
6-Mar-00 1UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Dynamic branch prediction

• Until now, we have focused on overcoming data hazards.

• However, control hazards contribute greatly to reduced CPI,
especially as pipelines become longer

• More evident for machines that issue multiple instructions per
cycle (CPI < 1)
– Branches arrive n times more frequently in a n-issue machine.

– Latency of resolving a branch does not decrease

⇒ CPI is more significantly affected than it is for a single-issue
machine

6-Mar-00 2UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Effect of branch prediction on performance

• Static vs. dynamic prediction
– Static prediction: all decisions are made at compile time

⇒ This does not allow the prediction scheme to adapt to program
behavior that changes over time

• Effects of prediction on performance:
– Accuracy

• Accuracy of a branch prediction scheme impacts CPU performance

• A scheme that is not accurate may make CPU performance worse
than it would be without prediction

– Latency: two orthogonal aspects to performance

• Branch may be taken or not taken
• Branch may be correctly predicted or incorrectly predicted
⇒ Up to four different latencies for a single branch instruction

6-Mar-00 3UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Predicting a branch’s result

• The simplest thing to do with a branch is to predict whether or
not it is taken
– Helps in pipelines where the branch delay is longer than the time it

takes to compute the possible target PCs

• Most pipelines can calculate branch destination quickly!

– By saving the decision time, the CPU can branch sooner

• This scheme does NOT help with the DLX
– Branch decision and target PC are computed in ID, assuming there is

no hazard on the register tested

– Only helps when branch decision is calculated after branch target

6-Mar-00 4UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch prediction buffer
• Keep a buffer (cache) indexed by

the lower portion of the address of
the branch instruction
– Include bit(s) to indicate whether

or not the branch was recently
taken or not

– If the prediction is incorrect, the
prediction bit is inverted and
stored back

• Branch direction could be
incorrect because
– Branch mispredicted

– Instruction mismatch

⇒ Either way, the worst outcome is
paying the full branch latency

Taken /
not taken

Branch address
(mod k)

k
en

tr
ie

s

6-Mar-00 5UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Improving prediction accuracy
• Sample code

for (j = 0; j < 10; j++) {
 for (k = 0; k < 10; k++) {
 // stuff
 } // Predict this branch
}

• Problem
– If branch is almost always taken,

this scheme will likely predict
incorrectly twice

– Mispredicts when j==0,k==10

– Mispredicts when j==1,k==0

• Solution
⇒ Use 2-bit predictor!

Predict
taken

10

Predict
not taken

01

Predict
not taken

00

Predict
taken

11

taken

ta
ke

n

taken

taken not taken

not taken

not takennot taken

6-Mar-00 6UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Multi-bit predictors

• 2-bit predictor scheme
– Allows the accuracy of the predictor to approach the taken branch

frequency (i.e. 90% for highly regular branches)

– Implements “forgiveness” for a single misprediction

• n-bit predictors
– Keep an n-bit saturating counter for each branch

• Increment it on branch taken

• Decrement it on branch not taken

– If the counter is greater than or equal to half its maximum value,
predict the branch as taken

– This can be done for any n

• n=2 performs almost as well as larger values for n
⇒ Use n=2 because it requires less hardware!

6-Mar-00 7UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Location of the branch prediction buffer

• “Special cache”
– Accessed during IF (with the PC)

– Prediction bits used during ID if the instruction is decoded as a branch

• Instruction cache
– Requires more space (the instruction cache is usually much larger than

the “special cache”)

– Reduces the likelihood that “conflicts” occurs between different
branches

• Accuracy of branch prediction
– Misprediction rates range from 1% to 18% (using a 4K entry branch

prediction buffer)

– Static rates are around 30% for many programs

6-Mar-00 8UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Improving accuracy: correlated predictions

• The accuracy of our predictor is critical to exploiting more ILP

• How can we improve accuracy?
– Increasing the size of the cache does not help (much)

– Increasing the number of bits beyond 2 does not help (much)

• Consider the behavior of “surrounding” branches?
– Works particularly well if there are common “paths” through code that

require several branches, as in the following code:
if (aa == 2) // B1
 aa = 0;
if (bb == 2) // B2
 bb = 0;
if (aa != bb) … // B3

– B3 is correlated with B1 and B2

⇒ If both if statements are TRUE, then (aa != bb) is FALSE

6-Mar-00 9UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Correlated branch predictors
if (d == 0)
 d = 1;
if (d == 1)
 ...

