Dynamic branch prediction

« Until now, we have focused on overcoming data hazards.

 However, control hazards contribute greatly to reduced CPI,
especially as pipelines become longer
* More evident for machines that issue multiple instructions per
cycle (CPI <1)
— Branches arrive n times more frequently in a n-issue machine.
— Latency of resolving a branch does not decrease

0 CPI ismore significantly affected than it isfor a single-issue
machine

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

-
Effect of branch prediction on performance

o Static vs. dynamic prediction
— Static prediction: all decisions are made at compile time
0 This does not allow the prediction scheme to adapt to program
behavior that changes over time
« Effects of prediction on performance:
— Accuracy
» Accuracy of abranch prediction scheme impacts CPU performance

» A schemethat is not accurate may make CPU performance worse
than it would be without prediction

— Latency: two orthogonal aspects to performance
* Branch may be taken or not taken
* Branch may be correctly predicted or incorrectly predicted
_ 0 Upto four different latencies for a single branch instruction

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

Predicting a branch’s result

e The simplest thing to do with a branch isto predict whether or

not It Is taken

— Helpsin pipelines where the branch delay islonger than the time it
takes to compute the possible target PCs

» Most pipelines can calculate branch destination quickly!
— By saving the decision time, the CPU can branch sooner

e Thisscheme does NOT help withthe DLX

— Branch decision and target PC are computed in ID, assuming there is
no hazard on the register tested

— Only helps when branch decision i s calculated after branch target

6-Mar-00

S,
g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
B UMBC

Branch prediction buffer

o Keep abuffer (cache) indexed by
the lower portion of the address of
the branch instruction

— Include bit(s) to indicate whether
or not the branch was recently
taken or not

— If the prediction isincorrect, the
prediction bit isinverted and
stored back

e Branch direction could be
Incorrect because
— Branch mispredicted
— Instruction mismatch

0 Either way, the worst outcome is
paying the full branch latency

k entries

\.

~

Taken/
not taken

Branch address l

(mod k)

S,
& e . .
6-Mar-00 g CMSC 611 (Advanced Computer Architecture), Spring 2000
{5 UMBC

Chapter 4 4

|mproving prediction accuracy

taken not taken

Sample code
for (j =0; j < 10; j++) {
for (k = 0; k < 10; k++) {
/] stuff
} /] Predict this branch

}
Problem

— If branchisalmost always taken, teken S
this scheme will likely predict ©
incorrectly twice taken
— Mispredicts when j==0,k==10
— Mispredicts when j==1,k==0 Predict Predict
Solution not taken not taken

00 01

0 Use 2-bit predictor!

not taken not taken

Uo>e} 10U

6-Mar-00

sﬁii:%% . .
g m U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

\

Multi-bit predictors

e 2-bit predictor scheme

— Allows the accuracy of the predictor to approach the taken branch
frequency (i.e. 90% for highly regular branches)

— Implements “forgiveness’ for a single misprediction
* n-bit predictors
— Keep an n-bit saturating counter for each branch
* Increment it on branch taken
* Decrement it on branch not taken

— If the counter is greater than or equal to half its maximum value,
predict the branch as taken

— Thiscan be done for any n

e n=2 performsamost aswell aslarger valuesfor n
0 Usen=2 because it requires |less hardware!

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

4)
L ocation of the branch prediction buffer

e “Special cache”
— Accessed during | F (with the PC)
— Prediction bits used during ID if the instruction is decoded as a branch

e |nstruction cache

— Requires more space (the instructi on cache is usually much larger than
the “specia cache’)

— Reducesthe likelihood that “ conflicts’ occurs between different
branches
e Accuracy of branch prediction

— Misprediction rates range from 1% to 18% (using a4K entry branch
prediction buffer)

— Static rates are around 30% for many programs

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 7
%' UMBC

-
|mproving accuracy: correlated predictions

 The accuracy of our predictor iscritical to exploiting more ILP

e How can we improve accuracy?
— Increasing the size of the cache does not help (much)
— Increasing the number of bits beyond 2 does not help (much)

e Consider the behavior of “surrounding” branches?

— Works particularly well if there are common “paths’ through code that

require severa branches, asin the following code:
if (aa ==2) // Bl

aa = 0;
If (bb ==2) [/ B2
bb = 0;

if (aa !'= bb) ...// B3
— B3iscorrelated with B1 and B2

O If bothi f statements are TRUE, then (aa!= bb) is FAL SE

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

Correlated branch predictors

if (d == 0) BNEZ R3, | abel , Branch bl
d = 1: | ADD R3, RO, #1
> | abel :

1f (d == 1 '
| () Assumed is SUBl RL RS, #1

heldInR3 BNEZ R1,l1abel2 : Branch b2
| abel 2:
Initial value d==0 bl Vaueofd d==1 b2
of d before b2
0 Yes Not taken 1 Yes Not taken
1 No Taken 1 Yes Not taken
2 No Taken 2 No Taken

 |f blisnot taken, then b2 will also be not taken

O A correlating predictor can take advantage of this
\)

6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 9
% UMBC

(
Correlated branch prediction
o Usetwo-level predictors
— Keep track of the behavior of previous branches
— Use history to predict the behavior of the current branch
* Implement this by assigning two bits to each branch instruction
— One bit predicts the direction of the current branch if the previous branch was
not taken (PNT)
— One bit predicts the direction of the current branch if the previous branch was
taken (PT)
o PNT PT
BNEZ R3, | abel NT/NT
i N
SUBlI R1, R3, #1 PNT = PT TINT
BNEZ RL, | abel 2 T
I aI.o.(.eI 2:
\

S,
6-Mar-00 & CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
{5 UMBC

10

~

How do two-level predictors help?

