)

If this is a direct-mapped 4KB
cache, will R12 get the value
from R4?

9-Apr-00 17UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Using subblocks to reduce fetch time
• Tags can hurt performance by occupying too much space or by slowing

down caches
– Using large blocks reduces the amount of storage for tags (and makes them

shorter), optimizing space on the chip
– This may even reduce miss rate by reducing compulsory misses
– However, the miss penalty for large blocks is high, since the entire block must

be moved between the cache and memory

• Solution: divide each block into subblocks, each of which has a valid bit
– Tag is valid for the entire block, but only a subblock needs to be read on a miss
– A block is no longer the minimum unit transferred between cache and memory
– Result: a smaller miss penalty

1

0

0

1

1

0

1

1

0

1

0

0123

123

123

Tag

Subblocks

Valid bits

9-Apr-00 18UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Early restart & critical word first

• Goal: optimize the order in which the words of a block are
fetched and when the desired word is delivered to the CPU

• This strategy requires no extra hardware!
• Early restart

– The CPU gets its data (and resumes execution) as soon as the desired
word arrives in the cache

– CPU doesn’t wait for the rest of the block!

• Critical word first
– Don’t start the fetch of a block with the first word
– Instead, fetch the requested word first and then fetch the rest afterwards

• Early restart & critical word first reduce the miss penalty
⇒ CPU can continue execution while most of the block is still being

fetched

9-Apr-00 19UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Non-blocking cache

• A nonblocking cache can allow the CPU to continue executing
instructions after a data cache miss
– Works well in conjunction with out-of-order execution
– The cache continues to supply hits while processing read misses (hit

under miss)
– The instruction needing the missed data waits for the data to arrive

• Complex caches can even have multiple outstanding misses
(miss under miss)
– This greatly increases cache complexity
– May be of relatively little benefit relative to the design complexity

9-Apr-00 20UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Second level caches
• This method focuses on the interface between the cache and main memory
• Add a second-level cache between main memory and a small, fast first-

level cache
– This helps satisfy the desire to make the cache fast and large
– The second-level cache allows

• A small first-level cache that fits on the chip with the CPU
• A first-level cache fast enough to handle hits in 1-2 CPU cycles

– Hits for many memory accesses that would go to main memory are handled in
the L2 cache, lessening the effective miss penalty

CPUCPU

L1
D-cache

L1
D-cache

L1
I-cache

L1
I-cache

L2
cache
L2

cache
Main

memory

9-Apr-00 21UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Performance of multi-level caches
• Calculating performance of a two-level cache is done similarly to that of a

one-level cache
– Miss penalty for level 1 is calculated using the hit time, miss rate, and miss

penalty for the level 2 cache

• For two level caches, there are two miss rates
– Global miss rate: the number of misses in the cache divided by the total

memory accesses generated by the CPU (Miss rateL1*Miss rateL2)
– Local miss rate: the number of misses in the cache divided by the total memory

accesses to this cache (Miss rateL2 for the 2nd-level cache)
• The local miss rate for L2 is high because it’s only getting the misses from

the L1 cache (instead of all memory accesses)

• Global miss rate is often a more useful measure => fraction of the memory
accesses that must go all the way to memory

Avg memory access time Hit time Miss penalty

Miss penalty Hit time Miss rate Miss penalty
L L

L L L L

= ×
= + ×

1 1

1 2 2 2

9-Apr-00 22UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Desirable characteristics for an L2 cache

• Larger than the L1 cache
– A miss in L1 is unlikely to be a hit in L2 unless L2 is much larger
– The local hit rate for L2 depends on the size ratio between L1 and L2!

• Higher associativity
– The main reason for low associativity was fast, small caches
– The L2 cache need be neither, and will benefit from the higher hit rate

that more blocks per set provides

• Larger block size
– This reduces compulsory misses that are fetched from main memory
– Since the L2 cache is large, the effect of increasing conflict misses (as

is true for a smaller cache) is minimal

9-Apr-00 23UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Multilevel inclusion

• If all of the data in the L1 cache is also in the L2 cache, the L2
cache has the multilevel inclusion property
– Most caches enforce this property since it is easier to deal with cache

consistency
– Consistency between I/O and caches (and between caches in a

multiprocessor) can be determined by checking second-level cache

9-Apr-00 24UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Multilevel cache design

• Design of L1 and L2 caches: although they can be designed
separately, it is helpful to know if there’s an L2 cache
– Write-through in L1 is much more effective if there is an L2 writeback

cache to buffer repeated writes
– A direct-mapped L1 cache works well if the L2 cache satisfies most of

the conflict misses

• Multilevel cache design summary
– In general, cache design trades fast hits for few misses
– For an L1 cache, fast hits are more important
– For L2, there are many fewer hits, so fewer misses becomes more

important

• Thus, larger caches with higher associativity and larger blocks
are beneficial for L2 caches

