Dynamic scheduling

« Last time: data hazards that prevent instruction issue were
hidden by:
— Forwarding
— Static scheduling by the compiler
* Dynamic scheduling is also possible:
— CPU rearranges the instructions (while preserving dependences) to
reduce stalls

« Dynamic scheduling has several advantages over static
— Handles dependencies that are UNKNOWN at compile time such as
* Memory references

» Branches
— Allows code compiled with one pipeline in mind to run efficiently on

J

_ adifferent pipeline

S,
2-Mar-00 - CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
B UMBC

1

Out-of-order execution: basics

« Until now, all techniques require in-order instruction issue
— A stalled instruction holds up those behind it

« What if following instructions could “pass’ the stalled one?

DI VD FO, F2, F4 ; long | atency
ADDD F10, FO, F8 ; stalled waiting for FO
SuUBD F12, F8,F14 ; could proceed with this one!

« QOut-of-order execution: allow instructions to issue in any
order as long as dependencies aren’t violated
— Execute SUBD before ADDD in above example, reducing stalls
— Handle out-of-order completion
» May cause problems handling exceptions
* May not gain if there are long dependence chains

oy
2-Mar-00 & WeE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
‘% UMBC

| mplementing out-of-order execution

« Split the ID stage into two halves
— Issue: decode instructions and check for structural hazards

— Read operands
» Wait until there are no data hazards, then
* Read the operands
— Continue to use forwarding to remove data hazards
» Designs of thistype may use an instruction queue to hold
instructions that have been fetched but are waiting to be

executed
— Aninstruction is considered to be in execution at any timethat it'sin
an EX stage
— Multiple instructions can be in execution at any given time
N\ y,
2-Mar-00 3‘%% UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 3
4)
Scoreboarding
» Thistechnigue issuesinstructionsin order (in-order issue)
— Instructions can pass other waiting instructions in the “read operands’ phase
— WAR hazards are now possible (didn’'t exist in previous pipelines)
» Scoreboarding first used in the CDC 6600 (the designers named it)
» Goal: maintain an execution rate of one instruction per cycle
— Execute instructions as soon as possible
— Use either multiple functional units or pipelined functiond units (they’re
equivalent for the purposes of pipeline control)
— We'll assume multiple functional units
DI VD FO, F2, F4 ; divide takes a long tine
ADDD F10,F0,F8 ; stalled waiting for FO from divi de
SuUBD F8,F8,F14 ; stalled waiting for ADDD to read F8 (WAR
\ y,

oy
2-Mar-00 & WhE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 4
‘% UMBC

4)
DL X implementation using a scoreboard

| * Focuson analysis of
FP Add scoreboarding in the FP units
< : * Integer unitsrarely encounter
—— FP Mult hazards!
— L—| FPMult — Only stalls when waiting for a
value that has just been loaded
< — Don’t deal with integer hazards
> FPDivide I— for now...
<
" L= Integer I—
< :
x
- .iControl & status information
\ J
2-Mar-00 3‘%% U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 5
4)

Pipeline changes for scoreboarding

» Every instruction goes through the scoreboard

— Scoreboard determines when an instruction can read its operands and
writeits results

0 All hazard detection and resolution is centralized

» |D stage replaced with two stages:
— Issue (19
* Aninstruction isissued if:
— The functional unit isavailable and
— No other active instruction has the same destination register
» Thisavoids WAW hazards and structural hazards
» During astal, this causes the buffer between |F and IS to fill
— A one-entry buffer fills quickly!
_ — Read operands (RD) Y,

Sns,
2-Mar-00)\ CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 6
W UMBC

-
More pipeline changes for scoreboarding

* Read operands (RD)
— Read operation is delayed until operands are available

[JNo previously issued but uncompleted instruction has the operand
asits destination

— RAW hazards resolved dynamically
« Execution (EX) stage changed
— Notify the scoreboard when EX is completed
» Allow anew instruction to use the functional unit
— EX may take multiple cyclesif necessary

