VLIW processors

» Superscalar machines use hardware to reorder instructions and
keep functional units busy

* InVLIW (Very Long Instruction Word) machines, all of this
burden falls upon the compiler

— Each VLIW "instruction” is composed of multiple independent
instructions, each of which execute on different function units

 Functional units might include integer ALUs, FP ALUs, memory
units, and a branch unit

» Theinstruction must allocate 16 or more bits to each unit to
describe the operation that the unit will run on each cycle

— To keep the functional units busy, parallelism is uncovered by the
compiler by unrolling loops and scheduling code across basic blocks

Memory 1
LD FO, O(R1)

SD O(R1), F4

Sample VLIW processor

Memory 2
LD F6, - 8(RL)

LD F10,-16(R1) LD F14, - 24(Rl)
LD F18,-32(RL) LD F22, -40(Rl)
LD F26, - 48(Rl)

SD - 8(RL), F8

SD - 16(R1), F12 SD -24(R1), F16
SD -32(R1), F20 SD -40(R1), F24

FP1 FP2

ADDD F4, FO, F2 ADDD F8, F6, F2
ADDD F12, F10, F2 ADDD F16, F14, F2
ADDD F20, F18, F2 ADDD F24, F22, F2
ADDD F28, F26, F2

* VLIW machine that can issue two memory references, two FP operations,
and one integer/branch operation per clock cycle

* Loop unrolled 7 times

— Ignoring branch delay, loop achieves 2.5 operations per clock
— Total timeis9 cyclesfor 7 iterations

Integer/branch

SUBI R1, R1, #56

SD 8(R1), F28 BNEZ R1, Loop
L* A VLIW CPU can aso help by providing forwarding L)
7-Mar-00 w#ﬂ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 7-Mar-00 W{E U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 2
4 4 ™\

Limits in multiple-issue processors

» Why stop at 5 instructions/clock? Why not 507?

e Limitson available ILP in programs
— There are usually not enough operationsto fill al of the available slots

— It might seem that 5 independent instructions are sufficient in the
example; however, the memory, branch and FP unitswill likely be
pipelined and have a multicycle latency

» Assume alatency of 6 clocks for the FP units, and that two FP
pipelined units are available

» Thisrequiresthat there are 12 FP instructions that are independent
of the most recently issued FP instruction!

— If abranch requiresjust a one cycle latency, it resultsin a5 instruction
latency in the exampl e CPU machine

issue

7-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
% UMBC

» Hardware complexity
Additiona functional units: duplicate integer and FP units for multiple-

» Their cost scales linearly
Added bandwidth to registers
* Moreregister file ports are required to sustain the multiple issue
» A singleinteger pipeline requires 3 ports to aregister file
 Adding another pipeline requires 3 more ports
— Added memory ports: necessary for multi ple memory units
» Much more expensive than register ports
Scheduling hardware
» Relatively simplefor VLIW
 Can be very complex for superscalar architectures

Limits in multiple-issue processors

7-Mar-00

S, v v
;i% % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 4

Limits in multiple-issue processors

» Superscalar CPUs have complex instruction issue logic

* VLIW CPUs have other problems
— Technical problems

* Increase in code size from open slots (wasted bits for unused
functional units) increases memory bandwidth requirements

» A gl (i.e., cache miss) in any functiona unit causes the entire
processor to stall because of the lock step operation of VLIW

— Logistical problems
* Binary compatibility is a problem because adding functional units
or changing latencies requires major code changes
» Complexity and access time penalties of a multiported
memory hierarchy are probably the most serious hardware
(_limitations of superscalar and VLIW implementations

Even more parallelism

» Previously discussed methods that the compiler can use to
discover ILP
— Works as long as branch behavior isrelatively predictable

» Better: increase levels of ILP in programs

— Conditional execution: instructions that are “executed” only when a
certain condition holds

— Speculative execution
» Execute instructions that mi ght be needed | ater
» Example: execute both forks of abranch

