
7-Mar-00 1UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

VLIW processors

• Superscalar machines use hardware to reorder instructions and
keep functional units busy

• In VLIW (Very Long Instruction Word) machines, all of this
burden falls upon the compiler
– Each VLIW “instruction” is composed of multiple independent

instructions, each of which execute on different function units

• Functional units might include integer ALUs, FP ALUs, memory
units, and a branch unit

• The instruction must allocate 16 or more bits to each unit to
describe the operation that the unit will run on each cycle

– To keep the functional units busy, parallelism is uncovered by the
compiler by unrolling loops and scheduling code across basic blocks

• A VLIW CPU can also help by providing forwarding

7-Mar-00 2UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Sample VLIW processor
• VLIW machine that can issue two memory references, two FP operations,

and one integer/branch operation per clock cycle

• Loop unrolled 7 times
– Ignoring branch delay, loop achieves 2.5 operations per clock

– Total time is 9 cycles for 7 iterations

Memory 1 FP 1Memory 2 FP 2 Integer/branch
LD F0,0(R1) LD F6,-8(R1)
LD F10,-16(R1) LD F14,-24(R1)
LD F18,-32(R1) LD F22,-40(R1)
LD F26,-48(R1)

ADDD F4,F0,F2 ADDD F8,F6,F2
ADDD F12,F10,F2 ADDD F16,F14,F2

SD 0(R1),F4
ADDD F20,F18,F2 ADDD F24,F22,F2
ADDD F28,F26,F2SD -8(R1),F8

SD -32(R1),F20 SD -40(R1),F24
SD -16(R1),F12 SD -24(R1),F16

SD 8(R1),F28 BNEZ R1,Loop
SUBI R1,R1,#56

7-Mar-00 3UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Limits in multiple-issue processors

• Why stop at 5 instructions/clock? Why not 50?

• Limits on available ILP in programs
– There are usually not enough operations to fill all of the available slots

– It might seem that 5 independent instructions are sufficient in the
example; however, the memory, branch and FP units will likely be
pipelined and have a multicycle latency

• Assume a latency of 6 clocks for the FP units, and that two FP
pipelined units are available

• This requires that there are 12 FP instructions that are independent
of the most recently issued FP instruction!

– If a branch requires just a one cycle latency, it results in a 5 instruction
latency in the example CPU machine

7-Mar-00 4UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Limits in multiple-issue processors

• Hardware complexity
– Additional functional units: duplicate integer and FP units for multiple-

issue

• Their cost scales linearly

– Added bandwidth to registers

• More register file ports are required to sustain the multiple issue

• A single integer pipeline requires 3 ports to a register file

• Adding another pipeline requires 3 more ports

– Added memory ports: necessary for multiple memory units

• Much more expensive than register ports

– Scheduling hardware

• Relatively simple for VLIW

• Can be very complex for superscalar architectures

7-Mar-00 5UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Limits in multiple-issue processors

• Superscalar CPUs have complex instruction issue logic

• VLIW CPUs have other problems
– Technical problems

• Increase in code size from open slots (wasted bits for unused
functional units) increases memory bandwidth requirements

• A stall (i.e., cache miss) in any functional unit causes the entire
processor to stall because of the lock step operation of VLIW

– Logistical problems

• Binary compatibility is a problem because adding functional units
or changing latencies requires major code changes

• Complexity and access time penalties of a multiported
memory hierarchy are probably the most serious hardware
limitations of superscalar and VLIW implementations

7-Mar-00 6UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Even more parallelism

• Previously discussed methods that the compiler can use to
discover ILP
– Works as long as branch behavior is relatively predictable

• Better: increase levels of ILP in programs
– Conditional execution: instructions that are “executed” only when a

certain condition holds

– Speculative execution

• Execute instructions that might be needed later

• Example: execute both forks of a branch

7-Mar-00 7UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Conditional instructions
• A conditional instruction refers to a condition which is

evaluated as part of the instruction execution
– Don’t use a branch to skip a single instruction

– Instr always executes but only writes the result if the condition is met

• Eliminating the branch gives two benefits
– The branch is not executed, reducing the instruction count by 1

– The branch delay is avoided

• Conditional execution changes a control dependence into a
data dependence
– In an integer pipeline, data dependencies rarely cause stalls while

control hazards do cause stalls

if (A==0)
 S = T;

 BNEZ R1,L
 MOV R2,R3
L:

CMOVZ R2,R3,R1

7-Mar-00 8UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Benefits of conditional instructions

• Conditional instructions help a lot with superscalar machines
because such machines suffer even more from branch stalls
– Conditional instructions can be scheduled as normal instructions

– Branches often cannot be scheduled this way because they may cause a
change in the instruction stream

