Dynamic branch prediction

» Until now, we have focused on overcoming data hazards.

» However, control hazards contribute greatly to reduced CPI,
especially as pipelines become longer
* More evident for machines that issue multiple instructions per
cycle (CPI <1)
— Branches arrive n times more frequently in a n-issue machine.
— Latency of resolving abranch does not decrease
O CPI ismore significantly affected than it isfor a single-issue

4 R
Effect of branch prediction on performance

» Static vs. dynamic prediction
— Static prediction: all decisions are made at compile time
0 This does not allow the prediction scheme to adapt to program
behavior that changes over time
» Effectsof prediction on performance:
— Accuracy
 Accuracy of abranch prediction scheme impacts CPU performance

» A schemethat is not accurate may make CPU performance worse
than it would be without prediction

machine
— Latency: two orthogonal aspects to performance
» Branch may be taken or not taken
» Branch may be correctly predicted or incorrectly predicted
Y _ O Up to four different latencies for a single branch instruction Y,
6-Mar-00 W#;: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 6-Mar-00 }?g{;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 2
4 4 ™\
Predicting a branch’ s result Branch prediction buffer .
Taken
» The simplest thing to do with a branch is to predict whether or * Keep abuffer (cache) indexed by Branch address * "
not it is taken the lower portion of the address of (mod k) l
the branch instruction [

— Hélpsin pipelines where the branch delay islonger than thetime it
takes to compute the possible target PCs

» Most pipelines can calculate branch destination quickly!
— By saving the decision time, the CPU can branch sooner

» This scheme does NOT help with the DLX

— Branch decision and target PC are computed in ID, assuming there is
no hazard on the register tested
— Only helps when branch decision i s calculated after branch target

g, v v
6-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
% UMBC

— Include bit(s) to indicate whether
or not the branch was recently
taken or not

— If the prediction isincorrect, the
prediction bit isinverted and
stored back

» Branch direction could be
incorrect because

k entries
A

— Branch mispredicted
— Instruction mismatch
O Either way, the worst outcomeis K
paying the full branch latency
\. J
6-Mar-00 'i%:“‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 4

N\ 4)
|mproving prediction accuracy Multi-bit predictors
taken not taken _)
+ Sample code * 2-bit predictor scheme
for (j =0; j <10; j++) { [
for (k = 0; k < 10: k+4) { — Allowsthe accuracy of the predictor to approach the taken branch
Il stuff frequency (i.e. 90% for highly regular branches)
} } /7 Predict this branch — Implements “forgiveness” for asingle misprediction
« Problem * n-bit predictors
— If branchisalmost always taken, — Keep an n-bit saturating counter for each branch
this scheme will likely predict « Increment it on branch taken
|n<_:orrec'FIth|ce _ * Decrement it on branch not taken
— Mispredicts when j==0,k==10 If th ter is oreater th 4 to half it . al
_ Mispredicts when j==1k==0 Predict Predict - e counter is greater than or equal to its maximum value,
. not taken not taken predict the branch as taken
» Solution _
, , 00 01 — Thiscan be donefor any n
0 Use 2-bit predictor!
* n=2 performs amost as well aslarger valuesfor n
_ not taken not taken) _ O Usen=2 becauseit requires less hardware!)
6-Mar-00 W#;: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 5 6-Mar-00 }?g{;f UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 6
4) 4)
L ocation of the branch prediction buffer |mproving accuracy: correlated predictions
» “Specia cache” » Theaccuracy of our predictor is critical to exploiting more ILP
— Accessed during IF (with the PC) « How can we improve accuracy?
— Prediction bits used during ID if the instruction is decoded as a branch — Increasing the size of the cache does not help (much)
* [nstruction cache — Increasing the number of bits beyond 2 does not help (much)
— Requires more space (the instruction cache is usually much larger than « Consider the behavior of “surrounding” branches?
the " special C?Ch(_a) _ _ — Works particularly well if there are common “paths’ through code that
— Reducesthe likelihood that “ conflicts’ occurs between different require several branches, as in the following code:
branches if (aa == 2) // Bl
.. aa = 0;
 Accuracy of branch prediction it (bb == 2) // B2
— Misprediction rates range from 1% to 18% (using a4K entry branch ~ bb = 0;
prediction buffer) 't (aa t=bb) ..// B3
— Static rates are around 30% for many programs — B3iscorrelated with B1 and B2
o If bothi f statements are TRUE, then (aa!=bb) isFALSE
\ J \ J
6-Mar-00 ,w,!{; UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 7 6-Mar-00 W UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 8