\ J
L Rt
7-Mar-00 & W= CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 7-Mar-00 e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 6
% UMBC (p). Spring 2 (W UMBC (p), Spring i
4 4 ™\

Conditional instructions

» A conditional instruction refers to a condition which is
evaluated as part of the instruction execution
— Don't use a branch to skip asingleinstruction
— Instr always executes but only writes the result if the condition is met
» Eliminating the branch gives two benefits
— Thebranchis not executed, reducing the instruction count by 1
— Thebranch delay is avoided
» Conditional execution changes a control dependenceinto a
data dependence

— Inaninteger pipeline, data dependenciesrarely cause stalls while
control hazards do cause stalls

Benefits of conditional instructions

» Conditional instructions help alot with superscalar machines
because such machines suffer even more from branch stalls
— Conditional instructions can be scheduled as normal instructions

— Branches often cannot be scheduled this way because they may cause a
changein the instruction stream

O More dotsin a superscalar machine can befilled

e Conditional instructions are of even greater benefit on aVLIW
machine for similar reasons

if (A==0) BNEZ R1, L
s= 1. —> MV RR —> CMVZ R2 R3RI
\ L:
7-Mar-00 ?q.]?;: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

s, v v
7-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 8
‘W UMBC

S, v v
;i% % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

~ ™ ~ ™
Conditional instructions & exceptions Limits to conditional instructions
» Conditional instructions must not introduce an exception if its » Executing conditional instructions takes time
condition isn't satisfied — A conditional instruction always requires time, even if the instruction is
— Theinstruction must have NO effect if the condition is not satisfied annulled
— In example below, if R10 contains zero, it’s likely that the LW — Moving an instruction across a branch is essentially speculating on the
instruction will cause a protection violation if allowed to execute outcome of the branch
« Solution: — May dow down a program if an instruction i s executed but turned into
' . ano-op, since another instruction may have executed during that slot
— InDLX, memory accesses are not started until MEM
, o) — Conditional instructions are always awin when the cycle that they
— It'seasy to evaluate the cond_ltlo_n (i €. during EX) and prevent the occupy would have been idle anyway
memory access from happening in this case
» Sequence length can affect performance
BEQ R10, L) n . .
LW R, 20(R10) LVC R8, 20(RLO) , R10 — Trading a branch and move for a conditional moveisusualy awin
L: — Longer sequences may not be
NG J N J
7-Mar-00 Vw#; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 9 7-Mar-00 “?!#E U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 10
4 ™) 4)
Limits to conditional instructions Compiler-directed speculative execution
» The condition must be evaluaed early » Conditional instructions eliminate control dependencies for
— The condition must be known before the processor’ s state is changed, small if-then blocks
and the earlier the better « Moving larger blocks of code across (before) branches can
» Conditional instructions are difficult for multiple conditions yield larger performance gains
— Theseinstructions work well for avoiding single branches « Doing so creates problems in two areas
- Q(;ettad(alls m;re ?.'ff'CltJItIfor. t\;vjcl) or mot;_e brt?]nch OIF?' ?ns: It g_e?w res — Registers that should not be modified (because of the branch) are
: |.|on |.n ruc |0T13 ologic | y combine the multiple conditions modified anyway
+ Conditional instructions may impose a speed penalty — Exceptions that should not occur may actually happen (as with
— The cycle time for the entire CPU might be increased conditional instructions)
— A conditional instruction might take more clock cycles to execute than » Resumable exceptions such as page faults aren't abig problem
anon-conditional instruction _ May cause performance to suffer somewhat
— Programs don’t terminate incorrectly
\. J \. J
7-Mar-00 ?q.]?;: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 1 7-Mar-00 Chapter 4 12

4 ™
| mplementing speculation: ignore exceptions

» Three schemes for supporting speculation without introducing
erroneous exception behavior have been investigated

» First scheme: ignore exceptions

— The simplest method for speculation is for the CPU and OS to ignore
non-resumabl e exceptions for specul ative instructions

— Rather than terminate the program, they return an undefined value for
the instruction causing the exception

* If the exception generating instruction was not speculative, the
programisin error but it is allowed to continue!

