
2-Mar-00 1UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Dynamic scheduling

• Last time: data hazards that prevent instruction issue were
hidden by:
– Forwarding

– Static scheduling by the compiler

• Dynamic scheduling is also possible:
– CPU rearranges the instructions (while preserving dependences) to

reduce stalls

• Dynamic scheduling has several advantages over static
– Handles dependencies that are UNKNOWN at compile time such as

• Memory references

• Branches

– Allows code compiled with one pipeline in mind to run efficiently on
a different pipeline

2-Mar-00 2UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Out-of-order execution: basics

• Until now, all techniques require in-order instruction issue
– A stalled instruction holds up those behind it

• What if following instructions could “pass” the stalled one?
DIVD F0,F2,F4 ; long latency
ADDD F10,F0,F8 ; stalled waiting for F0
SUBD F12,F8,F14 ; could proceed with this one!

• Out-of-order execution: allow instructions to issue in any
order as long as dependencies aren’t violated
– Execute SUBD before ADDD in above example, reducing stalls

– Handle out-of-order completion

• May cause problems handling exceptions

• May not gain if there are long dependence chains

2-Mar-00 3UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Implementing out-of-order execution

• Split the ID stage into two halves
– Issue: decode instructions and check for structural hazards

– Read operands

• Wait until there are no data hazards, then

• Read the operands

– Continue to use forwarding to remove data hazards

• Designs of this type may use an instruction queue to hold
instructions that have been fetched but are waiting to be
executed
– An instruction is considered to be in execution at any time that it’s in

an EX stage

– Multiple instructions can be in execution at any given time

2-Mar-00 4UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboarding
• This technique issues instructions in order (in-order issue)

– Instructions can pass other waiting instructions in the “read operands” phase

– WAR hazards are now possible (didn’t exist in previous pipelines)

• Scoreboarding first used in the CDC 6600 (the designers named it)

• Goal: maintain an execution rate of one instruction per cycle
– Execute instructions as soon as possible

– Use either multiple functional units or pipelined functional units (they’re
equivalent for the purposes of pipeline control)

– We’ll assume multiple functional units

DIVD F0,F2,F4 ; divide takes a long time
ADDD F10,F0,F8 ; stalled waiting for F0 from divide
SUBD F8,F8,F14 ; stalled waiting for ADDD to read F8 (WAR)

2-Mar-00 5UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

DLX implementation using a scoreboard
• Focus on analysis of

scoreboarding in the FP units

• Integer units rarely encounter
hazards!
– Only stalls when waiting for a

value that has just been loaded

– Don’t deal with integer hazards
for now...

FP Mult

FP Mult

FP Divide

Integer

FP Add

Scoreboard Control & status information

2-Mar-00 6UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline changes for scoreboarding

• Every instruction goes through the scoreboard
– Scoreboard determines when an instruction can read its operands and

write its results

⇒ All hazard detection and resolution is centralized

• ID stage replaced with two stages:
– Issue (IS)

• An instruction is issued if:

– The functional unit is available and

– No other active instruction has the same destination register

• This avoids WAW hazards and structural hazards

• During a stall, this causes the buffer between IF and IS to fill

– A one-entry buffer fills quickly!

– Read operands (RD)

2-Mar-00 7UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

More pipeline changes for scoreboarding

• Read operands (RD)
– Read operation is delayed until operands are available

⇒ No previously issued but uncompleted instruction has the operand
as its destination

– RAW hazards resolved dynamically

• Execution (EX) stage changed
– Notify the scoreboard when EX is completed

• Allow a new instruction to use the functional unit

– EX may take multiple cycles if necessary

2-Mar-00 8UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Writeback (WB) with scoreboarding

• The scoreboard checks for WAR hazards and stalls the
completing instruction if necessary
– In the earlier example, SUBD would be stalled in WB until ADDD

reads its operands

• Writeback is stalled if
– A preceding instructions has not read its operands and

– One of the operands is the same register as the destination of the
completing instruction

• The DLX pipeline is now six cycles long
IF IS RD EX MEM WB

– Forwarding is not used here: not a large penalty since write-back
occurs as soon as the result is available

– Instructions that do NOT need the MEM stage don’t execute it

2-Mar-00 9UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboard components

• Instruction status
– Keeps track of the current stage of each instruction

– There is one entry for each instruction that has passed the IF stage but
has not yet completed

• Functional unit status
– Holds the status of each functional unit

• “Busy” indicates whether or not the unit is busy

• “Op” indicates the operation being performed (some functional
units can do more than one operation)

– Fi, Fj and Fk indicate the instruction’s source and destination registers

– Qj and Qk indicate the functional units producing the instruction’s
source registers

– Rj and Rk indicate whether the values are ready (avoid WAR hazards)

2-Mar-00 10UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboarding: sample code
• Register result status

