
6-Apr-00 1UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Memory hierarchy: the storage pyramid
• Principle of locality: programs

don’t access code and data
uniformly

• Faster hardware has less capacity
and costs more per byte

• Result: memory hierarchy
– Keep frequently used code &

data in fast memory

– Keep everything else in slower
memory

• Two views of hierarchy
– “Infinite supply of memory, some

parts slower than others”

– “Lots of objects” Tertiary storage (tape & removable media)

Magnetic disk / virtual memory

Solid state disk

Main memory

Level 2 cache

Level 1 cache

Registers

C
os

t p
er

 b
yt

e

A
cc

es
s

sp
ee

d

6-Apr-00 2UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Characterizing the memory hierarchy

• Questions about any 2 levels of the memory hierarchy:
– Where can a block be placed in the upper level?

⇒ Block placement

– How is a block found if it is in the upper level?

⇒ Block identification

– Which block should be replaced on a miss?

⇒ Block replacement

– What happens on a write?

⇒ Write strategy

• Focus on the interface between
– CPU’s memory cache and main memory

– Dynamic RAM and disk (virtual memory)

6-Apr-00 3UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Memory system performance

• Evaluate the effectiveness of the memory hierarchy with:
Memory stall cycles = IC * memory refs per instruction * miss rate * miss penalty

• Use a related formula to evaluate the performance of various
memory system configurations

• Several factors in this equation:
– IC * memory refs per instruction

• Frequency with which the CPU uses memory

• A memory system that needs to satisfy just 1-2 refs per cycle is
easier to build than one that satisfies 4-5 refs per cycle

– Miss rate: fraction of references not satisfied in the upper level

– Miss penalty: length of time it takes to get a value from the lower level

– Low miss rate doesn’t help if miss penalty is too high (and vice versa)

6-Apr-00 4UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

What is a cache?
• What does “cache” refer to?

– No modifiers => usually means the fast memory closest to the CPU

– “Cache” has been used for everything from files to WWW pages

• Block placement: three options
– Fully associative (block can go anywhere)

– Direct mapped (block can go in one place)

– Set associative (block mapped to set, but can go anywhere in set)

– Direct mapped = 1-way set associative

Where does block
13 go in cache?

Fully associative Direct mapped Set associative

13 MOD 8 = 5 13 MOD 4 = 1

0

1

2

3

0

2

4

6

6-Apr-00 5UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Block identification

• Block offset: the first few bits of the address give the offset of the byte
within a block

• Block address (index): used to pick a set from the cache

• Tag
– Only the tag is stored in the cache (the rest of the address is implied)

– All tags within a set are searched in parallel

• Valid bit: indicates that the block in this location contains valid data
– Otherwise, a random sequence of bits could be mistaken for a valid entry that

matched the tag

OffsetIndexTag

Block address

Selects set Selects data within
the block

Compared against
tag in cache to ensure
the address is correct

6-Apr-00 6UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Block replacement

• Which block is replaced?
– For direct mapped, each block can only go in one location!

– Question relevant for fully associative and set associative caches

• Block to replace chosen by
– Random: choose a block from the set at random

– LRU: least-recently used

• Replace the block that has been unused for the longest time

• This requires extra bits in the cache to keep track of accesses

⇒ LRU isn’t much better than random replacement for small sets

⇒ Use LRU only for 2-way set associative
– Other caches use random

– Even 2-way set associative may use random to save bits

6-Apr-00 7UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Write strategy

• What happens on a write?

• Memory access distribution
– All instruction access are reads

– Most data accesses are reads (DLX, 9% stores and 26% loads)

• Make the common case fast => optimize caches for reads
– The common case is also the easy case to handle since tag checking

and reading can occur in parallel

– Extra bytes read can be safely ignored

• Amdahl’s law reminds us that we can’t ignore writes!
– Problem: Tag checking and writing can’t occur in parallel

⇒ Writing is usually slower than reading

– Extra bytes can’t be safely written

6-Apr-00 8UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Write policy

• Determines when the write is communicated to the lower level

• Write-through: block is written to both the cache and main
memory at the same time
– Read misses don’t result in writes

– Memory hierarchy is consistent

– Simple to implement

• Write back (also known as copy back): block modified in
cache only at time of write
– Main memory modified when the block must be replaced in the cache

– Requires the use of a dirty bit to keep track of block modification status

– Writes occur at speed of cache

– Multiple writes occur to the same block can be “collapsed”

6-Apr-00 9UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Write misses

• Two options when a write is made to a block not in cache
– Write allocate: the block is loaded into the cache on a miss before

anything else occurs

– Write around (no write allocate): the block is only written to main
memory; it isn’t stored in the cache

• Generally,
– Write-back caches use write-allocate

⇒ Hopefully, subsequent writes to that block will be captured by the
cache

– Write-through caches use write-around

⇒ Subsequent writes to that block will still go to memory even if the
block is fetched into cache

6-Apr-00 10UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Write buffers & write merging

• Many CPUs use a write buffer to avoid stalling on writes
– Write buffer => a small cache that can hold a few values waiting to go

to main memory

– This buffer helps when writes are clustered

– It doesn’t entirely eliminate stalls since it is possible for the buffer to
fill if the burst is larger than the buffer

• Write merging
– Blocks are often larger than a machine word

– Write buffers can merge memory writes to save write buffer slots and
memory traffic

⇒ Writes to the same location can be collapsed

⇒ Writes to sequential locations can be merged into a single buffer slot

6-Apr-00 11UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Split vs. unified caches

• Should there be a single or two caches in the system?