O However, it'll probably generate incorrect results

« If the exception generating instruction was speculative, the
speculative result won’'t be used and the program will run properly

[
|gnore exceptions. example
If (A==0) LW R1,0(R3) ; load A
A = B BNEZ R1, L1 ; test A
el se LW R1,0(R2) if clause
A += 4 J L2 ; skip else
L1: ADDI R1,R1,#4 ; else clause
L2: SW O(R3),R1 ; store A

Two possibilities
assuming t hen amost
always executed

LW RL, O(R3)
LW R14, O(R2)

LW RL, O(R3)

LW R14, 0(R2) Speculative load B

BEQZ R1, L3 ADDI R16, R1, #4
ADDI R14,R1, #4) MW/C R14, R16,R1
L3: SW O(R3),R1 Non-speculative store SW 0(R3),R1
* Why use R14? « Branch replaced by conditiond move

 Under what circumstances
is this more expensive?

* Whereisthe value of A at
the end of this sequence?

— Either way, acorrect program is not terminated improperly

- J _ J
g,
7-Mar-00 j)] CMSC 611 (Advanced Computer Architecture), ing 2000 Chapter 4 13 7-Mar-00 §)] CMSC 611 (Advanced Computer Architecture), ing 2000 Chapter 4 14
ar % § U M BC (puter Architecture), Spring apter ar *Zﬁ‘ﬂ § U M BC (mputer Architecture), Spring apter
é) 4 ~

Speculative execution: poison bits

» Each register has a“poison bit” attached toit

— If aspeculative instruction causes an exception, the exceptionis
handled by setting the poison bit of its destination register

— If another speculative instruction uses a poisoned register as a source
operand, its destination register poison bit is also set
— If anon-speculative instruction uses a poisoned register, an exception is
generated
* It may, however, write to a poisoned register
« If this occurs, the poison hit is cleared

» This method generates exceptions for incorrect programs (at

about the right place)

0 The OS must be able to save, restore, and reset the poison bits, which
requires specia instructions

Chapter 4 15

7-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000
(% UMBC

Speculative execution: boosting

» Previous schemes introduced register copies

» Thisapproach (called boosting) provides renaming and
buffering in hardware, similar to Tomasulo’ s approach
— A boosted instruction is executed speculatively based on a branch
— Itsresults are forwarded to and used by other boosted instructions
— When the branch is reached, the results are committed to the register
fileif the prediction is correct
» Therefore, instructions that are control dependent on a branch
can be executed before the branch

Chapter 4

s, v v
7-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000
‘W UMBC

16

4 N\
Speculative execution with renaming
LW R1,0(R3) ; load A
If (A==0) BNEZ R1, L1 ; test A
A = B; LW R1, 0(R2) i f_ cl ause
el se J L2 ; skip else
A += 4; L1: ADDI R1,R1,#4 ; else clause
L2: SW O(R3),RlL; store A

+ indicates the instruction
is boosted across the next
branch and predicts the

LW R1, O(R3)

LW R1, 0(R2) boosted load of B

Hardware-based speculation

» Combine specul ative execution and dynamic scheduling based
on Tomasulo’s approach
— Focus on floating-point operations
— Similar structures can handle integer operations

e Change Tomasulo's approach to support speculation
— Separate the process of completing execution and the bypassing of
results among instructions from instruction commit (register file or
memory update)
— Thisallows other (speculative) instructions to execute, but no results
are committed until we know the instruction is no longer speculative

* Allow instructions to execute out of order but force them to

BE R1, L
branch taken ADglz RI. R13#4 e
A _ commit in order
L3: SW O0O(R3),Rl ; non-specul ative store .
_) _ — Helps handle exceptions properly)
7-Mar-00 Vw% U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 17 7-Mar-00 “?!#E U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 18
4)\ 4)\

