~
Memory hierarchy: the storage pyramid

» Principle of locdity: programs
don’t access code and data
uniformly A A

» Faster hardware has less capacity
and costs more per byte
* Result: memory hierarchy

— Keep frequently used code &
datain fast memory

— Keep everything elsein slower
memory
e Two views of hierarchy

— “Infinite supply of memory, some
parts slower than others’

— “Lotsof objects”

Registers

Level 1 cache

Level 2 cache

Cost per byte

Access speed

Main memory

Solid state disk

Magnetic disk / virtual memory

Tertiary storage (tape & removable media)

Characterizing the memory hierarchy

* Questions about any 2 levels of the memory hierarchy:
— Where can ablock be placed in the upper level?
0 Block placement
— How isablock found if it isin the upper level?
0 Block identification
— Which block should be replaced on a miss?
O Block replacement
— What happens on awrite?
0 Write strategy
» Focus on the interface between
— CPU’s memory cache and mai n memory
— Dynamic RAM and disk (virtual memory)

. J . J
g S,
6-Apr-00 £ Wk CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 1 6-Apr-00 ¢ Wk CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 2
pr % § UM BC (Advanced Computer Architecture), Spring apter pr- Z%J § UM BC (Advanced Computer Architecture), Spring apter
- B a B

Memory system performance

» Evaluate the effectiveness of the memory hierarchy with:
Memory stall cycles=1C* memory refs per instruction * miss rate * miss penalty

» Usearelated formulato evaluate the performance of various
memory system configurations

» Severa factorsin this equation:
— 1C* memory refs per instruction
* Fregquency with which the CPU uses memory

» A memory system that needs to satisfy just 1-2 refs per cycleis
easier to build than one that satisfies 4-5 refs per cycle

Miss rate: fraction of references not satisfied in the upper level
Miss penalty: length of time it takes to get avalue from the lower level
Low miss rate doesn’t help if miss penalty istoo high (and vice versa)

Chapter 5

e , v
6-Apr-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000
(% UMBC

What is a cache?

* What does “cache” refer to?
— No modifiers => usually meansthe fast memory closest to the CPU
— “Cache” has been used for everything from files to WWW pages
» Block placement: three options
— Fully associative (block can go anywhere)
— Direct mapped (block can go in one place)
— Set associative (block mapped to set, but can go anywhere in set)
— Direct mapped = 1-way set associative

J

Fully associative Direct mapped Set associative
0
0
Where does block 2 1
13 goin cache? 4 2
6 3
9 13MOD 8=5 13MOD 4=1
6-Apr-00 Chapter 5 4

S,
§ 'i%:‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000
e

4 ™) ~ ™)
Block identification Block replacement
Block address
— A — * Which block is replaced?
Tag | Index | Offset — For direct mapped, each block can only go in one location!
Compared against Selects set Selects data within — Question relevant for fully associative and set associative caches
t2g1n cache 0 enare the block « Block to replace chosen by
» Block offset: thefirst few bits of the address give the offset of the byte ~ Random: choose ablock from the set a random
within ablock — LRU: least-recently used
« Block address (index): used to pick a set from the cache » Replace the block that has been unused for the longest time
. Tag « Thisrequires extrabitsin the cache to keep track of accesses
— Only thetag is stored in the cache (the rest of the addressisimplied) 0 LRU isn't much better than random replacement for small sets
— All tagswithin a set are searched in parallel 0 UseLRU only for 2-way set associative
» Vadid bit: indicates that the block in this location contains valid data — Other caches use random
— Otherwise, arandom sequence of bits could be mistaken for avalid entry that — Even 2-way set associative may use random to save bits
_ matched the tag) _
6-Apr-00 r#;: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 5 6-Apr-00 }zg{;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
4 N 4
Write strategy Write policy
* What happens on awrite? » Determines when the write is communicated to the lower level
» Memory access distribution » Write-through: block iswritten to bath the cache and main
— All instruction access are reads memory at the same time
— Most data accesses are reads (DL X, 9% stores and 26% loads) — Read missesdon’t result in writes
» Make the common case fast => optimize caches for reads — Memory hierarchy is consistent
— The common case is also the easy case to handle since tag checking — Simple to implement
and reading can occur in parallel » Write back (also known as copy back): block modified in
— Extrabytes read can be safely ignored cache only at time of write
* Amdahl’slaw reminds us that we can’t ignore writes! — Main memory modified when the block must be replaced in the cache
— Problem: Tag checking and writing can’t occur in parallel — Requiresthe use of adirty bit to keep track of block modification status
O Writing is usually slower than reading — Writes occur at speed of cache
— Extrabytes can't be safely written — Multiple writes occur to the same block can be “ collapsed”
\. J \.
6-Apr-00 Chapter 5 7 6-Apr-00 M U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