 Assumethe value of d aternates between 2
and Oinaloop

— The correct prediction of b2 shows the
advantage of correlating predictors

— The correct prediction of b1l is due to the choice
of d, since there is no obvious correlation

if (d == 0) [/ Branch bl
d = 1;
if (d ==1) [/ Branch b2

d==> bl bl New bl b2 b2 New b2
prediction action prediction prediction action prediction

Simple 2 NT T—>T NT —=%>T—>»T
branch o) T NT —» NT T—x—bm—bNT
orediction HE NT T—T NT —X»T——>T
o) T NT —» NT T —X>» NT —» NT

2 NT/NT T T/INT NT/NT T NT/T

Cz:;iied 0 TINT NT TINT NT/T NT NT/T

prediction 2 T/INT T T/INT NT/T T NT/T

_ 0 T/NT NT T/NT NT/T NT NT/T Y

6-Mar-00

St
& B) . .
1 M U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

11

(m,n) branch predictors

(2,3) branch predictor

Branch address Ve > XXX
3

3-bit
Shift regl ster counter

A
2-bitglobal ~ >
branch history [_T__| NT

* (m,n) predictors use the behavior of the last m branches to choose from one
of 2™ branch predictors, each of which isan n-bit predictor

0 Resultsin better prediction rates than conventional n-bit prediction because it
allows several “contexts’

* Global Branch History can be implemented using a shift register that shifts
In the branch behavior (not taken or taken) when the branch is executed

» Since the branch prediction buffer isNOT a cache, there’ s no guarantee
\ that the predictions correspond to the “correct” branch instruction

S,
& JUMBC %ﬁ
6-Mar-00 4 CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
{5 UMBC

Branch target buffers

« Branch predictors help predict whether a branch is taken

e CPU needsto know which address to fetch from ASAP In
order to reduce stalls even further, ideally to O
— Must do this even before the CPU knows the instruction is a branch
0 Use branch target buffer (BTB) (also called branch target
cache)

e A branch target buffer isvery similar to a cache
— Indexed exactly like a cachel
 BTB must include atag to catch collisionsin the table

— “Vaue’ in the cache is the address of the next instruction, not the
contents of the memory location

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

13

Branch target buffer operation

e |f ahit occursinthe BTB, the CPU fetches the next instruction from the
address stored inthe BTB, and not PC + 4

— Thisoccurs by the end of IF!
— CPU must compare the entire address (unlike prediction buffers)
e On anincorrect match(current instruction is NOT a branch instruction)

— Slow things down because the predicted PC is always non-sequential by
definition (and therefore, incorrect)

‘ Current PC \ 3 Tag Predicted PC
‘ fo =

| _ Branch prediction
. Yes: use predicted PC (taken/not taken)

S,
& JUMBC %ﬁ
6-Mar-00 g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 14
{5 UMBC

Adding predictionto BTBs

e Add 2 bits of prediction (the purpose of the last field in the
previous figure)
— By definition, the branch is predicted taken!
e Ithasanentry intheBTB
» Even happensif the predictor indicatesthat it should NOT be taken

— Inthiscasg, it is better to have separate buffers for prediction and
predicted PCs (which can be different sizes)

— A “not taken” in the prediction buffer will override an entry inthe BTB

* More complex prediction mechanisms such as (m,n) predictors
can also be used in this way

6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 15
% UMBC

Interaction of prediction & BTBs

Send PC to
memory & BTB

Entry YEs

| Send out predicted PC |

Normal
execution
EX Enter branch instruction Mispredicted!
address & next PC into BTB || Kill fetched instr Branch correct
Deletefrom BTB | Continue with no stalls

S,
& JUMBC %ﬁ
6-Mar-00 4 CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 16
{5 UMBC

Branch folding

 |Instead of storing just the branch address, the BTB can store
the actual instruction as well

— Return the new instruction from the cache rather than just the new

address
— The branch “disappears’ since it is replaced with the instructi on given

by itstarget address
0 The branch instruction does NOT require any execution cycles!

e [fit’saconditiona branch, we will still have to make sure the
condition is satisfied
e Branch folding works well for

— Unconditional branches
— Conditional branches where the condition is easy to test (including
\ condition codes) Y,