⇒ More slots in a superscalar machine can be filled

• Conditional instructions are of even greater benefit on a VLIW
machine for similar reasons

7-Mar-00 9UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Conditional instructions & exceptions

• Conditional instructions must not introduce an exception if its
condition isn’t satisfied
– The instruction must have NO effect if the condition is not satisfied

– In example below, if R10 contains zero, it’s likely that the LW
instruction will cause a protection violation if allowed to execute

• Solution:
– In DLX, memory accesses are not started until MEM

– It’s easy to evaluate the condition (i.e. during EX) and prevent the
memory access from happening in this case

 BEQZ R10,L
 LW R8,20(R10)
L:

LWC R8,20(R10),R10

7-Mar-00 10UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Limits to conditional instructions

• Executing conditional instructions takes time
– A conditional instruction always requires time, even if the instruction is

annulled

– Moving an instruction across a branch is essentially speculating on the
outcome of the branch

– May slow down a program if an instruction is executed but turned into
a no-op, since another instruction may have executed during that slot

– Conditional instructions are always a win when the cycle that they
occupy would have been idle anyway

• Sequence length can affect performance
– Trading a branch and move for a conditional move is usually a win

– Longer sequences may not be

7-Mar-00 11UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Limits to conditional instructions

• The condition must be evaluated early
– The condition must be known before the processor’s state is changed,

and the earlier the better

• Conditional instructions are difficult for multiple conditions
– These instructions work well for avoiding single branches

– The task is more difficult for two or more branch options: it requires
additional instructions to logically combine the multiple conditions

• Conditional instructions may impose a speed penalty
– The cycle time for the entire CPU might be increased

– A conditional instruction might take more clock cycles to execute than
a non-conditional instruction

7-Mar-00 12UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Compiler-directed speculative execution

• Conditional instructions eliminate control dependencies for
small if-then blocks

• Moving larger blocks of code across (before) branches can
yield larger performance gains

• Doing so creates problems in two areas
– Registers that should not be modified (because of the branch) are

modified anyway

– Exceptions that should not occur may actually happen (as with
conditional instructions)

• Resumable exceptions such as page faults aren’t a big problem
– May cause performance to suffer somewhat

– Programs don’t terminate incorrectly

7-Mar-00 13UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Implementing speculation: ignore exceptions

• Three schemes for supporting speculation without introducing
erroneous exception behavior have been investigated

• First scheme: ignore exceptions
– The simplest method for speculation is for the CPU and OS to ignore

non-resumable exceptions for speculative instructions

– Rather than terminate the program, they return an undefined value for
the instruction causing the exception

• If the exception generating instruction was not speculative, the
program is in error but it is allowed to continue!

⇒ However, it’ll probably generate incorrect results

• If the exception generating instruction was speculative, the
speculative result won’t be used and the program will run properly

– Either way, a correct program is not terminated improperly

7-Mar-00 14UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Ignore exceptions: example
If (A==0)
 A = B;
else
 A += 4;

 LW R1,0(R3) ; load A
 BNEZ R1,L1 ; test A
 LW R1,0(R2) ; if clause
 J L2 ; skip else
L1: ADDI R1,R1,#4 ; else clause
L2: SW 0(R3),R1 ; store A

 LW R1,0(R3)
 LW R14,0(R2)
 BEQZ R1,L3
 ADDI R14,R1,#4
L3: SW 0(R3),R1

 LW R1,0(R3)
 LW R14,0(R2)
 ADDI R16,R1,#4
 MVC R14,R16,R1
 SW 0(R3),R1

Speculative load B

Non-speculative store

Two possibilities
assuming then almost
always executed

• Why use R14?
• Where is the value of A at
 the end of this sequence?

• Branch replaced by conditional move
• Under what circumstances
 is this more expensive?

7-Mar-00 15UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Speculative execution: poison bits

• Each register has a “poison bit” attached to it
– If a speculative instruction causes an exception, the exception is

handled by setting the poison bit of its destination register

– If another speculative instruction uses a poisoned register as a source
operand, its destination register poison bit is also set

– If a non-speculative instruction uses a poisoned register, an exception is
generated

• It may, however, write to a poisoned register

• If this occurs, the poison bit is cleared

• This method generates exceptions for incorrect programs (at
about the right place)
⇒ The OS must be able to save, restore, and reset the poison bits, which

requires special instructions

7-Mar-00 16UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Speculative execution: boosting

• Previous schemes introduced register copies

• This approach (called boosting) provides renaming and
buffering in hardware, similar to Tomasulo’s approach
– A boosted instruction is executed speculatively based on a branch

– Its results are forwarded to and used by other boosted instructions

– When the branch is reached, the results are committed to the register
file if the prediction is correct

• Therefore, instructions that are control dependent on a branch
can be executed before the branch