4 ™ 4)
Correlated branch predictors Correlated branch prediction
if (d == 0) i’;uz g 'ngz'l , Branch bl « Usetwo-level predictors
_ fd c:j E_ L |:> | abel - T — Keep track of the behavior of previous branches
Ir(d==1) A;:‘(ije gsl‘s SUBI R1, R, #1 — Use history to predict the behavior of the current branch
N BNEZ R1,label 2 ; Branch b2 » Implement this by assigning two bits to each branch instruction
o — One hit predicts the direction of the current branch if the previous branch was
| abel 2: not taken (PNT)
Initial value d==0 bl Vaueof d d==1 b2 — One hit predicts the direction of the current branch if the previous branch was
of d before b2 teken (PT)
0 Yes Not taken 1 Yes Not taken BNEZ R3. | abel PNT PT NTINT
1 No Taken 1 Yes Nottaken ADD R, RO, #1\ NT/T
| abel :
2 No Taken 2 No Taken SUBl RL, R3, #1 PNT ™ PT E;_IT
« If blisnot taken, then b2 will also be not taken BNEZ RL | abel 2
0 A correlating predictor can take advantage of this | abel 2:

. J \ J
6-Mar-00 % U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 9 6-Mar-00 }?q‘;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 10
4) 4)

How do two-level predictors help? (m,n) branch predictors
* Assume the value of d aternates between 2 (2,3) branch predictor
and Oinaloop > — h / XXX 4‘@
— The correct prediction of b2 shows the ! d(S 1,_) /] Branch bl Branch address / "
advantage of correlating predictors it (d __ 1) // Branch b2 3-bit
— The correct prediction of bl is due to the choice Shift register counter
of d, since there is no obvious correlation
2-bit global ! i
-2 bl bl New bl b2 b2 New b2 itglol | 'y
prediction action prediction prediction action prediction branch history I—I—l
Simple 2 NT T—T NT—X%>T——>T » (m,n) predictors use the behavior of the last m branches to choose from one
branch 0 T NT — NT T —X» NT —» NT of 2m branch predictors, each of which is an n-bit predictor
prediction 2 NT T——>T NT —X>T—>T 0 Resultsin better prediction rates than conventional n-bit prediction because it
0 T NT — NT T —X» NT —» NT allows several “contexts’
2 NT/NT T TINT NT/NT T NT/T * Globa Branch History can be i mplemented using a shift register that shifts
Czrrela;ed 0 TINT NT TINT NT/T NT NT/T in the branch behavior (not taken or taken) when the branch is executed
ranc ! - .
prediction 2 TINT T TINT NT/T T NT/T » Sincethe branch prediction buffer isNOT acache, there's no guarantee
Y 0 TINT NT TINT NT/T NT NT/T S that the predictions correspond to the “correct” branch instruction)
6-Mar-00 ,?Q?z; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 1 6-Mar-00 Chapter 4 12

Py
§ ‘i%:‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000
e

~ ™ ~ ™
Branch target buffers Branch target buffer operation
» Branch predictors help predict whether a branch is taken » If ahit occursin the BTB, the CPU fetches the next instruction from the
. . address stored in the BTB, and not PC + 4
* CPU needsto know which address to fetch from ASAP in :
der to red stall further. ideallv to O — Thisoccurs by the end of IF!
ordertor lflce Séeven Turther, | y Y o — CPU must compare the entire address (unlike prediction buffers)
— Must do this even before the CPU knows the instruction is abranch « Onanincorrect match(current instruction is NOT abranch instruction)
0 Use branch target buffer (BTB) (also called branch target — Slow things down because the predicted PC is always non-sequential by
cache) definition (and therefore, incorrect)
» A branch target buffer is very similar to a cache Curent PC|———— Ty Predicted PC
— Indexed exactly like a cache! o oo
X " A
* BTB must include atag to catch collisionsin the table o O
— “Value” in the cache is the address of the next instruction, not the e — ‘é\‘c\; el
contents of the memory location 3 l e
' Branch prediction
—»@—» Yes: use predicted PC
9 Y, 9 (taken/not taken) Y,
6-Mar-00 Vw% U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 13 6-Mar-00 }?q‘;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 14
4 N\ f N

Adding prediction to BTBs

» Add 2 bits of prediction (the purpose of the last field in the
previous figure)
— By definition, the branch is predicted taken!
 Ithasanentry inthe BTB

— Inthiscasg, it is better to have separate buffers for prediction and
predicted PCs (which can be different sizes)

can also be used in thisway

» Even happensif the predictor indicates that it should NOT be taken

— A “not taken” in the prediction buffer will override an entry inthe BTB
» More complex prediction mechanisms such as (m,n) predictors

g, v v
6-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
{4 UMBC

15

Interaction of prediction & BTBs

Send PC to
memory & BTB

execution
EX Enter branch instruction Mispredicted!
address & next PC into BTB || Kill fetched instr Branch correct
Deletefrom BTB | Continue with no stalls
\.