Hardware-based speculation: design

A set of hardware buffers (reorder buffers) hold the results of instructions that have

completed execution but have not committed h
* Load & store buffers eliminated 4
c o 3
F g e 2 o
rommemory g 3 B g
(load results) o2 2 5
gs :) g
— — 1]
Sov v ¥ ¥ VvV ¥
g3
% v
14 @ * ¢ $ To memory
[FP Adders] { FP Multipliers]
Common databus (CDB)
\. J
7-Mar-00 Chapter 4 19

,:_i))
i Zﬁu } U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware-based speculation: stages

» Thereorder buffer provides additional virtual registersandisa
source of operands for instructions

» Anadditional step is added to Tomasulo’s algorithm
— lIssue
* Get afloating-point instruction

* Issueitif thereisareservation station open and an empty slot in the
reorder buffer

» Send the number of the reorder buffer assigned for the result to the
reservation station so it can be used to tag the result

— Execute
— Monitor the CDB while waiting for source registers to be ready
— When both operands are available, perform the operation

s, v v
7-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 20
‘W UMBC

~ ™ ~ ™
Hardware-based speculation: stages Hardware-based speculation: advantages
* More stepsin to Tomasulo’s algorithm » This scheme has several advantages over dynamic scheduling
* Write result alone
— Write the result on the CDB with the reorder buffer tag Instructions can “finish” out of order aslong as they are not
— Resultis stored into the reorder buffer as well asinto any reservation committed
stations waiting for the result 0 The CPU can keep precise interrupts even while executing out of order
— Reorder buffer can also serve as a source register for operands similar since changes are committed in order.
totheregister file « The CPU to speculatively execute instructions past a branch
+ Commit before the branch is executed
- Whelzn the instructi 02 rgacf:?esthtij headhof the reorder buffer and its O Instructions are canceled if the branch is mispredicted
ti tint , ate t i st it
resLit 1S present I e DITEr, Lpdate te TEJISIEr or Wiite memory » Handle exceptions just before the instruction is ready to commit
— When anincorrectly predicted branch arrives, flush the reorder buffer .)) .)
and restart execution at the correct successor of the branch — All previous instructions and no later instructions have committed
_ ; ; — The CPU can do a precise exception even with out-of-order execution
L If the branch was correctly predicted, do nothing) L)
7-Mar-00 Vw#; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 21 7-Mar-00 “?!#E U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 2
4 ™) 4 N
Speculation & multiple-issue CPUs Lower CPI isn't always faster
» Thetechniquesthat work in single-issue CPUswork in If thelower CPI comes at the expense of alonger clock cycle,
multiple-issue CPUs as well it may slow the processor down
— Speculate on both integer and floating point instructions — Almost invariably true since lowering CPI using hardware means
— More complex design implementing more sophisticated techniques which increase clock
« More hazards to check for .cy_cle tl.me _ _
« CDB (maybe more than one!) gets crowded... * Thisinclination arises because
« Speculation may be more useful in such processors — Simulation tools to evaluate the impact of enhancements that affect CPI
. . are more readily available than tools to evaluate the impact on clock
— Longer branch delays and operation latencies cycletime
B Msgrreliampty execution slots that speculation can fill (potentially — Accurate analysis on the impact of clock rate is not usually possible
ussfully) until the design iswell underway
\. J \. J
7-Mar-00 ?q.]?;: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 23 7-Mar-00 1@1’: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 24

Improve the whole CPU, not just part

» Aswith uniprocessors, improving one aspect of a CPU does
not help unless it was the bottleneck from the beginning

— Improving FP latency for a multiple-issue CPU does not help much
unless something is done about branching

— Making branches faster doesn’t help if the CPU stalls alot waiting for
integer hazards
» Speculative execution is great but is of limited benefit unless
there are additional registersto use
— Under compiler control (larger register set)
— “Virtual” registers used by dynamic scheduler

- v

7-Mar-00 Sk CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 25
W UMBC

