Dynamic scheduling

o Lasttime: data hazards that prevent instruction issue were
hidden by:
— Forwarding
— Static scheduling by the compiler
e Dynamic scheduling is also possible:
— CPU rearranges the instructions (while preserving dependences) to
reduce stalls
e Dynamic scheduling has several advantages over static
— Handles dependencies that are UNKNOWN at compile time such as
 Memory references
» Branches

— Allows code compiled with one pipeline in mind to run efficiently on
\_ adifferent pipeline

S
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
B UMBC



Out-of-order execution:; basics

Until now, all techniques require in-order instruction issue
— A stalled instruction holds up those behind it

What if following instructions could “pass’ the stalled one?

DI VD FO, F2, F4 ;, long | atency
ADDD F10, FO, F8 , stalled waiting for FO
SUBD F12,F8,F14 ; could proceed wth this one!

Out-of-order execution: allow instructions to issue in any
order as long as dependencies aren’t violated
— Execute SUBD before ADDD in above example, reducing stalls
— Handle out-of-order completion
* May cause problems handling exceptions
« May not gain if there are long dependence chains

2-Mar-00

S,
g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC




|mplementing out-of-order execution

Split the ID stage into two halves
— Issue: decode instructions and check for structural hazards
— Read operands
« Wait until there are no data hazards, then
» Read the operands
— Continue to use forwarding to remove data hazards

Designs of thistype may use an instruction queue to hold
Instructions that have been fetched but are waiting to be
executed

— Aninstruction is considered to be in execution at any timethat it'sin
an EX stage

— Multiple instructions can be in execution at any given time

2-Mar-00

S,
g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
B UMBC




~
Scoreboarding
» Thistechnique issues instructions in order (in-order issue)
— Instructions can pass other wating instructions in the “read operands’ phase
— WAR hazards are now possible (didn’'t exist in previous pipelines)
o Scoreboarding first used inthe CDC 6600 (the designers named it)
« Goal: maintain an execution rate of one instruction per cycle
— Execute instructions as soon as possible
— Use either multiple functional units or pipelined functiond units (they’re
equivalent for the purposes of pipeline control)
— We'll assume multiple functional units
DI VD FO, F2, F4 ; divide takes a long tine
ADDD F10,FO0,F8 ; stalled waiting for FO from divide
SUBD F8, F8,F14 ; stalled waiting for ADDD to read F8 (WAR
\§ J

4

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC



~

DL X implementation using a scoreboard

FP Mult

<
EEEEER

L FPMult
<

FP Divide

;

| nteger

Focus on analysis of
scoreboarding in the FP units

Integer units rarely encounter
hazards!

— Only stallswhen waiting for a
value that has just been |oaded

— Don’t deal with integer hazards
for now...

< : \
A
e ><Scoreboard)<---5 Control & status information
\_
2-Mar-00

y\&'&m%
g m ( l | M B( : CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4




Pipeline changes for scoreboarding

e Every instruction goes through the scoreboard

— Scoreboard determines when an instruction can read its operands and
write its results

[1 All hazard detection and resolution is centralized

o |D stage replaced with two stages:
— Issue (1S)

o Aninstructionisissued if:
— Thefunctional unit isavailable and
— No other active instruction has the same destination register

» Thisavoids WAW hazards and structural hazards

» During astall, this causes the buffer between |F and IS to fill
— A one-entry buffer fills quickly!

\_ — Read operands (RD)

St
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC



-
More pipeline changes for scoreboarding

* Read operands (RD)
— Read operation is delayed until operands are available

[1 No previously issued but uncompleted instruction has the operand
as its destination

— RAW hazards resolved dynamically
e Execution (EX) stage changed
— Notify the scoreboard when EX is completed

* Allow anew instruction to use the functiona unit
— EX may take multiple cyclesif necessary

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC



\

Writeback (WB) with scoreboarding

The scoreboard checks for WAR hazards and stalls the
completing instruction if necessary
— Inthe earlier example, SUBD would be stalled in WB until ADDD
reads its operands

Writeback is stalled if

— A preceding instructions has not read its operands and
— One of the operands is the same regi ster as the destination of the
completing instruction
The DLX pipelineis now six cycleslong
IF IS RD EX MEM VB

— Forwarding is not used here: not alarge penalty since write-back
occurs as soon as the result is available

— Instructions that do NOT need the MEM stage don’t execute it

2-Mar-00

S,
g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC




\

Scoreboard components

Instruction status
— Keepstrack of the current stage of each instruction
— Thereis one entry for each instruction that has passed the IF stage but
has not yet completed
Functional unit status
— Holds the status of each functional unit
e “Busy” indicates whether or not the unit is busy

e “Op” indicates the operation being performed (some functional
units can do more than one operation)

— F, F;and Fy indicate the instruction’s source and destination registers
— Q and Qy indicate the functiona units producing the instruction’s

source registers
— Ry and R, indicate whether the values are ready (avoid WAR hazards)