– Holds the ID of the functional
unit that will eventually write a
register

– If the register is not the
destination of an issued
instruction, the field will
indicate no functional unit

• For this example, use the code on
the right
– Examine snapshots of the three

components of the scoreboard
during execution

– See how hazards are handled

LD F6,40(R2)
LD F2,52(R3)
MULTD F0,F2,F4
SUBD F8,F6,F2
DIVD F10,F0,F6
ADDD F6,F8,F2

F0: RAW hazard
F2: RAW hazard
F6: RAW hazard
F8: RAW hazard

2-Mar-00 11UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboard: snapshot #1

 Register result status
 F0 F2 F4 F6 F8 F10 F12 … F30
FuncUnit Mult1 Int Sub Div

LD F6,40(R2)
LD F2,52(R3)
MULTD F0,F2,F4
SUBD F8,F6,F2
DIVD F10,F0,F6
ADDD F6,F8,F2

Instruction status
Instruction Issue Read operands Exec complete Write result

X
X
X
X
X

X
X

X
X

X

Function unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer
Mult1
Mult2
Add
Divide

Yes
Yes
No
Yes
Yes

Load
Mult

Sub
Div

F2
F0
-
F8
F10

R3
F2
-
F6
F0

-
F4
-
F2
F6

-
Int
-
-

Mult1

-
-
-
Int
-

No
No
-
Yes
No

-
Yes
-
No
Yes

Mult & Sub
waiting for WB

First load
complete

2-Mar-00 12UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboard: snapshot #2

 Register result status
 F0 F2 F4 F6 F8 F10 F12 … F30
FuncUnit Mult1 Add Div

LD F6,40(R2)
LD F2,52(R3)
MULTD F0,F2,F4
SUBD F8,F6,F2
DIVD F10,F0,F6
ADDD F6,F8,F2

Instruction status
Instruction Issue Read operands Exec complete Write result

X
X
X
X
X

X
X

Function unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer
Mult1
Mult2
Add
Divide

No
Yes
No
Yes
Yes

-
Mult

Add
Div

-
F0
-
F6
F10

-
F2
-
F8
F0

-
F4
-
F2
F6

-
-
-
-

Mult1

-
-
-
-
-

-
No
-
No
No

-
No
-
No
Yes

-

X
X

XX

X
X
X
X

X

X
X

X

Why can’t ADDD finish?

Distinguishes
RAW from WAR

2-Mar-00 13UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboard: snapshot #3

 Register result status
 F0 F2 F4 F6 F8 F10 F12 … F30
FuncUnit Div

LD F6,40(R2)
LD F2,52(R3)
MULTD F0,F2,F4
SUBD F8,F6,F2
DIVD F10,F0,F6
ADDD F6,F8,F2

Instruction status
Instruction Issue Read operands Exec complete Write result

X
X
X
X
X

X
X

Function unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer
Mult1
Mult2
Add
Divide

No
Yes
No
Yes
Yes

-
Mult

Add
Div

-
-
-
-
F10

-
-
-
-
F0

-
-
-
-
F6

-
-
-
-
-

-
-
-
-
-

-
-
-
-
No

-
-
-
-
No

-

X
X

XX

X
X
X
X

X

X
X

X
X X

X

X

2-Mar-00 14UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Handling hazards with a scoreboard

• RAW hazards
– Detect RAW hazards by checking to see if a source register is listed in

the Register Result Status table

⇒ If it is, we have a RAW hazard

– If the pending instruction is receiving a value from the current
instruction, then set one of the pending instruction’s Rj/Rk fields to No

• WAR hazards
– Before writing the value, check to make sure that no pending

instruction is using a previous value for the register to be modified

– If some pending instruction has already “received” the value it needs
but hasn’t yet read it, then Rj/Rk is set to Yes and any instruction
writing the register must stall (WAR)

• This is how we distinguish between a RAW and WAR

2-Mar-00 15UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboard limitations

• ILP: if there aren’t any independent instructions to execute,
scoreboarding and other dynamic techniques don’t help much

• Size of the “issued” queue (the window)
– Determines how far ahead the CPU can look for instructions

– For now, assume that a window cannot span a branch

• Window includes instructions only within basic blocks

• The window can be extended beyond the branch: details later

• Number, types, and speed of the functional units

• Presence of antidependences and output dependences
– WAR and WAW hazards limit scoreboard more than RAW hazards

– RAW hazards are problems for any technique

– WAR and WAW hazards can be solved using other mechanisms

2-Mar-00 16UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach

• Tomasulo’s approach is a technique to allow execution to
proceed in the presence of hazards
– First introduced in the IBM 360/91

– Applied only to floating-point operations (including FP memory ops)

• Uses renaming to avoid WAW and WAR hazards
– Compiler can rename registers (statically) to avoid WAW and WAR

hazards

– Tomasulo’s scheme performs this function dynamically

• Buffers operands of instructions waiting to issue, fetching them as
soon as they are available, avoiding the register file