~

N\ J
2-Mar-00 wﬂ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 7
()
Writeback (WB) with scoreboarding

» The scoreboard checks for WAR hazards and stalls the
completing instruction if necessary
— Inthe earlier example, SUBD would be stalled in WB until ADDD
reads its operands
o Writeback isstalled if
— A preceding instructions has not read its operands and
— One of the operands is the same regi ster as the destination of the
completing instruction
« TheDLX pipelineisnow six cycleslong
IF IS RD EX MEM WB
— Forwarding is not used here: not alarge penalty since write-back
occurs as soon as the result is available
N — Instructions that do NOT need the MEM stage don’'t execute it y

oy
2-Mar-00 & WeE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
‘% UMBC

Scoreboard components

 Instruction status
— Keepstrack of the current stage of each instruction
— Thereisone entry for each instruction that has passed the | F stage but
has not yet completed
» Functional unit status
— Holds the status of each functional unit
» “Busy” indicates whether or not the unit is busy

* “Op” indicates the operation being performed (some functional
units can do more than one operation)

— F, F and F indicate the instruction’s source and destination registers
— Q; and Q, indicate the functional units producing the instruction’s

source registers
— R, and R indicate whether the values are ready (avoid WAR hazards)

1\ J
2-Mar-00 wﬂ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 9
4 N
Scoreboarding: sample code
* Register result status LD F6, 40(R2)
— Holdsthe D of thefunctional LD F2, 52(R3)
unit that will eventually writea MJULTD FO, F2, F4
register SUBD F8, F6, F2
— If theregister is not the DI vD F10, FO, F6
destination of an issued ADDD F6, F8, F2
instruction, the field will
indicate no functional unit FO: RAW hazard
» For this example, use the code on E; RAW hazard
the right F6: RAW hazard
— Examine snapshots of thethree F8: RAW hazard
components of the scoreboard
during execution
— See how hazards are handled
1\ J

Sonst,
2-Mar-00 & WeE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 10
‘% UMBC

Scoreboard: snapshot #1

Instruction status

Instruction Issue Readoperands Exec complete Write result
LD F6,40(R2) X X X X
LD F2,52(R3) X X X
MULTD FO, F2, F4 Mult & Sub T
SUBD F8, F6, F2 waiting for WB .
DIVD F10, FO,F6 X First load
ADDD F6, F8, F2 complete

Function unit stat

Name Busy Op F KK Q Qx R, Ry
I nt eger Yes Load F2 R3 - -4a— - —No -
Mul t 1 Yes Mul t FO F4 - No Yes
Mul t 2 No - - - Ny
Add Yes Sub F8 F6 F2 - nt Yes No
D vi de Yes D v F10 ™ FO F6 Mul t 1 - No Yes
v
Regi ster result status
FO F2 F4 F6 F8 F10 F12 ... F30
FuncUnit Miltl Int Sub D v
_ J
2-Mar-00 wﬂ UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 11
4)

Scoreboard: snapshot #2

Instruction status

Instruction Issue Readoperands Exec complete Write result
LD F6,40(R2) X X X X
LD F2,52(R3) X X X X
MULTD FO, F2, F4 X X X
SUBD F8, F6, F2 X X X X
DIVD F10,F0,F6 X
ADDD F6, F8, F2 X X X Why can't ADDD finish?
Function unit status
Name Busy Op FF K Qj Qx R, Ry
I nt eger No - - - - - - - -
Mul t 1 Yes Mul t FO F4 - - No No
Mul t 2 No - - - : - - - -
Add Yes Add » F6 F8 F2 - - No NO
Di vi de Yes Div " F10 YFO F6 MIltl - No
R v Y -

SN e == "

Regi ster result status
FO F2 F4 F6 F8 F10 F12 ...F30 Distinguishes

funcUni t Multl Add D v RAW from WAR)

Sonit,
2-Mar-00)\ CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 12
W UMBC