J

2-Mar-00

S,
5 M CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

9



Scoreboarding: sample code
* Register result status LD F6, 40( R2)
— Holdsthe ID of thefunctiona LD F2, 52(R3)
unit that will eventualy writea MJLTD FO, F2, F4
register SUBD F8, F6, F2
— If theregister is not the DI VD F10, FO, F6
destination of an issued ADDD F6, F8, F2
instruction, the field will
indicate no functional unit FO: RAW hazard
« For thisexample, usethecodeon F2: RAW hazard
the right F6: RAW hazard
— Examine snapshots of thethree F8: RAW hazard
components of the scoreboard
during execution
— See how hazards are handled

2-Mar-00

; w% U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
AN

10




(
| nstruction status
Instruction Issue Readoperands Exec complete  Write result
LD F6, 40( R2) X X X X
LD F2, 52( R3) X X X
MJULTD FO, F2, F4 Mult & Sub T
DIVD F10, FO, F6 X First load
Function unit stat

Name Busy Op F KK Qx R, R,
| nt eger Yes Load F2 R3 - -4a— - —No -
Mul t 1 Yes Mul t FO F4 - No Yes
Mul t 2 No - - - S
Add Yes Sub F8 F6 F2 | nt Yes No
D vi de Yes D v F10 ™ FO F6 Mul t 1 - No Yes

e
Regi ster result status
FO F2 F4 F6 F8 F10 F12 F30
FuncUnit Miltl Int Sub D v
\_

2-Mar-00 gw%“ UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 11




\

Instruction Issue Readoperands Exec complete  Write result
LD F6,40(R2) X X X X
LD F2,52(R3) X X X X
MULTD FO, F2, F4 X X X
SUBD F8, F6, F2 X X X X
DIVD F10, FO,F6 X
ADDD F®6, F8, F2 X X X Why can't ADDD finish?
Function unit status
Name Busy Op F KK Q Qx R, R,
| nt eger No - - - - - - - -
Mul t 1 Yes Milt FO F4 - - No No
Mul t 2 No - - - > - - - -
Add Yes  Add » F6 | F8 F2 - - No 0
Di vi de Yes Div " F10 YFO  F6 Miltl - No
SN - 4 -
Regi ster result status /‘
FO F2 F4 F6 F8 F10 F12 ...F30 Distinguishes
FuncUnit Mult1l Add D v RAW from WAR

Scoreboard: snapshot #2

|nstruction status

J

2-Mar-00

sﬁii:%% . .
{ M U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 12



4 )
Scoreboard: snapshot #3
|nstruction status
I nstruction Issue Readoperands Exec complete  Write result
LD F6,40(R2) X X X X
LD F2,52(R3) X X X X
MULTD FO, F2, F4 X X X X
SUBD F8, F6, F2 X X X X
DIVD F10,F0,F6 X X X
ADDD F6, F8, F2 X X X X
Function unit status
Name Busy Op F KK Q Qx R, R,
| nt eger No - - - - - - - -
Mul t 1 Yes Milt - - - - - - -
Mul t 2 No - - - - - - - -
Add Yes  Add - - - - - - -
D vi de Yes Di v F10 FO F6 - - No No
Regi ster result status
FO F2 F4 F6 F8 FI0 F12 ...F30
FuncUni t Di v
\ )

2-Mar-00

& B ) . .
] M U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 13



Handling hazards with a scoreboard

e RAW hazards

— Detect RAW hazards by checking to see if asource register islisted in
the Register Result Status table

[ If itis, we have a RAW hazard

— |If the pending instruction is receiving a value from the current
Instruction, then set one of the pending instruction’s R/R, fieldsto No

 WAR hazards
— Before writing the value, check to make sure that no pending
Instruction is using a previous value for the register to be modified

— If some pending instruction has already “received” the value it needs
but hasn’t yet read it, then Ri/R, is set to Yes and any instruction
writing the register must stall (WAR)

e Thisishow we distinguish between a RAW and WAR

\

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

14




Scoreboard limitations

o |LP:Iif therearen’'t any independent instructions to execute,
scoreboarding and other dynamic techniques don’t help much

o Size of the “issued” queue (the window)
— Determines how far ahead the CPU can look for instructions
— For now, assume that a window cannot span a branch
» Window includes instructions only within basic blocks
* The window can be extended beyond the branch: details later

« Number, types, and speed of the functional units

» Presence of antidependences and output dependences
— WAR and WAW hazards limit scoreboard more than RAW hazards
— RAW hazards are problems for any technique
— WAR and WAW hazards can be solved using other mechanisms

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 15
%' UMBC



Tomasulo’s approach

 Tomasulo’s approach is atechnigue to allow execution to
proceed in the presence of hazards

— First introduced in the IBM 360/91

— Applied only to floating-point operations (including FP memory ops)
e Usesrenaming to avoid WAW and WAR hazards

— Compiler can rename registers (statically) to avoid WAW and WAR

hazards
— Tomasulo’ s scheme performs this function dynamically

» Buffers operands of instructions waiting to issue, fetching them as
soon as they are available, avoiding the register file

* Theregister specifiers of instructions are renamed to reservation
station numbers as they are issued, eliminating WAW and WAR
hazards