Py v v
i %u § U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

~ ™ ~ ™
Write misses Write buffers & write merging
» Two options when awrite is made to a block not in cache * Many CPUs use awrite buffer to avoid stalling on writes
— Write alocate: the block isloaded into the cache on a miss before — Write buffer => a small cache that can hold afew values waiting to go
anything else occurs to main memory
— Writearound (no write alocate): the block is only written to main — Thisbuffer helps when writes are clustered
memory; it isn't stored in the cache — It doesn't entirely eliminate stalls sinceit is possible for the buffer to
. Generally, fill if the burst is larger than the buffer
— Write-back caches use write-allocate * Write merging
0 Hopefully, subsequent writesto that block will be captured by the — Blocks are often larger than a machine word
cache — Write buffers can merge memory writes to save write buffer slots and
— Write-through caches use write-around memory traffic
O Subsequent writes to that block will still go to memory even if the O Writesto the same location can be collapsed
block is fetched into cache 0 Writesto sequential locati ons can be merged into asingle buffer slot
- J N\ J
6-Apr-00 W#;: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 9 6-Apr-00 }?g{;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 10
4 ™) 4)
Split vs. unified caches Cache performance
» Should there be a single or two caches in the system? » Average memory accesstime (AMAT) isauseful measure to
« Unified cache: all memory requests go through a single cache evaluate the performance of a memory-hierarchy configuration
R . o
+ Requiresless hardware AMAT = hit time + missrate * miss penalty |
_ Has lower bandwidth * AMAT shows how much penalty the memory system imposes
— More opportunity for collisions on each access (on average)
« Split| & D caches: instructions & data are stored in separate o It can easily be conV(-erted into clock cyclesfor a particular CPU -
caches » Leaving the penalty in nanoseconds allows two systems with
— Uses additional hardware different clock cycles times to be compared using a given
« Some simplifications (I-cache is read-only) memory system
+ Higher bandwidth (2 is greater than 1)
+ No collisions between data & instructions
\ J \. J
6-Apr-00 a ‘N,]?z; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 1 6-Apr-00 ‘i@,ﬁ; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 12

Performance for split | & D caches

* Instruction and data accesses may have different penalties
— They may have to be computed separately

— Thisrequires knowledge of the fraction of referencesthat are
instructions and the fraction that are data

— For example, the text says that (usually) 75% of memory references are
instructions, and 25% are data references
* Thewrite penalty can also be computed separately from the
read penalty
— Missrates may be different for each situation
— Miss penalties may be different for each situation (i.e., writeback vs.
write through)

Memory accesses
instruction

execution +

CPU time= ICXS’:PI

xMiss rate xMiss penaJtyBx Clock cycle time

Cache performance example

* Problem: compare the performance of a 64KB unified cache
with a split cache with 32KB data and 16K B instruction

— Miss penalty for either cacheis 100 ns, and the CPU clock runs at 500
MHz

— Don't forget that the unified cache requires an extra cycle for load and
store hits because of the structural conflict

— Calculate the effect on CPI rather than the average memory accesstime
* Assume missrates are as follows (Fig. 5.7 in text):

— 64K Unified cache: 1.35%

— 16K instruction cache: 0.64%

— 32K data cache: 4.82%

e Assume adata access occursin 1/3 of al instructions

. J . J
6-Apr-00 Vw#; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 13 6-Apr-00 “?!#E U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 14
4 ™) 4)

Cache performance example Effects of cache on CPU performance
* Compute the CPI penalty separately for instructions and data * Low CPI machines suffer more relative to some fixed CPI
» First, figure out the miss penalty in terms of clock cycles: 100 memory penalty
ns/2 ns = 50 cycles — A machinewith aCPI of 5 sufferslittle from a1 CPI penalty.
« Unified cache — A processor with a CPI of 0.5 hasits execution time tripled!
— Instruction access penalty is (0 + 1.35% * 50) = 0.675 cycles Cache miss penalties are measured in cycles, not nanoseconds
— Data access pendlty is (1 + 1.35% * 50) = 1.675 cycles O A faster machine will stall more cycles on the same memory system
— Overall pendlty is0.675 + (1/3) * 1.675 = 1.23 cycles per instruction » Amdahl’s Law raisesitsugly head again
 Split cache — Fast machines with low CPI are affected significantly from memory
— Instruction access penalty is (0 + 0.64% * 50) = 0.32 cycles access pen.altles o .
_ Dataaccess penalty is (0 + 4.82% * 50) = 2.41 cycles — Fast machines spend most of their time accessing memory!
— Overdl pendty is0.32 + (1/3) * 2.41=1.12
L Split cache performs better => no stall on data accesses) L)
6-Apr-00 Chapter 5 15 6-Apr-00 Chapter 5 16

,:_i))
i Zﬁu } U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

S, v v
;i% % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

|mproving cache performance

* Theincreasing speed gap between CPU and main memory has
made the performance of the memory system increasingly
important

* There are many distinct methods system architect use to
reduce average memory access time

» These methods can be classified by whether they

— Reducethe missrate
— Reduce the miss penalty
— Reduce thetimeto hit in a cache

» Other methods may also increase capacity for a given cost...

Components of cache missrate

* Three“C"sof cache misses
» Compulsory misses
— First accessto ablock can’t bein
the cache
— Occur regardless of cache sze
» Capacity misses
— Occur because cacheisn't large
enough to hold all blocks

— Compulsory missrate - the miss
rate of afully associative cache

» Conflict (collision) misses
— Theblock can't be kept because
the set isfull

— Difference between fully- and

Volss ate

16%
14%
12%

1 2 4 8 16 32 64 128
Cache size (KB)

1 2 4

8 16 32 64 128
Cache size (KB)

_ J _ set- associative cache J
6-Apr-00 % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 17 6-Apr-00 zgﬁ%z U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 18
4 R

Reducing cache missrate

* To reduce cache miss rate, we must €liminate some of the
misses due to the three C's
— Capacity misses can’t be reduced much except by making the cache
larger
— Conflict misses and compulsory misses can be reduced in several ways
» Larger cache blocks
— Decrease the compulsory miss rate by taking advantage of spatial
locality
— May increase the miss penalty by requiring more data to be fetched per
miss
— Likely to increase conflict misses since fewer blocks can be stored in
the cache
— May even increase capacity missesin small caches

o,
S, i i

6-Apr-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
(% UMBC

19