• Unified cache: all memory requests go through a single cache
+ Requires less hardware

– Has lower bandwidth

– More opportunity for collisions

• Split I & D caches: instructions & data are stored in separate
caches
– Uses additional hardware

• Some simplifications (I-cache is read-only)

+ Higher bandwidth (2 is greater than 1)

+ No collisions between data & instructions

6-Apr-00 12UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Cache performance

• Average memory access time (AMAT) is a useful measure to
evaluate the performance of a memory-hierarchy configuration
AMAT = hit time + miss rate * miss penalty

• AMAT shows how much penalty the memory system imposes
on each access (on average)
⇒ It can easily be converted into clock cycles for a particular CPU

• Leaving the penalty in nanoseconds allows two systems with
different clock cycles times to be compared using a given
memory system

6-Apr-00 13UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Performance for split I & D caches

• Instruction and data accesses may have different penalties
– They may have to be computed separately

– This requires knowledge of the fraction of references that are
instructions and the fraction that are data

– For example, the text says that (usually) 75% of memory references are
instructions, and 25% are data references

• The write penalty can also be computed separately from the
read penalty
– Miss rates may be different for each situation

– Miss penalties may be different for each situation (i.e., writeback vs.
write through)

CPU time IC CPI
Memory accesses

instruction
Miss rate Miss penalty Clock cycle timeexecution

 = × + × ×



 ×

6-Apr-00 14UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Cache performance example

• Problem: compare the performance of a 64KB unified cache
with a split cache with 32KB data and 16KB instruction
– Miss penalty for either cache is 100 ns, and the CPU clock runs at 500

MHz

– Don’t forget that the unified cache requires an extra cycle for load and
store hits because of the structural conflict

– Calculate the effect on CPI rather than the average memory access time

• Assume miss rates are as follows (Fig. 5.7 in text):
– 64K Unified cache: 1.35%

– 16K instruction cache: 0.64%

– 32K data cache: 4.82%

• Assume a data access occurs in 1/3 of all instructions

6-Apr-00 15UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Cache performance example

• Compute the CPI penalty separately for instructions and data

• First, figure out the miss penalty in terms of clock cycles: 100
ns/2 ns = 50 cycles

• Unified cache
– Instruction access penalty is (0 + 1.35% * 50) = 0.675 cycles

– Data access penalty is (1 + 1.35% * 50) = 1.675 cycles

– Overall penalty is 0.675 + (1/3) * 1.675 = 1.23 cycles per instruction

• Split cache
– Instruction access penalty is (0 + 0.64% * 50) = 0.32 cycles

– Data access penalty is (0 + 4.82% * 50) = 2.41 cycles

– Overall penalty is 0.32 + (1/3) * 2.41 = 1.12

• Split cache performs better => no stall on data accesses

6-Apr-00 16UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Effects of cache on CPU performance

• Low CPI machines suffer more relative to some fixed CPI
memory penalty
– A machine with a CPI of 5 suffers little from a 1 CPI penalty.

– A processor with a CPI of 0.5 has its execution time tripled!

• Cache miss penalties are measured in cycles, not nanoseconds
⇒ A faster machine will stall more cycles on the same memory system

• Amdahl’s Law raises its ugly head again
– Fast machines with low CPI are affected significantly from memory

access penalties

– Fast machines spend most of their time accessing memory!

6-Apr-00 17UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Improving cache performance

• The increasing speed gap between CPU and main memory has
made the performance of the memory system increasingly
important

• There are many distinct methods system architect use to
reduce average memory access time

• These methods can be classified by whether they
– Reduce the miss rate

– Reduce the miss penalty

– Reduce the time to hit in a cache

• Other methods may also increase capacity for a given cost...

6-Apr-00 18UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Components of cache miss rate
• Three “C”s of cache misses

• Compulsory misses
– First access to a block can’t be in

the cache

– Occur regardless of cache size

• Capacity misses
– Occur because cache isn’t large

enough to hold all blocks

– Compulsory miss rate - the miss
rate of a fully associative cache

• Conflict (collision) misses
– The block can’t be kept because

the set is full

– Difference between fully- and
set- associative cache

0%
2%
4%
6%
8%

10%
12%
14%
16%

1 2 4 8 16 32 64 128

Cache size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128

Cache size (KB)

6-Apr-00 19UMBC Chapter 5CMSC 611 (Advanced Computer Architecture), Spring 2000

Reducing cache miss rate

• To reduce cache miss rate, we must eliminate some of the
misses due to the three C’s
– Capacity misses can’t be reduced much except by making the cache

larger

– Conflict misses and compulsory misses can be reduced in several ways

• Larger cache blocks
– Decrease the compulsory miss rate by taking advantage of spatial

locality

– May increase the miss penalty by requiring more data to be fetched per
miss

– Likely to increase conflict misses since fewer blocks can be stored in
the cache

– May even increase capacity misses in small caches