()
Scoreboard: snapshot #3
Instruction status
Instruction Issue Readoperands Exec complete Write result
LD F6,40(R2) X X X X
LD F2,52(R3) X X X X
MULTD FO, F2, F4 X X X X
SUBD F8, F6, F2 X X X X
DIVD F10,F0,F6 X X X
ADDD F6, F8, F2 X X X X
Function unit status
Name Busy Op FF R Q Xk R R
I nt eger No - - - - - - - -
Mul t 1 Yes Mt
Mul t 2 No -
Add Yes Add - - - - - - -
Di vi de Yes Div FI0O FO F6 - - No No
Regi ster result status
FO F2 F4 F6 F8 F10 F12 ...F30
EuncUni t D v)
2-Mar-00 zﬁf UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 13
()
Handling hazards with a scoreboard
 RAW hazards
— Detect RAW hazards by checking to seeif asourceregister islisted in
the Register Result Statustable
O Ifitis, we have aRAW hazard
— If the pending instruction is receiving a value from the current
instruction, then set one of the pending instruction’s R/R, fieldsto No
 WAR hazards
— Before writing the value, check to make sure that no pending
instruction is using a previous value for the register to be modified
— If some pending instruction has already “received” the value it needs
but hasn’t yet read it, then R /R, is set to Yes and any instruction
writing the register must stall (WAR)
L e Thisishow we distinguish between a RAW and WAR)

o,
2-Mar-00 & WE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
‘% UMBC

Scoreboard limitations

o [LP:if therearen't any independent instructions to execute,
scoreboarding and other dynamic techniques don’t help much

« Sizeof the“issued” queue (thewindow)
— Determines how far ahead the CPU can look for instructions
— For now, assume that a window cannot span a branch
» Window includes instructions only within basic blocks
» The window can be extended beyond the branch: details later

* Number, types, and speed of the functional units
* Presence of antidependences and output dependences
— WAR and WAW hazards limit scoreboard more than RAW hazards

— RAW hazards are problems for any technique
— WAR and WAW hazards can be solved using other mechanisms

1\
Sy
-Mar- | ; . Spri
2-Mar-00 3‘% : U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 15
4 N

Tomasulo’ s approach

» Tomasulo’s approach is a technique to allow execution to
proceed in the presence of hazards
— First introduced in the IBM 360/91
— Applied only to floating-point operations (including FP memory ops)
o Usesrenaming to avoid WAW and WAR hazards

— Compiler can rename registers (statically) to avoid WAW and WAR
hazards
— Tomasulo’s scheme performs this function dynamically
» Buffers operands of instructions waiting to issue, fetching them as
soon asthey are available, avoiding the register file

» Theregister specifiers of instructions are renamed to reservation
station numbers as they are issued, eliminating WAW and WAR
hazards

o,
2-Mar-00 & WE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 16
‘% UMBC

4)
Scoreboarding vs. Tomasulo’s approach

* Register renaming
— Register renaming is used to eliminate WAR and WAW hazards
— Scoreboarding must wait for WAR and WAW hazardsto clear

e Distributed control
— Hazard detection and execution control are distributed to each
functional unit
— Scoreboarding has a centralized control unit

 Common Data Bus
— Used to forward results directly to the functional units without going
through the register file
— Scoreboarding connects each functional unit to the register file

1\ J
g,
-Mar- | ; . Spri
2-Mar-00 3‘% : U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 17
4 N

Tomasulo’ s approach: design

* Reservation stations are the heart of Tomasulo’s approach
— Located at each functional unit (may be more reservations than func units)

— Hold values for each computation before it begins
ﬁ

From memory

i

Instruction
gueue
FP registers

' S A

W

Load buffers
‘_

Reservation

\ I | \ I |

FP Adders] [FPMultipliers]

Stations

Store buffers

v

l l To memory
J

Snst,
2-Mar-00)\ CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 18
W UMBC

Tomasulo’ s approach: issue stage

« Take an instruction from the instruction queue
— If there’ sa station available for it, send the instruction to the station
— Otherwise, stall for a structural hazard