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 16
%' UMBC



4 )
Scoreboarding vs. Tomasulo’ s approach

e Register renaming
— Register renaming is used to eliminate WAR and WAW hazards
— Scoreboarding must wait for WAR and WAW hazards to clear

e Distributed control

— Hazard detection and execution control are distributed to each
functional unit

— Scoreboarding has a centralized control unit

e Common Data Bus

— Used to forward results directly to the functional units without going
through the register file

— Scoreboarding connects each functional unit to the register file

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 17
%' UMBC



Tomasulo’s approach: design

* Reservation stations are the heart of Tomasulo’ s approach
— Located at each functional unit (may be more reservations than func units)
— Hold values for each computation before it begins

From memory 5 ) i
0  §3 g
s £ i
B 1
B_ Yy v ¥V v ¥V ¥
S © w %
gs £
L
FP Adders FP Multipliers o)
Y
{ J ) 5
To memory

S,
& JUMBC %ﬁ
2-Mar-00 4 CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
{5 UMBC



Tomasulo’s approach: issue stage

o Take an instruction from the instruction queue
— If there sastation available for it, send the instruction to the station
— Otherwise, stall for a structural hazard

e Thisstep checksto seeif the source operands will be
produced by a current instruction

— If so, renaming is done by checking to see if the desired register is
being written by an instruction already at a reservation station

 |f thevalueis not being generated by afunctional unit, it is
fetched from the register file

 |f thevalueisbeing generated, the name of the reservation station
generating the result is used instead

— |If the operation isaload or astore, it can issue if thereisan avallable

load or store buffer
\_ J

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 19
%' UMBC




~

Tomasulo’s approach: execute & WB

Execute
— |If at least one operand is missing, monitor the CDB until itis
generated

— When aneeded operand is put out onto the CDB, it is placed into the
appropriate reservation station

— When both operands are ready, the operation is executed
[0 RAW hazards are handled here

Write result

— When the result isready, write it on the CDB and into the register file
and any waiting reservation station

[1 Only one value can be written on the CDB in any single cyclel!
— Indicate that the reservati on station is no longer busy

2-Mar-00

S,
5 M CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 20
%' UMBC



Tomasulo’s approach: design details

o Control structures
— Operation (Op): the operation to be performed.

— Operand sources (Q., Q,): the reservation stations that will produce
the values for the two operands

A Oin either slot means the source operand isalready in V; or V,
or that the slot is not needed

— Operand values (V;, V): the values for the two operands.
 They arevalid if and only if the corresponding QisO
— Busy: indicates the reservation station and the accompanying
functional unit are busy
e Register file & store buffer

— Field Qi for each element: indicates which reservation station is
producing the result that will go into this element (O if blank)

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

21




(
) .
Tomasulo’s approach: control example
|nstruction status
Instruction Issue Readoperands Exec complete  Write result
LD  F6,40(R2) X X X X
LD  F2,52(R3) X X X
MULTD FO, F2, F4 X
SUBD F8,F6,F2 X MU'.‘.TDf‘ SV%/'ZD
DVD F10,F0,F6 X walting for
ADDD F6, F8, F2 X DIVD waitingon MULTD

Function unit status

~

Name Busy Op V; V, Q Qx

Add1 Yes Sub M[40+Regq R2]] - L oad?2

Add2 Yes Add - Addl Load?

Add3 No - - - -

Mul t 1 Yes Mult Regq F4] L oad?2 -

Mul t 2 Yes Div - M[40+Regq R2]] * Multl -

Regi ster result status
FO F2 F4 F6 F8 F10 F12 ... F30

9 FuncUnit Multl Load2 Add2 Addl Milt2
2-Mar-00 Chapter 4 22

S,
& UMBC %ﬁ . .
g m U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000



Tomasulo’ s approach: advantages

e Hazard detection logic is distributed

— If multiple instructions are waiting on the second of two operands, the
Instructions can be released simultaneously broadcasting on the CDB

e WAW and WAR hazards are eliminated because

— Register renaming is performed using the reservation stations.
— Operands are stored into the reservation tables as soon as they are
available
 The WAR hazard was eliminated because the reservation
station held the value of F6 for the DIV D instruction

— Evenif LD F6, 40(R2) hadn’t completed before the DIVD had issued
« The WAR hazard & potential WAW hazard are eliminated
» Q. would point to the Loadl reservation table for the value of F6

J

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
%' UMBC

23



Tomasulo’ s approach: loop unrolling

e Loop unrolling is performed dynamically !
 Withonly 4 FP registers, WAW and WAR hazards would

severely limit loop unrolling, even by the compiler

— Virtual registers provided by the reservation stations make it possible
to execute multiple iterations of some loops simultaneously

e Memory disambiguation
— Sincethe store functional unit keeps a memory address aswell asa
value, it’s possible to do disambiguation
— When amemory operation isissued, check to seeif that location is
already involved in an operation
[1 LOADs and STOREs from different iterations of the loop can

be executed non-sequentially

S,
2-Mar-00 g sh CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
% UMBC

24