• The register specifiers of instructions are renamed to reservation
station numbers as they are issued, eliminating WAW and WAR
hazards

2-Mar-00 17UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Scoreboarding vs. Tomasulo’s approach

• Register renaming
– Register renaming is used to eliminate WAR and WAW hazards

– Scoreboarding must wait for WAR and WAW hazards to clear

• Distributed control
– Hazard detection and execution control are distributed to each

functional unit

– Scoreboarding has a centralized control unit

• Common Data Bus
– Used to forward results directly to the functional units without going

through the register file

– Scoreboarding connects each functional unit to the register file

2-Mar-00 18UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: design
• Reservation stations are the heart of Tomasulo’s approach

– Located at each functional unit (may be more reservations than func units)

– Hold values for each computation before it begins

FP MultipliersFP Adders

St
or

e
bu

ff
er

sL
oa

d
bu

ff
er

s

In
st

ru
ct

io
n

qu
eu

e

FP
 r

eg
is

te
rs

R
es

er
va

ti
on

St
at

io
ns

To memory

From memory

2-Mar-00 19UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: issue stage

• Take an instruction from the instruction queue
– If there’s a station available for it, send the instruction to the station

– Otherwise, stall for a structural hazard

• This step checks to see if the source operands will be
produced by a current instruction
– If so, renaming is done by checking to see if the desired register is

being written by an instruction already at a reservation station

• If the value is not being generated by a functional unit, it is
fetched from the register file

• If the value is being generated, the name of the reservation station
generating the result is used instead

– If the operation is a load or a store, it can issue if there is an available
load or store buffer

2-Mar-00 20UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: execute & WB

• Execute
– If at least one operand is missing, monitor the CDB until it is

generated

– When a needed operand is put out onto the CDB, it is placed into the
appropriate reservation station

– When both operands are ready, the operation is executed

⇒ RAW hazards are handled here

• Write result
– When the result is ready, write it on the CDB and into the register file

and any waiting reservation station

⇒ Only one value can be written on the CDB in any single cycle!

– Indicate that the reservation station is no longer busy

2-Mar-00 21UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: design details

• Control structures
– Operation (Op): the operation to be performed.

– Operand sources (Qj, Qk): the reservation stations that will produce
the values for the two operands

• A 0 in either slot means the source operand is already in Vj or Vk,
or that the slot is not needed

– Operand values (Vj, Vk): the values for the two operands.

• They are valid if and only if the corresponding Q is 0

– Busy: indicates the reservation station and the accompanying
functional unit are busy

• Register file & store buffer
– Field Qi for each element: indicates which reservation station is

producing the result that will go into this element (0 if blank)

2-Mar-00 22UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: control example

 Register result status
 F0 F2 F4 F6 F8 F10 F12 … F30
FuncUnit Mult1 Load2 Add2 Add1 Mult2

LD F6,40(R2)
LD F2,52(R3)
MULTD F0,F2,F4
SUBD F8,F6,F2
DIVD F10,F0,F6
ADDD F6,F8,F2

Instruction status
Instruction Issue Read operands Exec complete Write result

X
X
X
X
X

X
X

Function unit status
Name Busy Op Vj Vk Qj Qk

Add1
Add2
Add3
Mult1
Mult2

Yes
Yes
No
Yes
Yes

Sub
Add

Mult
Div

M[40+Regs[R2]]
-
-
-
-

-
-
-

Regs[F4]
M[40+Regs[R2]]

-
Add1

-
Load2
Mult1

Load2
Load2

-
-
-

-

X

X
X

X

MULTD & SUBD
waiting for WB

DIVD waiting on MULTD

2-Mar-00 23UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: advantages

• Hazard detection logic is distributed
– If multiple instructions are waiting on the second of two operands, the

instructions can be released simultaneously broadcasting on the CDB

• WAW and WAR hazards are eliminated because
– Register renaming is performed using the reservation stations.

– Operands are stored into the reservation tables as soon as they are
available

• The WAR hazard was eliminated because the reservation
station held the value of F6 for the DIVD instruction
– Even if LD F6, 40(R2) hadn’t completed before the DIVD had issued

• The WAR hazard & potential WAW hazard are eliminated

• Qk would point to the Load1 reservation table for the value of F6

2-Mar-00 24UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Tomasulo’s approach: loop unrolling

• Loop unrolling is performed dynamically !

• With only 4 FP registers, WAW and WAR hazards would
severely limit loop unrolling, even by the compiler
– Virtual registers provided by the reservation stations make it possible

to execute multiple iterations of some loops simultaneously

• Memory disambiguation
– Since the store functional unit keeps a memory address as well as a

value, it’s possible to do disambiguation

– When a memory operation is issued, check to see if that location is
already involved in an operation

⇒ LOADs and STOREs from different iterations of the loop can
be executed non-sequentially