7-Mar-00 17UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Speculative execution with renaming

If (A==0)
 A = B;
else
 A += 4;

 LW R1,0(R3) ; load A
 BNEZ R1,L1 ; test A
 LW R1,0(R2) ; if clause
 J L2 ; skip else
L1: ADDI R1,R1,#4 ; else clause
L2: SW 0(R3),R1 ; store A

 LW R1,0(R3)
 LW+ R1,0(R2) ; boosted load of B
 BEQZ R1, L3
 ADDI R1,R1,#4
L3: SW 0(R3),R1 ; non-speculative store

+ indicates the instruction
is boosted across the next
branch and predicts the
branch taken

7-Mar-00 18UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware-based speculation

• Combine speculative execution and dynamic scheduling based
on Tomasulo’s approach
– Focus on floating-point operations

– Similar structures can handle integer operations

• Change Tomasulo’s approach to support speculation
– Separate the process of completing execution and the bypassing of

results among instructions from instruction commit (register file or
memory update)

– This allows other (speculative) instructions to execute, but no results
are committed until we know the instruction is no longer speculative

• Allow instructions to execute out of order but force them to
commit in order
– Helps handle exceptions properly

7-Mar-00 19UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware-based speculation: design

FP MultipliersFP Adders

In
st

ru
ct

io
n

qu
eu

e

FP
 r

eg
is

te
rs

R
es

er
va

ti
on

St
at

io
ns

To memory

From memory
(load results)

Common data bus (CDB)

R
eo

rd
er

 b
uf

fe
rs

• A set of hardware buffers (reorder buffers) hold the results of instructions that have
completed execution but have not committed

• Load & store buffers eliminated

7-Mar-00 20UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware-based speculation: stages

• The reorder buffer provides additional virtual registers and is a
source of operands for instructions

• An additional step is added to Tomasulo’s algorithm
– Issue

• Get a floating-point instruction

• Issue it if there is a reservation station open and an empty slot in the
reorder buffer

• Send the number of the reorder buffer assigned for the result to the
reservation station so it can be used to tag the result

– Execute

– Monitor the CDB while waiting for source registers to be ready

– When both operands are available, perform the operation

7-Mar-00 21UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware-based speculation: stages

• More steps in to Tomasulo’s algorithm

• Write result
– Write the result on the CDB with the reorder buffer tag

– Result is stored into the reorder buffer as well as into any reservation
stations waiting for the result

– Reorder buffer can also serve as a source register for operands similar
to the register file

• Commit
– When the instruction reaches the head of the reorder buffer and its

result is present in the buffer, update the register or write memory

– When an incorrectly predicted branch arrives, flush the reorder buffer
and restart execution at the correct successor of the branch

– If the branch was correctly predicted, do nothing

7-Mar-00 22UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Hardware-based speculation: advantages

• This scheme has several advantages over dynamic scheduling
alone

• Instructions can “finish” out of order as long as they are not
committed
⇒ The CPU can keep precise interrupts even while executing out of order

since changes are committed in order.

• The CPU to speculatively execute instructions past a branch
before the branch is executed
⇒ Instructions are canceled if the branch is mispredicted

• Handle exceptions just before the instruction is ready to commit
– All previous instructions and no later instructions have committed

– The CPU can do a precise exception even with out-of-order execution

7-Mar-00 23UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Speculation & multiple-issue CPUs

• The techniques that work in single-issue CPUs work in
multiple-issue CPUs as well
– Speculate on both integer and floating point instructions

– More complex design

• More hazards to check for

• CDB (maybe more than one!) gets crowded...

• Speculation may be more useful in such processors
– Longer branch delays and operation latencies

– More empty execution slots that speculation can fill (potentially
usefully)

7-Mar-00 24UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Lower CPI isn’t always faster

• If the lower CPI comes at the expense of a longer clock cycle,
it may slow the processor down
– Almost invariably true since lowering CPI using hardware means

implementing more sophisticated techniques which increase clock
cycle time

• This inclination arises because
– Simulation tools to evaluate the impact of enhancements that affect CPI

are more readily available than tools to evaluate the impact on clock
cycle time

– Accurate analysis on the impact of clock rate is not usually possible
until the design is well underway

7-Mar-00 25UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Improve the whole CPU, not just part

• As with uniprocessors, improving one aspect of a CPU does
not help unless it was the bottleneck from the beginning
– Improving FP latency for a multiple-issue CPU does not help much

unless something is done about branching

– Making branches faster doesn’t help if the CPU stalls a lot waiting for
integer hazards

• Speculative execution is great but is of limited benefit unless
there are additional registers to use
– Under compiler control (larger register set)

– “Virtual” registers used by dynamic scheduler