 BNEZ R3,label ; Branch b1
 ADDI R3,R0,#1
label:
 SUBI R1,R3,#1
 BNEZ R1,label2 ; Branch b2
 …
label2:

Assume d is
held in R3

Initial value
of d

d==0 b1 Value of d
before b2

d==1 b2

0 Yes Not taken 1 Yes Not taken

1 No Taken 1 Yes Not taken

2 No Taken 2 No Taken

• If b1 is not taken, then b2 will also be not taken

⇒ A correlating predictor can take advantage of this

6-Mar-00 10UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Correlated branch prediction
• Use two-level predictors

– Keep track of the behavior of previous branches

– Use history to predict the behavior of the current branch

• Implement this by assigning two bits to each branch instruction
– One bit predicts the direction of the current branch if the previous branch was

not taken (PNT)

– One bit predicts the direction of the current branch if the previous branch was
taken (PT)

 ...
 BNEZ R3,label
 ADDI R3,R0,#1
label:
 SUBI R1,R3,#1
 BNEZ R1,label2
 …
label2:

PNT PT

PNT PT

NT/NT
NT/T
T/NT
T/T

6-Mar-00 11UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

How do two-level predictors help?
• Assume the value of d alternates between 2

and 0 in a loop
– The correct prediction of b2 shows the

advantage of correlating predictors

– The correct prediction of b1 is due to the choice
of d, since there is no obvious correlation

if (d == 0) // Branch b1
 d = 1;
if (d == 1) // Branch b2

d==? b1
prediction

b1
action

New b1
prediction

2 NT

b2
prediction

b2
action

New b2
prediction

T T NT T T
0 T NT NT T NT NT
2 NT T T NT T T
0 T NT NT T NT NT

Simple
branch

prediction

Correlated
branch

prediction

2 NT/NT T T/NT NT/NT T NT/T
0 T/NT NT T/NT NT/T NT NT/T
2 T/NT T T/NT NT/T T NT/T
0 T/NT NT T/NT NT/T NT NT/T

××
×
×

6-Mar-00 12UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

(m,n) branch predictors

• (m,n) predictors use the behavior of the last m branches to choose from one
of 2m branch predictors, each of which is an n-bit predictor

⇒ Results in better prediction rates than conventional n-bit prediction because it
allows several “contexts”

• Global Branch History can be implemented using a shift register that shifts
in the branch behavior (not taken or taken) when the branch is executed

• Since the branch prediction buffer is NOT a cache, there’s no guarantee
that the predictions correspond to the “correct” branch instruction

XXXBranch address

T NT
2-bit global
branch history

Shift register
3-bit

counter

XXX

(2,3) branch predictor

3

6-Mar-00 13UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch target buffers

• Branch predictors help predict whether a branch is taken

• CPU needs to know which address to fetch from ASAP in
order to reduce stalls even further, ideally to 0
– Must do this even before the CPU knows the instruction is a branch

⇒ Use branch target buffer (BTB) (also called branch target
cache)

• A branch target buffer is very similar to a cache
– Indexed exactly like a cache!

• BTB must include a tag to catch collisions in the table

– “Value” in the cache is the address of the next instruction, not the
contents of the memory location

6-Mar-00 14UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch target buffer operation
• If a hit occurs in the BTB, the CPU fetches the next instruction from the

address stored in the BTB, and not PC + 4
– This occurs by the end of IF!

– CPU must compare the entire address (unlike prediction buffers)

• On an incorrect match(current instruction is NOT a branch instruction)
– Slow things down because the predicted PC is always non-sequential by

definition (and therefore, incorrect)

Predicted PCTag

Branch prediction
(taken/not taken)

Branch target PCs

for taken branches

Branch instruction

addresses

Current PCCurrent PC

= Yes: use predicted PC

6-Mar-00 15UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Adding prediction to BTBs

• Add 2 bits of prediction (the purpose of the last field in the
previous figure)
– By definition, the branch is predicted taken!

• It has an entry in the BTB

• Even happens if the predictor indicates that it should NOT be taken

– In this case, it is better to have separate buffers for prediction and
predicted PCs (which can be different sizes)

– A “not taken” in the prediction buffer will override an entry in the BTB

• More complex prediction mechanisms such as (m,n) predictors
can also be used in this way

6-Mar-00 16UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Interaction of prediction & BTBs
Send PC to

memory & BTB

Send out predicted PC

Entry
found?

Branch
taken?

Instr a
branch?

No Yes

Branch correct
Continue with no stalls

Yes

Mispredicted!
Kill fetched instr
Delete from BTB

No

Enter branch instruction
address & next PC into BTB

Normal
execution

YesNo

IF

ID

EX

6-Mar-00 17UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch folding

• Instead of storing just the branch address, the BTB can store
the actual instruction as well
– Return the new instruction from the cache rather than just the new

address

– The branch “disappears” since it is replaced with the instruction given
by its target address

⇒ The branch instruction does NOT require any execution cycles!