» This step checksto seeif the source operands will be
produced by a current instruction
— If so, renaming is done by checking to see if the desired register is
being written by an instruction already at a reservation station
« If thevaueisnot being generated by afunctional unit, itis
fetched from the register file
* If thevalueis being generated, the name of the reservation station
generating the result is used instead
— If the operationisaload or astore, it can issueif thereis an available
load or store buffer

J
2-Mar-00 Wﬂ UMBGC oMscett (advanced Computer Architecture), Spring 2000 Chapter 4 19
()
Tomasulo’ s approach: execute & WB
» Execute
— If at least one operand is missing, monitor the CDB until it is
generated
— When aneeded operand is put out onto the CDB, it is placed into the
appropriate reservation station
— When both operands are ready, the operation is executed
[0 RAW hazards are handled here
o Writeresult
— When theresult isready, write it on the CDB and into the register file
and any waiting reservation station
[J Only one value can be written on the CDB in any single cycle!
— Indicate that the reservation station is no longer busy
\ J

oy
2-Mar-00 & WE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
‘% UMBC

20

Tomasulo’s approach: design details

« Control structures
— Operation (Op): the operation to be performed.

— Operand sources (Q,, Q,): the reservation stations that will produce
the values for the two operands

* A Oineither slot means the source operand is aready in V; or V,
or that the slot is not needed

— Operand values (V;, V,): the values for the two operands.
e They arevalid if and only if the corresponding Qis0
— Busy: indicates the reservation station and the accompanying
functional unit are busy
* Register file & store buffer

— Field Qi for each element: indicates which reservation station is
producing the result that will go into this element (O if blank)

1\ J
G,
-Mar- | ; . Spri
2-Mar-00 3‘% : U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 21
4 N

Tomasulo’ s approach: control example

Instruction status

Instruction Issue Readoperands Exec complete Write result
LD F6,40(R2) X X X X
LD F2,52(R3) X X X
MJULTD FO, F2, F4 X
SUBD F8, F6, F2 X U OTNRR ST
DIVD F10,FO,F6 X waiting for WB
ADDD F6, F8, F2 X DIVD waiting on MULTD

Function unit status
Name Busy Op Vi V, Q Qx
Add1 Yes Sub M[40+ReggR2]] - Load?
Add?2 Yes Add - Addl Load2
Add3 No - - - - -
Mult 1 Yes Mult - Regq F4] Load2 -
Ml t 2 Yes Div - M[40+RegqR2]] ¢ Multl -

Regi ster result status
FO F2 F4 F6 F8 F10 F12 ... F30
\ FuncUnit Multl Load2 Add2 Addl Milt2)

Sns,
2-Mar-00 & WE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 22
‘% UMBC

Tomasulo’ s approach: advantages

» Hazard detection logic is distributed

— If multiple instructions are waiting on the second of two operands, the
instructions can be released simultaneously broadcasting on the CDB

« WAW and WAR hazards are eliminated because

— Register renaming is performed using the reservation stations.
— Operands are stored into the reservation tables as soon as they are
available
 The WAR hazard was eliminated because the reservation
station held the value of F6 for the DIV D instruction

— Evenif LD F6, 40(R2) hadn’t completed before the DIVD had issued
 The WAR hazard & potential WAW hazard are eliminated
» Q, would point to the Loadl reservation table for the value of F6

1\ J
Sy
-Mar- m ; . Spri
2-Mar-00 Zﬁﬁ : U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 23
4 N

Tomasulo’ s approach: loop unrolling

* Loop unrolling is performed dynamically !
o Withonly 4 FP registers, WAW and WAR hazards would

severely limit loop unrolling, even by the compiler
— Virtua registers provided by the reservation stations make it possible
to execute multiple iterations of some loops simultaneously
* Memory disambiguation
— Since the store functional unit keeps amemory addressaswell asa
value, it’'s possible to do disambiguation

— When amemory operation isissued, check to seeif that location is
already involved in an operation

[0 LOADs and STORESs from different iterations of the loop can
be executed non-sequentially

S,
2-Mar-00 & WE e CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 24
‘% UMBC

