r

N

Memory hierarchy: the storage pyramid

* Principle of locality: programs
don’t access code and data

uniformly A
» Faster hardware has less capacity _
and costs more per byte g Registers
« Result: memory hierarchy p Level 1 cache
— Keep frequently used code & ;"5
datain fast memory S Level 2 cache
— Keep everything elsein slower Main memory
memory
» Two views of hierarchy Solid state disk

— “Infinite supply of memory, some
parts slower than others’

— “Lots of objects’

Magnetic disk / virtual memory

Access speed

Tertiary storage (tape & removable media)

~

6-Apr-00

Sl
SuiE))
3‘% : l | M B(5 CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

6-Apr-00

Characterizing the memory hierarchy

» Questions about any 2 levels of the memory hierarchy:
Where can a block be placed in the upper level ?
O Block placement
How isablock found if it isin the upper level?
0 Block identification
Which block should be replaced on a miss?
O Block replacement
What happens on awrite?
O Write strategy
» Focus on the interface between

— CPU’s memory cache and main memory
— Dynamic RAM and disk (virtual memory)

g,
w U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5

N

Memory system performance

Evaluate the effectiveness of the memory hierarchy with:
Memory stall cycles=1C* memory refs per instruction * miss rate * miss penalty

Use arelated formulato evaluate the performance of various

memory system configurations

Severa factorsin this equation:
— |C* memory refs per instruction
» Freguency with which the CPU uses memory

* A memory system that needs to satisfy just 1-2 refs per cycleis
easier to build than one that satisfies 4-5 refs per cycle

— Missrate: fraction of references not satisfied in the upper level

— Miss penalty: length of time it takesto get a value from the lower level

— Low missrate doesn’t help if miss penalty istoo high (and vice versa)

J

6-Apr-00

Sy
SuiE) .
3‘% : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 5

3

Where does block
13 go in cache?

What is a cache?

What does “cache” refer to?

— No modifiers => usually meansthe fast memory closest to the CPU
— “Cache’ has been used for everything from files to WWW pages

Block placement: three options
— Fully associative (block can go anywhere)
— Direct mapped (block can go in one place)

— Set associative (block mapped to set, but can go anywhere in set)

— Direct mapped = 1-way set associative
Fully associative Direct mapped

o A~ N O

13MOD 8=5

Set associative

w N kO

13MOD 4=1

J

6-Apr-00

oo,
w U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 5

4

(
Block identification
Block address
A —
-~ N
Tag I ndex Offset
Compared against Selects set Selects data within
tag in cache to ensure the block

the address is correct
» Block offset: thefirst few bits of the address give the offset of the byte
within ablock

» Block address (index): used to pick a set from the cache
° Tag

— Only the tag is stored in the cache (the rest of the addressis implied)

— All tags within a set are searched in parallel
« Valid bit: indicates that the block in this location contains valid data

— Otherwise, arandom sequence of bits could be mistaken for avalid entry that

_ matched the tag)
6-Apr-00 3%“‘ UMBGC oS 11 (Advanoed Computer Arciteture), Spring 2000 Chepter 5 5
()
Block replacement

» Which block is replaced?
— For direct mapped, each block can only go in one location!
— Question relevant for fully associative and set associative caches
» Block to replace chosen by
— Random: choose a block from the set at random
— LRU: least-recently used
* Replace the block that has been unused for the longest time
» Thisrequires extrabits in the cache to keep track of accesses
0 LRU isn't much better than random replacement for small sets
0 Use LRU only for 2-way set associative
— Other caches use random
L — Even 2-way set associative may use random to save bits)

Chapter 5

ey
6-Apr-00 § =% CMSC 611 (Advanced Computer Architecture), Spring 2000
% UMBC

Write strategy

What happens on awrite?

Memory access distribution
— All instruction access are reads
— Most data accesses are reads (DL X, 9% stores and 26% |oads)

Make the common case fast => optimize caches for reads

— The common case is also the easy case to handle since tag checking
and reading can occur in parallel

— Extrabytes read can be safely ignored
Amdahl’ s law reminds us that we can’t ignore writes!
— Problem: Tag checking and writing can’t occur in parallel
O Writing isusually slower than reading
— Extrabytes can’t be safely written

1\ J
Sy
-Apr- | ; . Spri
6-Apr-00 3‘% : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 7
4 N

Write policy

* Determines when the write is communicated to the lower level

» Write-through: block is written to bath the cache and main
memory at the sametime
— Read missesdon’t result in writes
— Memory hierarchy is consistent
— Simple to implement
» Write back (also known as copy back): block modified in
cache only at time of write
— Main memory modified when the block must be replaced in the cache
— Requiresthe use of adirty bit to keep track of block modificati on status
— Writes occur at speed of cache
— Multiple writes occur to the same block can be “collapsed”

iy
6-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 8
% UMBC

Write misses

« Two options when awrite is made to a block not in cache

— Write dllocate: the block isloaded into the cache on amiss before
anything else occurs

— Write around (no write allocate): the block is only written to main
memory; it isn’t stored in the cache
» Generadly,
— Write-back caches use write-allocate

0 Hopefully, subsequent writes to that block will be captured by the
cache

— Write-through caches use write-around

O Subsequent writes to that block will still go to memory even if the
block is fetched into cache

N\ J
6-Apr-00 Wk‘ UMBGC oMscett (advanced Computer Architecture), Spring 2000 Chapter 5 9
()
Write buffers & write merging

 Many CPUs use awrite buffer to avoid stalling on writes
— Write buffer => asmall cache that can hold a few values waiting to go
to main memory
— Thisbuffer helps when writes are clustered
— It doesn’t entirely eliminate stalls since it is possible for the buffer to
fill if the burst islarger than the buffer
* Write merging
— Blocks are often larger than a machine word
— Write buffers can merge memory writes to save write buffer slots and
memory traffic
0 Writesto the same location can be collapsed
O Writes to sequential locati ons can be merged into a single buffer slot
\ J

e,
6-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5
% UMBC

Split vs. unified caches

» Should there be asingle or two caches in the system?