• If it’s a conditional branch, we will still have to make sure the
condition is satisfied

• Branch folding works well for
– Unconditional branches

– Conditional branches where the condition is easy to test (including
condition codes)

6-Mar-00 18UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Limits to branch prediction

• Misprediction rate: limits branch prediction benefits
– If it’s too high, there’s too little benefit to justify the added hardware

• Misprediction penalties: also important!
– If these are no worse than the standard penalties for missed static

prediction, dynamic prediction is a win

– What if dynamic misprediction penalties are worse than static
misprediction penalties?

⇒ Static prediction might actually outperform dynamic prediction
even though it has a worse misprediction rate

6-Mar-00 19UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Multiple issue: superscalar & VLIW

• Prior techniques reduce ideal CPI to as close to 1 as possible

• To reduce CPI below 1, the CPU must be capable of issuing
more than one instruction per cycle
– Superscalar: CPU tries to issue more than one instruction per cycle to

keep all of the functional units busy

• May be limits (i.e., no more than one memory instruction per cycle,
no more than one branch per cycle)

• Use static & dynamic scheduling to issue as many as possible

– VLIW: fixed number of instructions per clock cycle

• Similar to cramming (for example) four “simple” instructions into a
single 128-bit instruction (one per functional unit)

• Statically scheduled by the compiler

6-Mar-00 20UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Superscalar DLX hardware

• Ensure that there are no data and structural hazards between
instructions issued together
– The easiest way to accomplish this is to allow dual issue of one integer

instruction (ALU, load/store) and one floating point instruction

• Hardware requirements
– Instruction alignment

• Require that instruction pairs be 64-bit aligned, and that the integer
instruction be first

• Relaxing this requirement would increase the complexity of
detecting hazards and thus the cost of the hardware

– Arithmetic units & pipelines

• CPU must have sufficient FP hardware to support one issue/clock

⇒ Requires pipelined FP units or multiple FP units (or both)

6-Mar-00 21UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Superscalar DLX hardware

• Interactions between integer and FP
– FP and integer are largely independent

– Integer instructions such as FP loads and stores as well as movement
between integer and FP registers can cause problems

• Creates contention for the FP register ports

• Creates RAW hazards between integer FP loads/stores and FP ALU
instructions

– Handle FP register contention by adding an extra port to the FP register
file for memory operations

⇒ Detect the case in which an FP ALU instruction is issued in the same
cycle as the load that fetches a source operand for it (RAW hazard)

6-Mar-00 22UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Superscalar DLX data & control hazards

• Simple DLX pipeline: loads had a latency of one clock cycle

• Superscalar pipeline: the result of a load cannot be used on the
same clock or the next clock cycle

• Hazards impose a penalty measured in cycles, not instructions
– The next 3 instructions cannot use the result without a stall!

– The same is true for branch delays

• More ambitious compiler or hardware scheduling techniques
and more complex instruction decoding for branches are
needed

• If the CPU is not able to get a useful instruction in both of the
two slots, the CPI increases and approaches 1

6-Mar-00 23UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Static scheduling on a superscalar DLX
Loop: LD F0,0(R1)
 ADDD F4,F0,F2
 SD 0(R1),F4
 SUBI R1,R1,#8
 BNEZ R1,Loop

Loop:

Clock cycleInteger instruction FP instruction
LD F0,0(R1) - 1
LD F6,-8(R1) - 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 - 8
SUBI R1,R1,#40 - 9
SD 16(R1),F16 - 10
BNEZ R1,Loop - 11
SD 8(R1),F20 - 12

• Unrolled loop 5 times; average 2.4 cycles per iteration

1 cycle latency

2 cycle latency

6-Mar-00 24UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Dynamic scheduling on a superscalar DLX

• Dynamic scheduling can improve on these results to an even
greater extent
– The CPU can dual issue instructions with dependencies and serialize

them later using hazard detection logic

– Additional hardware can reduce delays through the elimination of
WAR and WAW hazards and memory disambiguation

• Similar to Tomasulo’s approach

• Dynamic scheduling
– Allows the CPU to keep the functional units busy as often as possible

– Permits the CPU to run well on code that was not scheduled for
superscalar execution

6-Mar-00 25UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Dynamic superscalar CPUs today

• Modern CPUs may have
– 2+ integer ALUs

– Load/store (memory) unit

– Branch unit

• CPU attempts to keep each functional unit busy
– Extensive dynamic scheduling to work around many RAW hazards

• Integer instructions can now have RAW hazards!

• Lots of dynamic reordering to keep the units busy

– FP/integer conflicts often less of an issue: not much FP computation

• Branch delays are a huge problem
– 2 cycle delay is up to 11 lost instructions for 4-way issue (3 in the same

cycle, 4 each in following cycles)