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 17
%' UMBC

Limits to branch prediction

e Migprediction rate: limits branch prediction benefits
— If it'stoo high, there’' stoo little benefit to justify the added hardware

o Misprediction penalties: also important!
— If these are no worse than the standard penalties for missed static
prediction, dynamic predictionisawin
— What if dynamic misprediction penalties are worse than static
misprediction penalties?
0 Satic prediction might actually outperform dynamic prediction
even though it has aworse misprediction rate

Chapter 4

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000
%' UMBC

18

Multiple issue: superscalar & VLIW

Prior techniques reduce ideal CPI to as closeto 1 as possible

e Toreduce CPI below 1, the CPU must be capable of issuing

more than one instruction per cycle

— Superscalar: CPU triesto issue more than one instruction per cycleto
keep all of the functional units busy

* May belimits (i.e., no more than one memory instruction per cycle,
no more than one branch per cycle)

o Usestatic & dynamic scheduling to issue as many as possible
— VLIW: fixed number of instructions per clock cycle

o Similar to cramming (for example) four “simple’ instructions into a

single 128-hbit instruction (one per functional unit)
« Statically scheduled by the compiler

6-Mar-00

S,
g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

19

Superscalar DL X hardware

 Ensurethat there are no data and structural hazards between

Instructions issued together

— The easiest way to accomplish thisis to allow dual issue of one integer
instruction (ALU, load/store) and one floating point instruction

e Hardware reguirements

— Instruction alignment
* Require that instruction pairs be 64-bit aligned, and that the i nteger
Instruction be first
» Relaxing this requirement would increase the complexity of
detecting hazards and thus the cost of the hardware
— Arithmetic units & pipelines
* CPU must have sufficient FP hardware to support one issue/clock
0 Requires pipelined FP units or multipl e FP units (or both)

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

20

Superscalar DLX hardware

| nteractions between integer and FP
— FP and integer are largely independent

— Integer instructions such as FP loads and stores as well as movement

between integer and FP registers can cause problems
» Creates contention for the FP regi ster ports

* Creates RAW hazards between integer FP loads/stores and FP ALU

Instructions

— Handle FP register contention by adding an extra port to the FP register

file for memory operations

0 Detect the case in which an FP ALU instruction isissued in the same
cycle asthe load that fetches a source operand for it (RAW hazard)

6-Mar-00

S,
g sh CMSC 611 (Advanced Computer Architecture), Spring 2000
%' UMBC

Chapter 4

21

~

Superscalar DLX data & control hazards

Simple DLX pipeline: loads had alatency of one clock cycle

Superscalar pipeline: the result of aload cannot be used on the
same clock or the next clock cycle

Hazards impose a penalty measured in cycles, not instructions
— The next 3 instructions cannot use the result without a stall!
— The sameistrue for branch delays

More ambitious compiler or hardware scheduling techniques
and more complex instruction decoding for branches are
needed

If the CPU is not able to get a useful instruction in both of the
two slots, the CPI increases and approaches 1

~

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

22

4)
Loop: LD FO, O(R1)
ADDD F4, FO, F2
SD O(R1), F4
SuBl R1, R1, #8 1 cycle latency
BNEZ R1, Loop)
/
Integer instruction / FP instruction Clock cycle
Loop: LD FO, O(R1) > - 1
LD F6, - 8(R1) - 2
LD F10, - 16(R1) ADDD F4, FO, F2 3
LD F14,-24(R1) ADDD F8, F6, F2 4
LD F18,-32(R1) ADDD F12, F10, F2 5
SD O(R1),F4 N ADDD F16, F14, F2 6
SD -8(R1),F8 "~ ADDD F20, F18, F2 7
SD -16(R1), F12 8
SUBI R1, R1, #40 9
SD 16(R1), F16 RN 10
BNEZ R1, Loop - 11
SD 8(R1), F20 ~ 2cyclelatency 19
L » Unrolled loop 5 times, average 2.4 cycles per iteration)
6-Mar-00 Chapter 4 23

St
& B) . .
1 M U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000

4)
Dynamic scheduling on a superscalar DL X

« Dynamic scheduling can improve on these results to an even

greater extent

— The CPU can dual issue instructions with dependencies and serialize
them later using hazard detection logic

— Additiona hardware can reduce delays through the elimination of
WAR and WAW hazards and memory disambiguation

o Similar to Tomasulo’s approach
e Dynamic scheduling
— Allowsthe CPU to keep the functional units busy as often as possible

— Permits the CPU to run well on code that was not scheduled for
superscalar execution

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 24
%' UMBC

Dynamic superscalar CPUs today

 Modern CPUs may have
— 2+ integer ALUS
— Load/store (memory) unit
— Branch unit

o CPU attempts to keep each functional unit busy
— Extensive dynamic scheduling to work around many RAW hazards
* Integer instructions can now have RAW hazards!
» Lotsof dynamic reordering to keep the units busy
— FP/integer conflicts often less of an issue: not much FP computation

« Branch delays are a huge problem

— 2cycledelay isup to 11 lost instructions for 4-way issue (3 in the same
cycle, 4 each in following cycles)

_ J

S,
6-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 25
%' UMBC