» Unified cache: all memory requests go through a single cache
+ Requiresless hardware
— Haslower bandwidth
— More opportunity for collisions
o Split1 & D caches: instructions & data are stored in separate
caches
— Uses additional hardware
» Some simplifications (I-cacheis read-only)
+ Higher bandwidth (2 is greater than 1)
+ No collisions between data & instructions

_ J

6-Apr-00 W% U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 11

(-)
Cache performance

* Average memory access time (AMAT) is a useful measure to
evaluate the performance of a memory-hierarchy configuration
AMAT = hit time + missrate * miss penalty

 AMAT shows how much penalty the memory system imposes
on each access (on average)

0 It can easily be converted into clock cycles for a particular CPU
» Leaving the penalty in nanoseconds allows two systems with

different clock cycles times to be compared using a given
memory system

iy
6-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 12
% UMBC

Performance for split | & D caches

 Instruction and data accesses may have different penalties
— They may have to be computed separately

— Thisrequires knowledge of the fraction of references that are
instructions and the fraction that are data

— For example, the text saysthat (usually) 75% of memory references are
Instructions, and 25% are data references

* The write penalty can aso be computed separately from the
read penalty
— Missrates may be different for each situation
— Miss penalties may be different for each situation (i.e., writeback vs.

write through)
CPU time=IC x EbPI(%acution + Mer_nory a(_:c xMiss rate x Miss penaltny Clock cycle time
instruction 0
_ J
6-Apr-00 wﬂ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 13
4)

Cache performance example

» Problem: compare the performance of a 64KB unified cache
with a split cache with 32KB data and 16K B instruction

— Miss penalty for either cache is 100 ns, and the CPU clock runs at 500
MHz

— Don't forget that the unified cache requires an extra cycle for load and
store hits because of the structural conflict

— Calculate the effect on CPI rather than the average memory access time
e Assume missrates are asfollows (Fig. 5.7 in text):

— 64K Unified cache: 1.35%

— 16K instruction cache: 0.64%

— 32K data cache: 4.82%
» Assume adata access occursin 1/3 of all instructions

\. J

iy
6-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 14
% UMBC

Cache performance example

» Compute the CPI penalty separately for instructions and data

» Firgt, figure out the miss penalty in terms of clock cycles. 100
ns/2 ns = 50 cycles
» Unified cache
— Instruction access penalty is (0 + 1.35% * 50) = 0.675 cycles
— Data access penalty is (1 + 1.35% * 50) = 1.675 cycles
— Oveal penalty is0.675 + (1/3) * 1.675 = 1.23 cycles per instruction
» Split cache
— Instruction access penalty is (0 + 0.64% * 50) = 0.32 cycles
— Data access penalty is (0 + 4.82% * 50) = 2.41 cycles
— Overal penalty is0.32 + (1/3) * 2.41=1.12
L Split cache performs better => no stall on data accesses

S
6-Apr-00 o CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 15
W UMBC

()
Effects of cache on CPU performance

» Low CPI machines suffer more relative to some fixed CPl
memory penalty
— A machine with aCPI of 5 sufferslittle from a1 CPI penalty.
— A processor with a CPl of 0.5 has its execution time tripled!

» Cache miss penalties are measured in cycles, not nanaseconds
0 A faster machine will stall more cycles on the same memory system
« Amdahl’s Law raisesits ugly head again

— Fast machines with low CPI are affected significantly from memory
access penalties

— Fast machines spend most of their time accessing memory!

iy
6-Apr-00 =% CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 16
% UMBC

()
|mproving cache performance
» Theincreasing speed gap between CPU and main memory has
made the performance of the memory system increasingly
important
» There are many distinct methods system architect use to
reduce average memory access time
» These methods can be classified by whether they
— Reduce the missrate
— Reduce the miss penalty
— Reduce the time to hit in acache
» Other methods may also increase capacity for agiven cost...

_ J
6-Apr-00 wﬁ‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 17
()
Components of cache miss rate

16%
e Three“C"sof cache misses 14% |
e Compulsory misses g ﬁof
— First accessto ablock can’t bein E 222
the cache s
— Occur regardless of cache 9ze 522‘: o
° Capac| ty mlﬁs 1 2 4 8 16 32 64 128
. Cache size (KB)
— Occur because cacheisn’t large Lo0v
enough to hold all blocks ’
— Compulsory missrate - the miss . 5%
rate of afully associative cache - 00k
« Conflict (collision) misses -
— Theblock can’t be kept because 20%
the set isfull 0% '
1 2 4 8 16 32 64 128
— Difference between fully- and Cache size (KB)
_ Set- associative cache)
6-Apr-00

i,
{ W U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 5 18

N

Reducing cache missrate

misses due to thethree C's

— Capacity misses can't be reduced much except by making the cache

larger

— Conflict misses and compulsory misses can be reduced in several ways

Larger cache blocks

* To reduce cache miss rate, we must € iminate some of the

— Decrease the compulsory miss rate by taking advantage of spatial

locality

— May increase the miss penalty by requiring more data to be fetched per

miss

— Likely to increase conflict misses since fewer blocks can be stored in

the cache
— May even increase capacity missesin small caches

6-Apr-00

Sy
SRiE) .
3‘% : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 5