6-Mar-00

Py
§ ‘i%:‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 16
e

Branch folding Limits to branch prediction
* Instead of storing just the branch address, the BTB can store » Misprediction rate: limits branch prediction benefits
the actual instruction as well — If it'stoo high, there stoo little benefit to justify the added hardware
— Return the new instruction from the cache rather than just the new » Misprediction penalties: also importarnt!
address — If these are no worse than the standard penalties for missed static
— The branch “disappears’ sinceit is replaced with the instruction given prediction, dynamic prediction isawin
by its target address — What if dynamic misprediction penalties are worse than static
O The branch instruction does NOT require any execution cycles! misprediction penalties?
» Ifit'saconditional branch, we will still have to make sure the 0 Static prediction might actually outperform dynamic prediction
condition is satisfied even though it has aworse misprediction rate
» Branch folding works well for
— Unconditional branches
— Conditional branches where the condition is easy to test (including
_ condition codes)) _
6-Mar-00 v% UMBGC oS o1 (Advanced Computer Arciteturs), pring 2000 Chepter 4 7 6-Mar-00 ?% UMBGC oM o1 (dvanced Computer Arciteturs), pring 2000 Chepter 4
4) 4
Multiple issue: superscalar & VLIW Superscalar DLX hardware
» Prior techniques reduce ideal CPI to as closeto 1 as possible » Ensure that there are no data and structural hazards between
« To reduce CPI below 1, the CPU must be capable of issuing instructions issued together

— The easiest way to accomplish thisisto allow dual issue of one integer

more than one instruction per cycle
instruction (ALU, load/store) and one floating point instruction

— Superscalar: CPU tries to issue more than one instruction per cycle to

keep all of the functional units busy » Hardware requirements
» May belimits (i.e., no more than one memory instruction per cycle, — Instruction alignment
no more than one branch per cycle) « Require that instruction pairs be 64-bit aligned, and that the i nteger
» Usestatic & dynamic scheduling to issue as many as possible instruction be first
— VLIW: fixed number of instructions per clock cycle » Relaxing this requirement would increase the complexity of
« Similar to cramming (for example) four “simple” instructionsinto a detecting hazards and thus the cost of the hardware
single 128-bit instruction (one per functiona unit) — Arithmetic units & pipelines
» Statically scheduled by the compiler » CPU must have sufficient FP hardware to support one issue/clock

O Requires pipelined FP units or multipl e FP units (or both)

g, v v s, v v
6-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 19 6-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
(' UMBC ‘W UMBC

~ R ~ ™
Superscalar DLX hardware Superscalar DLX data & control hazards
* Interactions between integer and FP » Simple DLX pipeline: loads had alatency of one clock cycle
— FPand integer are largely independent Superscalar pipeline: the result of aload cannot be used on the
— Integer instructions such as FP loads and stores as well as movement same clock or the next clock cycle
between integer and FP registers can cause problems
. : » Hazards impose a penalty measured in cycles, not instructions
» Creates contention for the FP regi ster ports Th 3i) h it with Al
* Creates RAW hazards between integer FP |oads/stores and FP ALU — Thenext _ Instructions cannot use the resulit without a stall:
instructions — Thesameistrue for branch delays
— Handle FP register contention by adding an extra port to the FP register » More ambitious compiler or hardware scheduling techniques
file for memory operations and more complex instruction decoding for branches are
0 Detect the case in which an FP ALU instruction isissued in the same needed
cycle s the load that fetches a source operand for it (RAW hazard) « If the CPU is not able to get auseful instruction in both of the
two slots, the CPI increases and approaches 1
- J \ J
6-Mar-00 Vw#; UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 21 6-Mar-00 “?!#E UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 2
r R 4 R
Static scheduling on a superscalar DLX Dynamic scheduling on a superscalar DL X
Loop: LD FO, O(R1)
/SBDD g?i{?' EZ » Dynamic scheduling can improve on these results to an even
SUBI R, RL, #8 1 cycle latency greater extent
BNEZ R1, Loop n — The CPU can dual issue instructions with dependencies and serialize
Integer instruction s FP instruction Clock cycle them later using hazard detection logic
Loop: ::g Eg. Og (RlR)l) y % — Additiona hardware can reduce delays through the elimination of
LD F10, - 16(R1) ADDD F4. FO, F2 3 WAR and WAW hazards and memory disambiguation
LD F14,-24(R1) ADDD F8, F6, F2 4 » Similar to Tomasulo’s approach
LD F18,-32(R1) ADDD F12, F10, F2 5 :)
SD O(Rl), F4 '\ ADDD F16, F14, F2 6 » Dynamic scheduling
23] ?g?lR)l) ’F,Elz \‘_ F20, F18, F2 ; — Allowsthe CPU to keep the functional units busy as often as possible
ggB' Té' % #ége 18 — Permits the CPU to run well on code that was not scheduled for
BNEZ le L02)|,o oo 11 superscalar execution
SD 8(RL), F20 2 cyclelatency 12
9 « Unrolled loop 5 times; average 2.4 cycles per iteration) 9)

6-Mar-00

,:_i))
i Zﬁu } U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

23

Ry v v
6-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
‘W UMBC

24

Dynamic superscalar CPUs today

Modern CPUs may have
— 2+ integer ALUs

— Load/store (memory) unit
— Branch unit

CPU attempts to keep each functional unit busy
— Extensive dynamic scheduling to work around many RAW hazards
* Integer instructions can now have RAW hazards!
* Lotsof dynamic reordering to keep the units busy
— FPlinteger conflicts often less of an issue: not much FP computation

Branch delays are a huge problem

— 2cycledday isupto 11 lost instructions for 4-way issue (3 in the same
cycle, 4 each in following cycles)
NG J

6-Mar-00 Sk CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 25
W UMBC

